=Pi-L

Exercise |11, Sublinear Algorithms for Big Data Analysis 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students, and solve as many problems as you can. Problems marked (*) are more
difficult, but also more rewarding. These problems have been taken from various sources on
the Internet, too numerous to cite individually.

In class we saw a constant factor approximate randomized algorithm for the distinct elements
problem which used pairwise independent hash functions. Design a (14¢)-approximate algorithm
using the same techniques. How many buckets will you hash into, and how does this affect the
space complexity of the algorithm?

Solution. Similarly to the sketch for the distinct element problem presented in class, we want
to distinguish between the cases of less than ¢ and greater than (1 + €)t elements. Select a hash
function h : [n] — [d] for some to be defined integer d uniformly at random from a pairwise
independent hash family. Maintain a counter ¢ such that ¢ =) . h(i)=1 Ti- Output YES if ¢ >0
else output NO.

Case 1 k <t (NO case): We have

<

ISHIES
Ul =+

k
Pr[C > 0] <) Pr[h(i) =1] =

Case 2 k > (1+¢€)t (YES case): We want to lower bound the probability of C' > 0 in this
case. This probability is non-decreasing with k as if we have more elements, it is more likely
that at least one of them hashes to 1. Hence Pr[C' > 0] is smallest when k = (1 + €)t which is
the case we will consider below. We have by the inclusion-exclusion principle

k
Pr(C > 0] >) Pr[h(i) =1] = > Prla(i) = 1 and h(j) = 1]
i=1 i,j€[k]

Difference in the probability of saying YES in the two cases is

I+et (Q+ €)%t? ot
d d? d

e (1+e)3?

d d?

2 212 : 5t

=¢"/5— (e+¢€°)7/25 (assuming d = —)

€

Pr[YES in yes case] — Pr[YES in no case] >

> €2/5 — (2€)%/25 (assuming e < 1)
=€%/25

Page 1 (of 2)

CS-448 Sublinear Algorithms for Big Data Analysis e Spring 2025
Michael Kapralov

To get an algorithm with failure probability bounded by 4, it suffices to repeat the experiment
O(= % log(1/6)) times and output YES if at least £ +€2/50 = /54 €2 /50 fraction of the individual
runs turn up YES, and say NO otherwise. We now show that 7' = O(z L log(1/6)) repetitions
suffice to ensure that failure probability is at most §. For each t = 1 T let Yy = 1 if
the t'th experiment says YES and 0 otherwise. Suppose that we are in the YES case, so that
E[Y;] > €/5 + €2/25 for each t = 1,...,T. By Chernoff bounds we have for every § € [0, 1]

T T
> Vi< (1-6) ElYi
t=1 t=1

Pr 02 L EYil/3.

Since
T

€/5—€“/50
ZYt_e?5 2;25 ZEY; ’

we can apply the Chernoff bound above with 1 — § = % This means that

Pr <Pr

T
> Y < (¢/5— €/50)T
t=1

€/5—€2/50 (e/5—€%/25) — (¢/5—€2/50) €2/50 € €

§=1— -
€/b—€2/25 €/5—€2/25 6/5—62/25 10 —2¢ — 10

Substituting this into the Chernoftf bound above yields
T
Pr ZYt < (e/5—€*/50)T| < ¢~ T-EM]/300 < —e*T/1500

since E[Y;] > €/5 by setting of parameters and the assumption that we are in the YES case. We
thus get that setting T = EC log(1/4) for a sufficiently large constant C' > 0 suffices to ensure
that the failure probability is upper bounded by §. The NO case analysis is analogous (apply
Chernoff bounds to 1 — Y;).

For each threshold ¢ storing the hash function of each run, we need O(logn) bits. But we
need to run O(El3 log(1/4)) such experiments and so total storage space would be O(logn).
Finally, we consider all thresholds ¢t = (1 +¢€)7,j = 0,...,log;,.n = O(Xlogn), so the total
space complexity for (1+ €)-approximate distinct elements With failure probablhty O((0/€)logn)
is O(El4 log® n) bits. O

Page 2 (of 2)

CS-448 Sublinear Algorithms for Big Data Analysis e Spring 2025
Michael Kapralov

