
Exercise I, Sublinear Algorithms for Big Data Analysis 2024-2025
These exercises are for your own benefit. Feel free to collaborate and share your answers

with other students, and solve as many problems as you can. Problems marked (*) are more
difficult, but also more rewarding. These problems have been taken from various sources on
the Internet, too numerous to cite individually.

1 In class we saw a constant factor approximate randomized counting algorithm with space com-
plexity O(log log n), where n is the maximum value of the counter. Prove that any deterministic
algorithm that provides a factor 2 approximation to the count must use Ω(log n) space.

Solution. We can view the algorithm as a deterministic sequence of transitions between memory
configurations. Consider a directed graph G where nodes are memory states of the algorithm,
and directed edges (S1, S2) correspond to transition from state S1 to S2 when an event happens.
Let S∗ denote the initial state. Then the graph G is a directed path plus cycle: as events happen,
we transition to new states, until a state is repeated. Let L denote the length of the ‘stem’ and C
the length of the cycle. Then the algorithm outputs the same answer when L events happen and
L + C · dL/Ce events happen (as traversing the cycle any number of times brings the algorithm
back to the same state). Since L + C · dL/Ce ≥ 2L, this contradicts the assumption that the
algorithm gives a factor two approximation, unless L + C · dL/Ce > n. Since

L + C · dL/Ce ≤ L + C · (L/C + 1) ≤ L + C,

we thus get that L + C > n. Thus, the number of memory states that the algorithm can be in
is at least L + C > n, and hence the space complexity is Ω(log n).

�

2 Let Xn denote the random variable maintained by Morris’ algorithm after n events have hap-
pened. Prove that E[22Xn ] = O(n2).

Page 1 (of 1)

CS-448 Sublinear Algorithms for Big Data Analysis • Spring 2025
Michael Kapralov



Solution. We prove by induction on n that E[22Xn ] ≤ An2+Bn+C for some absolute constants
A,B,C. The base is provided by n = 0 as long as C ≥ 1.

We now prove the inductive step, n→ n + 1. We have

E[22Xn+1 ] =

∞∑
j=0

Prob[Xn = j] ·E[22Xn+1 |Xn = j]

=
∞∑
j=0

Prob[Xn = j] · (2−j22(j+1) + (1− 2−j)22j)

=
∞∑
j=0

Prob[Xn = j] · (22j + 2j+2 − 2j)

=
∞∑
j=0

Prob[Xn = j] · (22j + 3 · 2j)

=

∞∑
j=0

Prob[Xn = j] · 22j + 3

∞∑
j=0

Prob[Xn = j] · 2j

= E[22Xn ] + 3E[2Xn ]

= An2 + Bn + C + 3(n + 1) (by inductive hypothesis and result from class)

We thus need to ensure that

A(n + 1)2 + B(n + 1) + C = An2 + (B + 2A)n + (A + B + C)

≥ An2 + (B + 3)n + (C + 3)

This means that we want B + 3 ≤ B + 2A, i.e. A ≥ 3/2 (set A = 3/2). We also want
A + B + C ≥ C + 3, which is satisfied when B = 3/2. Finally, we have C = 0 by the base case.
We have shown that E[22Xn+1 ] = 3

2n
2 + 3

2n + 1 for all n ≥ 0.
�
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