CS-448 Sublinear Algorithms for Big Data Analysis December 15th, 2021

Lecture 13
Lecturer: Michael Kapralov Scribes: Michael Kapralov

We let u* € (0,1] denote the kernel density of a dataset P in R¢ at point q € R%:

p=K(Pq): |P|2qu
peP

It’s good to have the Gaussian kernel K(p,q) = e~allP=all3 in mind for the rest of the lecture.
Although the algorithm that we design works for general kernels. The algorithm is from [2].

1 Kernel Density Estimation Using Andoni-Indyk LSH

In this section, we present an algorithm for estimating KDE, using the Andoni-Indyk LSH framework.
In order to state the main result of this section for general kernels, we need to define a few notions first.
Thus, we state the main result for Gaussian kernel in the following theorem, and then state the general
result, Theorem 8, after presenting the necessary definitions.

Theorem 1 Given a kernel K(p,q) := e~allP=dllz for any a > 0, € = Q(m), p* = n=°W
and a data set of points P, using Algorithm 1 for preprocessing and Algorithm 2 for the query proce-
dure, one can approzimate p* := K(P,q) (see Definition 3) up to (1 + €) multiplicative factor, in time

~ 0.2540(1)
0] <e2 (%)), for any query point q. Additionally, the space consumption of the data structure

0.25+40(1) 140(1)
mims<qe n — , € — .
{ 1 I

Throughout this section, we refer to Andoni-Indyk LSH’s main result stated in the following lemma.

8

Lemma 2 ([1]) Let p and q be any pair of points in RY. Then, for any fived r > 0, there exists a
hash family H such that, if pnear := p1(r) := Prpoy[h(p) = h(q) | |Ip — dl| < 7] and prar := p2(r,c) =
Prpn[h(p) = h(a) | [Ip — all = er] for any ¢ > 1, then

_log1/ppear _ 1 (logt
IOg 1/pfar —c? t1/2
for some t, where ppear > e=OW and each evaluation takes dt®®) time.

Remark From now on, we use t = log?® n, which results in n°(!) evaluation time and p= %2 +o(1).
In that case, note that if c = O (log1/7 n), then

Definition 3 For a query q, and dataset P = {p1,...,Pn}, we define
W= KPa) = PI > K(p,q)
peP

where for any p € P, K(p,q) is a monotone decreasing function of ||q — p||. Also, we define
w; = K(p;,q).

From now on, we assume that p is a quantity such that
p<p (1)
We also use variable J := {log2 ﬂ
Definition 4 (Geometric weight levels) For any j € [J]
Lj:={pieP:w; e (277,277]}.
This implies corresponding distance levels (see Figure 1), which we define as follows

VielJ]: rj:= .
FEVl = B8 e

where f(r) := K(p,p’) forr = ||p — p'||. Also define L1 := P\ UjegL;."

Figure 1: Illustration of definition of r;’s based on L;’s.
We start by stating basic bounds on collision probabilities under the Andoni-Indyk LSH functions in
terms of the definition of geometric weight levels L; (Definition 4):

Claim 5 Assume that kernel K induces weight level sets, L;’s, and corresponding distance levels, r;’s
(as per Definition 4). Also, for any query q, any integers i € [J +1],j € [J] such thati > j, let p € L;
and p’ € L;. And assume that H is an Andoni-Indyk LSH family designed for near distance r; (see
Lemma 2). Then, for any integer k > 1, we have the following conditions:

1. Prh*N?‘lk [h*(p) = h*(q)] > pﬁcar,j7
C2 —O0
2. Prjpepgr [0*(p) = h*(q)] < phe, D),
where ¢ 1= ¢; j 1= min {TT—;I, log1/7n} (see Remark 1) and ppear,j := p1(rj) in Lemma 2.

Proof If p € L; by Definition 4, we have

lla —pl| <7y

1One can see that Ly = {p; € P:w; <277}

Figure 2: Illustration of r; and r;_1 in terms of L; and L;.

Similarly using the fact that the kernel is decaying, for p’ € L; we have
la—p'l| >ric1 >c-ry.
So, by Lemma 2 and Remark 1 the claim holds. Figure 2 shows an instance of this claim. H
Now, we prove an upper-bound on sizes of the geometric weight levels, i.e., L;’s (see Definition 4).
Lemma 6 (Upper bounds on sizes of geometric weight levels) For any j € [J], we have
|L;| < 2np* < 2np.

