
CS-448 Sublinear Algorithms for Big Data Analysis December 15th, 2021

Lecture 13
Lecturer: Michael Kapralov Scribes: Michael Kapralov

We let µ∗ ∈ (0, 1] denote the kernel density of a dataset P in Rd at point q ∈ Rd:

µ∗ = K(P,q) :=
1

|P |
∑
p∈P

K(p,q).

It’s good to have the Gaussian kernel K(p,q) = e−a||p−q||
2
2 in mind for the rest of the lecture.

Although the algorithm that we design works for general kernels. The algorithm is from [2].

1 Kernel Density Estimation Using Andoni-Indyk LSH
In this section, we present an algorithm for estimating KDE, using the Andoni-Indyk LSH framework.
In order to state the main result of this section for general kernels, we need to define a few notions first.
Thus, we state the main result for Gaussian kernel in the following theorem, and then state the general
result, Theorem 8, after presenting the necessary definitions.

Theorem 1 Given a kernel K(p,q) := e−a||p−q||
2
2 for any a > 0, ε = Ω

(
1

polylogn

)
, µ∗ = n−Θ(1)

and a data set of points P , using Algorithm 1 for preprocessing and Algorithm 2 for the query proce-
dure, one can approximate µ∗ := K(P,q) (see Definition 3) up to (1 ± ε) multiplicative factor, in time

Õ

(
ε−2

(
1
µ∗

)0.25+o(1)
)
, for any query point q. Additionally, the space consumption of the data structure

is

min

{
ε−2n

(
1

µ∗

)0.25+o(1)

, ε−2

(
1

µ∗

)1+o(1)
}
.

Throughout this section, we refer to Andoni-Indyk LSH’s main result stated in the following lemma.

Lemma 2 ([1]) Let p and q be any pair of points in Rd. Then, for any fixed r > 0, there exists a
hash family H such that, if pnear := p1(r) := Prh∼H[h(p) = h(q) | ||p − q|| ≤ r] and pfar := p2(r, c) :=
Prh∼H[h(p) = h(q) | ||p− q|| ≥ cr] for any c ≥ 1, then

ρ :=
log 1/pnear

log 1/pfar
≤ 1

c2
+O

(
log t

t1/2

)
,

for some t, where pnear ≥ e−O(
√
t) and each evaluation takes dtO(t) time.

Remark From now on, we use t = log2/3 n, which results in no(1) evaluation time and ρ = 1
c2 + o(1).

In that case, note that if c = O
(

log1/7 n
)
, then

1

1
c2 +O

(
log t
t1/2

) = c2(1− o(1)).

Definition 3 For a query q, and dataset P = {p1, . . . ,pn}, we define

µ∗ := K(P,q) :=
1

|P |
∑
p∈P

K(p,q)

where for any p ∈ P , K(p,q) is a monotone decreasing function of ||q− p||. Also, we define

wi := K(pi,q).

1

From now on, we assume that µ is a quantity such that

µ∗ ≤ µ (1)

We also use variable J :=
⌈
log2

1
µ

⌉
.

Definition 4 (Geometric weight levels) For any j ∈ [J]

Lj :=
{
pi ∈ P : wi ∈

(
2−j , 2−j+1

]}
.

This implies corresponding distance levels (see Figure 1), which we define as follows

∀j ∈ [J] : rj := max
s.t. f(r)∈(2−j ,2−j+1]

r.

where f(r) := K(p,p′) for r = ||p− p′||. Also define LJ+1 := P \ ∪j∈[J]Lj.1

rj−1

rj

Lj

q

Figure 1: Illustration of definition of rj ’s based on Lj ’s.

We start by stating basic bounds on collision probabilities under the Andoni-Indyk LSH functions in
terms of the definition of geometric weight levels Lj (Definition 4):

Claim 5 Assume that kernel K induces weight level sets, Lj’s, and corresponding distance levels, rj’s
(as per Definition 4). Also, for any query q, any integers i ∈ [J + 1], j ∈ [J] such that i > j, let p ∈ Lj
and p′ ∈ Li. And assume that H is an Andoni-Indyk LSH family designed for near distance rj (see
Lemma 2). Then, for any integer k ≥ 1, we have the following conditions:

1. Prh∗∼Hk [h∗(p) = h∗(q)] ≥ pknear,j,

2. Prh∗∼Hk [h∗(p′) = h∗(q)] ≤ pkc
2(1−o(1))

near,j ,

where c := ci,j := min
{
ri−1

rj
, log1/7 n

}
(see Remark 1) and pnear,j := p1(rj) in Lemma 2.

