Lecture 2

Lecturer: Michael Kapralov

CS-448 Sublinear Algorithms for Big Data Analysis February 26, 2025

1 Approximate counting continued

In the previous lecture we considered is the counting problem: maintain an
approximate counter that counts up to at most n using a small amount of
space. Morris’ algorithm, presented below, maintains an O(loglogn) bit counter
X that, after some modifications that we discuss below, leads to an (e,J)-
approximate counter:

Definition 1 ((¢,d)-approximate counter) A (randomized) algorithm pro-
vides an (e, 0)-approzimation 1 for a counter n if

Pril—en<n<(1+¢e)n]>1-4,

where the probability is over the internal randomness of the algorithm.

(1) We maintain a counter X: X < 0

(2) For each event, increment X w.p. 2=%

(3) Output 2% —1

Why is the space complexity of Morris’ algorithm O(loglogn)? Of course,
the counter in the algorithm above will be incremented a linear in n number of
times with some positive probability, so in the worst case we will need Q(logn)
bits to store X. However, whenever the algorithm provides a useful bound, i.e.
whenever,

2¥ —1<Cn

for some absolute constant C' > 1, say, we have 2% < Cn + 1 and therefore
X <logy(Cn+ 1) and thus X can be represented by

log, [logy(Cn + 1)] = log, logy, n + O(1)

bits.
We now turn to analyzing the algorithm. In the previous lecture we proved
that our estimate is unbiased:

Claim 2 Let X,, be the value of X after the occurence of n events, then

E[2¥"] =n+1

To show that our estimator is indeed good, we need to show that our estimate
is close to n with high probability. Given that our estimate is unbiased, we
use Chebyshev’s inequality to obtain a bound on the probability of failure by
bounding the variance of our estimator. Let 7 be the output of the algorithm
after n events occur, i.e

i = 2% — 1.

By Chebyshev’s inequality we get

Var[n]

Pr[|n — E[n]]| > en] = Pr[|n — n]| > en] < 32

Note that first equality follows from the fact that our estimate is unbiased. In
order to bound the variance, we will use the following bound on the second
moment of 2X» whose proof is left as an exercise:

Claim 3 E[22X"] = 3n? + 2n +1
Using claims (2) & (3), we show that the variance of 7 is on the order of n?.

Varla] = E[(7 — n)*] = E[(2; — (n+1))%]

=B[22 — (n+1)2 < %
Thus, the probability of failure of Morris’ Algorithm is
_ Var[n] 1/2n? 1
P — < =t —=— 1
r[|n —n]| > en] < 22 OGRS (1)

If € is small, then the right hand side is more than 1, which is not good as
we are upper bounding the probability of failure. Still, we note that the above
bound provides some useful information: if € > 1, it shows that our estimator
7 is unlikely to grossly overestimate the true answer n. On the other hand, the
bound above leaves open the possibility that n is always 0, for example, so we
need to do better.

The problem with (1) is the the variance of 7 is too large — we need to
reduce it. To reduce variance we will run a number ¢ (to be determined later)
of independent rounds of Morris Algorithm, and then output the average as an
estimate. Given that the outputs are i.i.d random variables, the variance goes
down, but the mean doesn’t change. Guided by this observation, we introduce
Morris+, a modified version of Morris.

1.0.1 Morris+

Morris+ Algorithm provides an (e, §)-approximation by repeating Morris Algo-
rithm many times and then returning the average.

(1) For any ¢, maintain ¢ copies of Morris Algorithm, let X}, X2 ... X!
be the output of the ¢ copies.

(2) Output %2221(2&{ -1)

By linearity of expectation, the expected value of Morris+’s estimate is still

(exercise set 1)

Isn’t this more
than 17

For sufficiently
large €7 :)

n. However, the variance becomes smaller. In particular, the variance of the
estimate is now

t

XJ 1 < i Var(X})
_ J —— n — —— y nJ
. g (2 2 jg 1 Var[(2 1)] ”

—_

where the first equality follows from the independence of the random variables,
and the second equality follows by noting that X have identical distributions.
By Chebyshev’s inequality,

Varln) — n* 1

Pr[|2 — n]| > en] < n2e2 2te2n? 2te2

To get a § probability of error, we chose t to be at least ﬁ. Note that the
space required by Morris+ becomes O(e 257! loglogn). Thus, we now obtain an
algorithm that requires O(loglogn) space and returns (1 £ 1/2)-approximation
with high constant probability (say 9/10). Ideally, we would like to design
an algorithm with better than linear dependency on 1/§, so we improve this
algorithm even further by employing the “median trick”.

1.1 Morris+-+

The idea is to run t = O(log) copies of Morris+ (the choice of ¢ will be justified
in the proof below) with failure probability probability 1/3 (any constant less
than half would suffice), and output the median answer. The space requirement
of Morris++ now becomes O(}2 log % loglogn).