Proof For any j € [J] we have

np > npt = Z K(p,q) By Definition 3
peP

> > > K(p,q)

i€[J] pEL;

> Y K(p,a)

pPEL;
> |Ly]-277

which proves the claim. H

Definition 7 (Cost of a kernel) Suppose that a kernel K induces geometric weight levels, L;’s, and

corresponding distance levels, ;’s (see Definition 4). For any j € [J] we define cost of kernel K for
weight level L; as

t(K,j) = 2 (1=0(1)
cost(K, j) := exp, (i_j+rrll,?%1+1 ’Vc?’j(l — 0(1))-‘>)

where ¢; j 1= min{r;—;l,loglﬁn}. Also, we define the general cost of a kernel K as

cost(K) := max cost(K, 7).
JjelJ]

Description of algorithm: The algorithm runs in J phases. For any j € [J], in the j’th phase,
we want to estimate the contribution of points in L; to K(P,q). We show that it suffices to have an
estimation of the number of points in L;. One can see that if we sub-sample the data set with probability
min{ﬁ, 1}, then in expectation we get at most O(1) points from L; for any ¢ < j. Now, assume that a
point p € L; gets sampled by sub-sampling, then we want to use Andoni-Indyk LSH to distinguish this
point from other sub-sampled points, efficiently. Thus, we want to find the appropriate choice of k for
the repetitions of Andoni-Indyk LSH (see Claim 5). Suppose that we call Claim 5 with some & (which
we calculate later in (3)). Then we have
h*lzg-[k [h* (p) = h* (q)] 2 pﬁear,j?

which implies that in order to recover point p with high probability, we need to repeat the procedure
0] (p;e’;n j) times. Another factor that affects the run-time of the algorithm is the number of points that
we need to check in order to find p. Basically, we need to calculate the number of points that hash to
the same bucket as q under h*’s. For this purpose, we use the second part of Claim 5, which bounds
the collision probability of far points, i.e., points such as p’ € L; for any 7 > j. Intuitively, for any point
p’ € L; for any i > j, by Claim 5 we have

P h(p') = h* < kc?(1—o(1))
Lo e =ni(a)] <p

where ¢ := ¢;; = min{%,log1/7n} and p := ppear;>. On the other hand, by Lemma 6, for i =
7+ 1,...,J we have

|Li| < 2'np* < 2'np.
Then, one has the following bound,

E[{p" € Li : *(p') = h"(a)}]]

; 1
< 2'nu- 57 ~pk62(17°(1)) Sub-sampling and then applying LSH
ny
— 2i—j . pkcz(l—o(l)). (2)

Since we have O <log %) geometric weight levels, then the expression in (2) for the worst 4, bounds

the run-time up to O (log i) multiplicative factor. In order to optimize the run-time up to 6(1)
multiplicative factors, we need to set k such that the expression in (2) gets upper-bounded by O(1) for
all i > j. So, in summary, for any fixed j € [J], we choose k such that any weight level L; for ¢ > j

contributes at most 6(1) points in expectation to the hash bucket of the query, i.e., h*(q). One can see
that we can choose k as follows

-1 i—j
ki=k; = . - | . 3
7 Togp imjt st L?u‘(l _0(1)% (3)

For sampling the points in L 41, it suffices to sample points in the data set with probability % (see
line 17 in Algorithm 1), since the size of the sampled data set is small and there is no need to apply
LSH. One can basically scan the sub-sampled data set.

2The indices are dropped for ¢;,j and Ppear,;j for ease of notation.

Algorithm 1 Preprocessing

1: procedure PREPROCESS(P, ¢)

2: > P represents the set of data points
3: > € represents the precision of estimation
4: K+ % ';f"(l) > C'is a universal constant
5 J [log iw > We use geometric weight levels with base 2, see Definition 4
6 fora=1,2,...,K; do > O(logn/€?) independent repetitions
7 for j=1,2,...,J do >J= {log H geometric weight levels
8: K» + 100logn - ppor,

9: > See Claim 5 and (3) for definition of ppear,; and k;
10: Psampling < min{ﬁ7 1}
11: P« sample each element in P with probability psampling-
12: for /=1,2,..., K5 do
13: Draw a hash function from hash family H* as per Claim 5 and call it H, ;
14: Run H, ;¢ on P and store non-empty buckets
15: end for
16: end for
17: P, + sample each element in P with probability %
18: Store]5a > Set]Ba will be used to recover points beyond L
19: end for