Proof If p ∈ Lj by Definition 4, we have

||q− p|| ≤ rj .
1One can see that LJ+1 = {pi ∈ P : wi ≤ 2−J}.

2

ri−1

rj

Lj

Li

q

p

p′

Figure 2: Illustration of rj and ri−1 in terms of Lj and Li.

Similarly using the fact that the kernel is decaying, for p′ ∈ Li we have

||q− p′|| ≥ ri−1 ≥ c · rj .

So, by Lemma 2 and Remark 1 the claim holds. Figure 2 shows an instance of this claim.

Now, we prove an upper-bound on sizes of the geometric weight levels, i.e., Lj ’s (see Definition 4).

Lemma 6 (Upper bounds on sizes of geometric weight levels) For any j ∈ [J], we have

|Lj | ≤ 2jnµ∗ ≤ 2jnµ.

Proof For any j ∈ [J] we have

nµ ≥ nµ∗ =
∑
p∈P

K(p,q) By Definition 3

≥
∑
i∈[J]

∑
p∈Li

K(p,q)

≥
∑
p∈Lj

K(p,q)

≥ |Lj | · 2−j

which proves the claim.

Definition 7 (Cost of a kernel) Suppose that a kernel K induces geometric weight levels, Lj’s, and
corresponding distance levels, rj’s (see Definition 4). For any j ∈ [J] we define cost of kernel K for
weight level Lj as

cost(K, j) := exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉)
,

3

where ci,j := min
{
ri−1

rj
, log1/7 n

}
. Also, we define the general cost of a kernel K as

cost(K) := max
j∈[J]

cost(K, j).

Description of algorithm: The algorithm runs in J phases. For any j ∈ [J], in the j’th phase,
we want to estimate the contribution of points in Lj to K(P,q). We show that it suffices to have an
estimation of the number of points in Lj . One can see that if we sub-sample the data set with probability
min{ 1

2jnµ , 1}, then in expectation we get at most O(1) points from Li for any i ≤ j. Now, assume that a
point p ∈ Lj gets sampled by sub-sampling, then we want to use Andoni-Indyk LSH to distinguish this
point from other sub-sampled points, efficiently. Thus, we want to find the appropriate choice of k for
the repetitions of Andoni-Indyk LSH (see Claim 5). Suppose that we call Claim 5 with some k (which
we calculate later in (3)). Then we have

Pr
h∗∼Hk

[h∗(p) = h∗(q)] ≥ pknear,j ,

which implies that in order to recover point p with high probability, we need to repeat the procedure
Õ
(
p−knear,j

)
times. Another factor that affects the run-time of the algorithm is the number of points that

we need to check in order to find p. Basically, we need to calculate the number of points that hash to
the same bucket as q under h∗’s. For this purpose, we use the second part of Claim 5, which bounds
the collision probability of far points, i.e., points such as p′ ∈ Li for any i > j. Intuitively, for any point
p′ ∈ Li for any i > j, by Claim 5 we have

Pr
h∗∼Hk

[h∗(p′) = h∗(q)] ≤ pkc
2(1−o(1))

where c := ci,j := min
{
ri−1

rj
, log1/7 n

}
and p := pnear,j

2. On the other hand, by Lemma 6, for i =

j + 1, . . . , J we have

|Li| ≤ 2inµ∗ ≤ 2inµ.