Note that Morris++ fails if and only if at least 1/2 of estimates fail (since
we are returning the median as an estimate). We define for i € [1,¢]

1 0.W.

v — {0 if the ¢-th estimate fails

Note that E[Y;] > 2/3. So, the probability that Morris++ fail is
¢
t
v,<i|=p Y; - E[Y; < C SRy,
S| -m[3 %

=Pr (Y E[Y;]) < t(1/2—2/3)

Pr

<Pr|[D (YVi—EM))| > (2/3- 1/2>t]

|
o~

<Pr ||y (Yi—EN])| = (2/3-1/2)) EY]

=Pr (|3 (Vi - E[¥])| > (1/6) D _E[Y]

By the Chernoff bound we now get

t

dYvi<

i=1

—(1/6)2(2t/3)
e 3

Pr <2

N | =+

The 'median
trick’ is really
as much of a
trick as the
birthday
phenomenon is
a paradox

log 1/6 factor in
space
complexity

To get a § probability of failure, we choose t = C log% for some large enough
C>0.

1.2 Summary

We used the approximate counting problem to illustrate the following two ideas
that are commonly used in the design of streaming algorithms:

1. If we have an estimator with a large variance, then we can reduce the
variance and thereby improve the precision of the estimator by averaging
(linear operation) several independent copies of the estimator.

2. If we have an algorithm that gives a strictly greater than 1/2 probability of
success, then we can boost the success by repeating it a sufficient number
of times (independently) and using the median (non-linear operation) as
an estimate.

2 Distinct Elements Problem

In the distinct elements problem, we are given a stream of elements between 1
and n, and we wish to compute the number of distinct elements occurring in the
stream. More formally, let « be a n-dimensional vector, where z; denotes the
frequency of 7 in the stream, we want to compute ||z||p (the number of distinct
elements). For example, think of computing the number of distinct queries on
Google.com over a period of time, or counting the number of distinct cities on
Instagram?.

To obtain the exact solution, the best we can do is store all the distinct
elements occurring in the stream. However, this can be the entire set i.e Q(n),
and our goal is to obtain an o(n)-space algorithm. To obtain a sublinear space
algorithm we relax our requirements, and we ask for an (g, d)-approximation,
namely a streaming algorithm that provides an approximation & of [|x||o such
that

Prllzlly <k < (1+ k| 215 2)

Before solving this problem, we reduce it to a simpler decision problem.

2.1 Distinct Elements: Decision Version

In this version of the problem, we are given a threshold ¢ and we want to
distinguish between the following two cases with “high” probability.

e YES : ||z||o > 2¢
e NO: ||z]lo < t

lHvyperLocLoG is a very practical distinct elements sketch used for such ap-
plications. The main ideas behind it are very similar to what we present here.
A similar method was used by the Allied Forces during World War II — see the
http://en.wikipedia.org/wiki/German tank problem

1/€* factor in
space
complexity

(1) Select a set S C [n] by including every ¢ € n independently with
probability %

(2) Maintain C' =}, g w;

(3) Output YES if C > 0, and NO otherwise.

Let ||x]|o = k, then the probability of outputting YES is as follows

Pr[C > 0] = Pr[S contains an element in the stream]

=1 —Pr[S doesn’t contain an element in the stream]|

oot

which behaves differently under the different regimes.

%
—
I
o
L
%
o
o
=

e NOcase: Pr[C>0]=1-(1-1F<1-(1-1)
e YES case: Pr[C >0]=1-(1-})*>1-(1-1)2~1-e2~0.86

t

Note that these bounds hold for ¢ large enough since we used the approximation
(1-L)7~el

From the above analysis, we know that we can differentiate between the
YES and the NO case. However, there is a small gap between the two cases,
and this would result in a large error probability. To amplify the gap between
them and obtain an arbitrarily small probability of error, we do the following.
Let

v — {1 if the experiment output YES
=

0 0.W.

(1) Repeat the experiment m times independently.

(2) Output YES if Y"1, V; > 0.7m, and NO otherwise.

One can easily show that we can distinguish between the two cases with prob-
ability at least 1 — ¢ by setting m = Clog% for some large enough C > 0.
Similar to the Morris+-+ analysis, we select m by showing that the error prob-
ability decay exponentially in m. Note that there is nothing magical in the
choice of 0.7, any constant in the range (0.64,0.86) would work. This gives
an algorithm for distinguishing between the two cases with space complexity
O(lognlog(1/d)) that succeeds with probability at least 1 — d, but our bound
on the space complexity does not take into account the storage needed for S. If
S is truly a random subset as defined above, however, it is not possible to store
it compactly. We next design a version of the algorithm that uses pseudorandom
S that is easy to store, but works almost as well for our purpose.

Proof by
calculus!

	Approximate counting continued
	 Morris+
	Morris++
	Summary

	Distinct Elements Problem
	Distinct Elements: Decision Version