20: end procedure

Algorithm 2 Query procedure

1: procedure QUERY(P,q,¢€, 1)

2: > P represents the set of data points
3 > € represents the precision of estimation
4: K+ % ';f"(l) > C'is a universal constant
5 J [log iw > We use geometric weight levels with base 2, see Definition 4
6 fora=1,2,...,K; do > O(logn/€?) independent repetitions
7 for j=1,2,...,J do >J= {log H geometric weight levels
8: Ky < 100logn p;elifm > See Claim 5 and (3) for definition of ppear,; and k;
9: for {=1,2,...,K5 do

10: Scan H, j¢(q) and recover points in L;

11: end for

12: end for B

13: Recover points from L ;i in the sub-sampled dataset, P,.

14: S < set of all recovered points in this iteration

15: for p;, € S do

16: W; <— K(pi, q)

17: if p;, € L; for some j € [J] then

18: i emin{ﬁ,l},

19: else if p; € P\ UjcsL; then

20: pi ¢+

21: end if

22: end for

23: Za < D opies o

24: end for

25: end procedure

Now, we present the main result of this section.

Theorem 8 (Query time) For any kernel K, the expected query-time of the algorithm is equal to
0] (E_Qn‘)(l) - cost(K)).

Assuming Theorem 8, we prove Theorem 1.

Proof of Theorem 1: We first start by proving the query time bound and then we prove the space
consumption of the data structure, and the guarantee over the precision of the estimator is given in
Claim 11.

Proof of the query time bound: We calculate the cost of Gaussian kernel e—allx=vll3, First, we
present the weight levels and distance levels induced by this kernel. As per Definition 3, let

p = K(P,q) = Z e—ollp—all3
peP

By Definition 4, one has

L; = {pi eEP w; € (27j,27j+1]}

= {pieP: Ilpi —dll2 € l\/(ji)lﬂ’\/j122>}’

which immediately translates to r; := 1/ 222 for all j € [J]. Also, we for all i € [J + 1],5 € [J] such

a

that ¢ > j, we have

) Ti—1
¢i,j := min {Z7log1/7n}

rj

[i—1
min{ Z,,loglﬁn}
J

i—j 1. 1
T =1 40(1) log ~
jné?ﬁz‘:jg?(“Hl ’Vc?)j(l - 0(1))-‘ (1+0of))4 o8 w

At this point, one can check that

Therefore, the cost of Gaussian kernel is

1\ A+e():
cost(K) = <> .
7

Now, invoking Theorem 8, the statement of the claim about the query time holds.

1

0.25+0(1)
Proof of the space bound: First, since the query time is bounded by €2 (T)

, then the num-

ber of hash functions used is also bounded by the same quantity. This implies that the expected size of the
0.25+0(1)
space needed to store the data structure prepared by the preprocessing algorithm is e 2n (ﬁ)

since for each hash function we are hashing at most n points (number of points in the dataset).
For the other bound, we need to consider the effect of sub-sampling the data set. Fix j € [J]. In the
phase when we are preparing the data structure to recover points from L;, we sub-sample the data set

with probability min{ ,1}, and then we apply 9] (p;e’i’r j> hash functions to this sub-sampled data

_1
2inu
set. Since

1 -1 1—7
L= . max -
T logp =gttt | 62 (1 —o(1)) |
by (3)7 where p = Pnear,j, W€ have
—k; 1—7)
.= a7 - . 4
Prear,j = €XP2 <i—j+l?7?>.(,J+1 ’ch’j(l — 0(1))-‘ j) (4)

At the same time, the expected size of the sampled dataset is bounded by n - min{ﬁ, 1} < i .27,
Putting this together with the equation above, we get that the expected size of the dataset constructed
for level L; is upper bounded by

L e ma i=J ' (5)
Zex X _— 1 =3].
i P2 i=j+1,.J+1 C?’j(l —o(1)) J

Now for every i = j +1,...,J such that ¢; ; = ; one has

i—j o . / .
i ng(l - 0“))} IS A [‘7 RO 0(1)% —J=sold);

logt/7 :L(ffO(l))—‘
together with (5) and multiplying by J = O(log(1/u)) = u~=°®") to account for the number of choices
)1+o(1)

and for the other values of ¢ we have max;—; 1, .. j+1 { — 7 < o(J) as well. Putting this

j € [J], we get the second bound for the expected size of the data structure e 2 (ﬁ

Proof of the precision of the estimator: First, we prove the following claim, which guarantees
high success probability for recovery procedure.