Then, one has the following bound,

E [|{p′ ∈ Li : h∗(p′) = h∗(q)}|]

≤ 2inµ · 1

2jnµ
· pkc

2(1−o(1)) Sub-sampling and then applying LSH

= 2i−j · pkc
2(1−o(1)). (2)

Since we have O
(

log 1
µ

)
geometric weight levels, then the expression in (2) for the worst i, bounds

the run-time up to O
(

log 1
µ

)
multiplicative factor. In order to optimize the run-time up to Õ(1)

multiplicative factors, we need to set k such that the expression in (2) gets upper-bounded by O(1) for
all i > j. So, in summary, for any fixed j ∈ [J], we choose k such that any weight level Li for i ≥ j

contributes at most Õ(1) points in expectation to the hash bucket of the query, i.e., h∗(q). One can see
that we can choose k as follows

k := kj :=
−1

log p
· max
i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
. (3)

For sampling the points in LJ+1, it suffices to sample points in the data set with probability 1
n (see

line 17 in Algorithm 1), since the size of the sampled data set is small and there is no need to apply
LSH. One can basically scan the sub-sampled data set.

2The indices are dropped for ci,j and pnear,j for ease of notation.

4

Algorithm 1 Preprocessing
1: procedure PreProcess(P, ε)
2: . P represents the set of data points
3: . ε represents the precision of estimation
4: K1 ← C logn

ε2 · µ−o(1) . C is a universal constant

5: J ←
⌈
log 1

µ

⌉
. We use geometric weight levels with base 2, see Definition 4

6: for a = 1, 2, . . . ,K1 do . O(log n/ε2) independent repetitions
7: for j = 1, 2, . . . , J do . J =

⌈
log 1

µ

⌉
geometric weight levels

8: K2 ← 100 log n · p−kjnear,j

9: . See Claim 5 and (3) for definition of pnear,j and kj
10: psampling ← min{ 1

2jnµ , 1}
11: P̃ ← sample each element in P with probability psampling.
12: for ` = 1, 2, . . . ,K2 do
13: Draw a hash function from hash family Hkj as per Claim 5 and call it Ha,j,`

14: Run Ha,j,` on P̃ and store non-empty buckets
15: end for
16: end for
17: P̃a ← sample each element in P with probability 1

n

18: Store P̃a . Set P̃a will be used to recover points beyond LJ+1

19: end for
20: end procedure

5

Algorithm 2 Query procedure
1: procedure Query(P,q, ε, µ)
2: . P represents the set of data points
3: . ε represents the precision of estimation
4: K1 ← C logn

ε2 · µ−o(1) . C is a universal constant

5: J ←
⌈
log 1

µ

⌉
. We use geometric weight levels with base 2, see Definition 4

6: for a = 1, 2, . . . ,K1 do . O(log n/ε2) independent repetitions
7: for j = 1, 2, . . . , J do . J =

⌈
log 1

µ

⌉
geometric weight levels

8: K2 ← 100 log n · p−kjnear,j . See Claim 5 and (3) for definition of pnear,j and kj
9: for ` = 1, 2, . . . ,K2 do

10: Scan Ha,j,`(q) and recover points in Lj
11: end for
12: end for
13: Recover points from LJ+1 in the sub-sampled dataset, P̃a.
14: S ← set of all recovered points in this iteration
15: for pi ∈ S do
16: wi ← K(pi,q)
17: if pi ∈ Lj for some j ∈ [J] then
18: pi ← min{ 1

2jnµ , 1},
19: else if pi ∈ P \ ∪j∈[J]Lj then
20: pi ← 1

n
21: end if
22: end for
23: Za ←

∑
pi∈S

wi

pi
24: end for
25: end procedure

Now, we present the main result of this section.

Theorem 8 (Query time) For any kernel K, the expected query-time of the algorithm is equal to
Õ
(
ε−2no(1) · cost(K)

)
.

Assuming Theorem 8, we prove Theorem 1.
Proof of Theorem 1: We first start by proving the query time bound and then we prove the space
consumption of the data structure, and the guarantee over the precision of the estimator is given in
Claim 11.

Proof of the query time bound: We calculate the cost of Gaussian kernel e−a||x−y||
2
2 . First, we

present the weight levels and distance levels induced by this kernel. As per Definition 3, let

µ∗ := K(P,q) =
∑
p∈P

e−a||p−q||
2
2 .

By Definition 4, one has

Lj :=
{
pi ∈ P : wi ∈

(
2−j , 2−j+1

]}
=

{
pi ∈ P : ||pi − q||2 ∈

[√
(j − 1) ln 2

a
,

√
j ln 2

a

)}
,

6

which immediately translates to rj :=
√

j ln 2
a for all j ∈ [J]. Also, we for all i ∈ [J + 1], j ∈ [J] such

that i > j, we have

ci,j := min

{
ri−1

rj
, log1/7 n

}
= min

{√
i− 1

j
, log1/7 n

}

At this point, one can check that

max
j∈[J]

max
i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
= (1 + o(1))

1

4
log

1

µ
,

Therefore, the cost of Gaussian kernel is

cost(K) =

(
1

µ

)(1+o(1)) 1
4

.

Now, invoking Theorem 8, the statement of the claim about the query time holds.

Proof of the space bound: First, since the query time is bounded by ε−2
(

1
µ∗

)0.25+o(1)

, then the num-
ber of hash functions used is also bounded by the same quantity. This implies that the expected size of the

space needed to store the data structure prepared by the preprocessing algorithm is ε−2n
(

1
µ∗

)0.25+o(1)

,
since for each hash function we are hashing at most n points (number of points in the dataset).

For the other bound, we need to consider the effect of sub-sampling the data set. Fix j ∈ [J]. In the
phase when we are preparing the data structure to recover points from Lj , we sub-sample the data set
with probability min{ 1

2jnµ , 1}, and then we apply Õ
(
p
−kj
near,j

)
hash functions to this sub-sampled data

set. Since

kj =
−1

log p
· max
i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
,

by (3), where p = pnear,j , we have

p
−kj
near,j = exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
− j

)
. (4)

At the same time, the expected size of the sampled dataset is bounded by n · min{ 1
2jnµ , 1} ≤

1
µ · 2

−j .
Putting this together with the equation above, we get that the expected size of the dataset constructed
for level Lj is upper bounded by

1

µ
exp2

(
max

i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
− j

)
. (5)

Now for every i = j + 1, . . . , J such that ci,j =
√

i−1
j one has

max
i=j+1,...,J+1

⌈
i− j

c2i,j(1− o(1))

⌉
− j = max

i=j+1,...,J+1

⌈
j · i− j

(i− 1)(1− o(1))

⌉
− j ≤ o(J),

7

and for the other values of i we have maxi=j+1,...,J+1

⌈
i−j

log1/7 n(1−o(1))

⌉
− j ≤ o(J) as well. Putting this

together with (5) and multiplying by J = O(log(1/µ)) = µ−o(1) to account for the number of choices

j ∈ [J], we get the second bound for the expected size of the data structure ε−2
(

1
µ∗

)1+o(1)

.

Proof of the precision of the estimator: First, we prove the following claim, which guarantees
high success probability for recovery procedure.

Claim 9 (Lower bound on probability of recovering a sampled point) Suppose that we invoke
Algorithm 1 with (P, ε). Suppose that in line 11 of Algorithm 1, when k = k∗ and j = j∗, we sample
some point p ∈ Lj∗ . We claim that with probability at least 1 − 1

n10 , there exists `∗ ∈ [K2] such that
Hk∗,j∗,`∗(p) = Hk∗,j∗,`∗(q).

Proof By Claim 5 we have

Pr
h∗∼Hk

[h∗(p) = h∗(q)] ≥ pkjnear,j .

Now note that we repeat this process for K2 = 100 log n · p−kjnear,j times. So any point p which is sampled
from band Lj∗ is recovered in at least one of the repetitions of phase j = j∗, with high probability.

Now, we argue that the estimators are unbiased (up to small inverse polynomial factors)

Claim 10 (Unbiasedness of the estimator) For every µ∗ ∈ (0, 1), every µ ≥ µ∗, every ε ∈ (µ10, 1),
every q ∈ Rd, estimator Za for any a ∈ [K1] constructed in Query(P,q, ε, µ) (Algorithm 2) satisfies the
following:

(1− n−9)nµ∗ ≤ E [Za] ≤ nµ∗

Proof Let E be the event that every sampled point is recovered and let Z := Za (see line 23 in
Algorithm 2). By Claim 9 and union bound, we have