Claim 9 (Lower bound on probability of recovering a sampled point) Suppose that we invoke
Algorithm 1 with (P,€). Suppose that in line 11 of Algorithm 1, when k = k* and j = j*, we sample
some point p € Lj-. We claim that with probability at least 1 — n—%o, there exists £* € [K3] such that
Hy+ j« o+ (P) = Hp= je+ (q)-

Proof By Claim 5 we have

* — h* kj
LB () = 1 (@)] 2 Pl

Now note that we repeat this process for K = 100logn - p;e]g;y ; times. So any point p which is sampled
from band L;- is recovered in at least one of the repetitions of phase j = j*, with high probability. H

Now, we argue that the estimators are unbiased (up to small inverse polynomial factors)

Claim 10 (Unbiasedness of the estimator) For every u* € (0,1), every u > p*, every e € (u19,1),
every q € R?, estimator Z, for any a € [K1] constructed in QUERY (P, q, €, 1) (Algorithm 2) satisfies the
following:

(1 —n)" <E[Z) < np*

Proof Let £ be the event that every sampled point is recovered and let Z := Z, (see line 23 in
Algorithm 2). By Claim 9 and union bound, we have

Prlf] >1—-n""°

We have that E[Z] =Y., Ez"]wi with (1 —n=%)p; < E[x:] < p:i, where we now define y; = 1 if point

p: is sampled and recovered in the phase corresponding to its weight level, and x; = 0 otherwise. Thus
(1= n)np* <E[2) < np. (6)
]

Remark We proved that our estimator is unbiased® for any choice of y > p*. Therefore if p > 4u*,
by Markov’s inequality the estimator outputs a value larger than p at most with probability 1/4. We
perform O(logn) independent estimates, and conclude that p is higher than p* if the median of the
estimated values is below p. This estimate is correct with high probability, which suffices to ensure that
we find a value of y that satisfies p1/4 < p* < p with high probability by starting with some p = n~®)
(since our analysis assumes p* = n_g(l)) and repeatedly halving our estimate (the number of times that
we need to halve the estimate is O(logn) assuming that u is lower bounded by a polynomial in n, an
assumption that we make).

Claim 11 (Variance bounds) For every u* € (0,1), every e € (u1°,1), every q € RY, using estimators
Za, for a € [K1] constructed in QUERY (P, q, €, u) (Algorithm 2), where p/4 < p* < pu, one can output a
(1 £ €)-factor approzimation to u*.

3Up to some small inverse polynomial error.

Proof By Claim 10 and noting that Z < n?u*, where the worst case (equality) happens when all the
points are sampled and all of them are recovered in the phase of their weight levels. Therefore,

E[Z|€] - Pr[€] + n*p*(1 — Pr[&]) > E[Z].

Also, since Z is a non-negative random variable, we have

Then, we have

pi€P
w?

=> E [XH :|+ZE|:Xz;:|

i#j Wi i€[n] P
<szwj+z ’H[p =1] —|—Z Z]I[p # 1]

i#j ien) P iem ¥
S(Zm) Zw +max{]1p17é1}2wz

i i€[n] 1€[n]
<2n*(p*)*+ [ﬁax {wi 20 -
pi€
< 4n?p? Since pu* < p
and
E[Z?
E[Z%|€] < 7] < %W (1 4 o(1/n%))

Pr[€]

Now, since p < 4p*, in order to get a (1 £ €)-factor approximation to p*, with high probability, it
suffices to repeat the whole process K1 = Cleozg" -ffo(l) times, where C' is a universal constant.
Suppose we repeat this process m times and Z be the empirical mean, then:

Pr(|Z — p*| > enp”] < Pr[|Z —~E[Z]| > ep” — |E[Z] — np”|]
<Pr|Z-E[Z]] > (e —n ")np’]
. ElZ]

(e — n—9)2(n2p%)?
R (V170

- m (6 _ n—9)2(n2'u*)2

Thus by picking m = O(Z%) and taking the median of O(log(1/§)) such means we get a (1 =+ ¢)-
approximation with probability at least 1 — § per query.ll

All in all, we proved the expected query time bound, the expected space consumption and the
precision guarantee in the statement of the theorem. M

References

(1]

2]

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 459-468. IEEE Computer
Society, 2006.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In Sandy Irani, editor, 61st IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 172-183. IEEE, 2020.

10