Pr[E] ≥ 1− n−9

We have that E [Z] =
∑n
i=1

E[χi]
pi

wi with (1− n−9)pi ≤ E [χi] ≤ pi, where we now define χi = 1 if point
pi is sampled and recovered in the phase corresponding to its weight level, and χi = 0 otherwise. Thus

(1− n−9)nµ∗ ≤ E [Z] ≤ nµ∗. (6)

Remark We proved that our estimator is unbiased3 for any choice of µ ≥ µ∗. Therefore if µ ≥ 4µ∗,
by Markov’s inequality the estimator outputs a value larger than µ at most with probability 1/4. We
perform O(log n) independent estimates, and conclude that µ is higher than µ∗ if the median of the
estimated values is below µ. This estimate is correct with high probability, which suffices to ensure that
we find a value of µ that satisfies µ/4 < µ∗ ≤ µ with high probability by starting with some µ = n−Θ(1)

(since our analysis assumes µ∗ = n−Θ(1)) and repeatedly halving our estimate (the number of times that
we need to halve the estimate is O(log n) assuming that µ is lower bounded by a polynomial in n, an
assumption that we make).

Claim 11 (Variance bounds) For every µ∗ ∈ (0, 1), every ε ∈ (µ10, 1), every q ∈ Rd, using estimators
Za, for a ∈ [K1] constructed in Query(P,q, ε, µ) (Algorithm 2), where µ/4 ≤ µ∗ ≤ µ, one can output a
(1± ε)-factor approximation to µ∗.

3Up to some small inverse polynomial error.

8

Proof By Claim 10 and noting that Z ≤ n2µ∗, where the worst case (equality) happens when all the
points are sampled and all of them are recovered in the phase of their weight levels. Therefore,

E [Z|E] · Pr[E] + n2µ∗(1− Pr[E]) ≥ E[Z].

Also, since Z is a non-negative random variable, we have

E [Z|E] ≤ E [Z]

Pr[E]
≤ nµ∗

Pr[E]
= nµ∗(1 + o(1/n9))

Then, we have

E[Z2] = E


∑

pi∈P
χi
wi
pi

2


=
∑
i 6=j

E
[
χiχj

wiwj
pipj

]
+
∑
i∈[n]

E
[
χi
w2
i

p2
i

]

≤
∑
i 6=j

wiwj +
∑
i∈[n]

w2
i

pi
I[pi = 1] +

∑
i∈[n]

w2
i

pi
I[pi 6= 1]

≤

(∑
i

wi

)2

+
∑
i∈[n]

w2
i + max

i

{
wi
pi

I[pi 6= 1]

}∑
i∈[n]

wi

≤ 2n2(µ∗)2 + max
j∈[J],pi∈Lj

{wi2j+1}nµ · nµ∗

≤ 4n2µ2 Since µ∗ ≤ µ

and

E[Z2|E] ≤ E[Z2]

Pr[E]
≤ n2µ2−o(1)(1 + o(1/n9))

Now, since µ ≤ 4µ∗, in order to get a (1 ± ε)-factor approximation to µ∗, with high probability, it
suffices to repeat the whole process K1 = C logn

ε2 · µ−o(1) times, where C is a universal constant.
Suppose we repeat this process m times and Z̄ be the empirical mean, then:

Pr[|Z̄ − µ∗| ≥ εnµ∗] ≤ Pr[|Z̄ − E [Z] | ≥ εµ∗ − |E [Z]− nµ∗|]
≤ Pr[|Z̄ − E [Z] | ≥ (ε− n−9)nµ∗]

≤ E [[] Z̄2]

(ε− n−9)2(n2µ∗)2

≤ 1

m

16n2(µ∗)2

(ε− n−9)2(n2µ∗)2

Thus by picking m = O(1
ε2) and taking the median of O(log(1/δ)) such means we get a (1 ± ε)-

approximation with probability at least 1− δ per query.

All in all, we proved the expected query time bound, the expected space consumption and the
precision guarantee in the statement of the theorem.

9

References
[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor

in high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 459–468. IEEE Computer
Society, 2006.

[2] Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search. In Sandy Irani, editor, 61st IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 172–183. IEEE, 2020.

10

