
CS-448 Sublinear Algorithms for Big Data Analysis February 19, 2025

Lecture 1
Lecturer: Michael Kapralov

1 What this course is about
Historically, the golden standard for efficiency of algorithms has been the notion
of linear or near-linear runtime (in the size of the input). Classical examples of
such algorithms are sorting (O(n log n) time using QuickSort, for example) or
the Fast Fourier Transform (similarly, O(n log n) time via FFT of Cooley and
Tukey).

The sizes of the data sets that we need to process have been growing very
rapidly for a while now, and this trend does not show signs of slowing. As a con-
sequence, even linear time algorithms become prohibitively expensive for many
modern applications: sometimes the data is so large that even accessing it in its
entirety is not feasible. For example, imagine being given a node in a very large
graph (e.g. social network) and wanting to find out which ‘communities’ the
node belongs to. One would like to be able to find these communities ‘locally’,
i.e. by exploring a small neighborhood of the node, as opposed to by running a
computation on the entire social network. In other settings the data is too large
to be stored in the memory of the computing device. A classical example here
is network flow analysis that routers, which possess limited memory, must per-
form. A similar one is the analysis of query patterns on a major search engine
such as Google: how does one find the most frequent queries in the stream of
queries on Google? Storing the entire stream of queries is not feasible, but it
turns out that the most frequent queries can be found approximately using a
small amount of space.

In this course we will study sublinear algorithms, which are specifically tai-
lored to processing large datasets using very constrained resources, namely re-
sources sublinear in the size of the input. Sublinear algorithms come in various
flavors, depending on the computation resource that we would like to minimize:

- Sublinear Time: In this scenario, we wish to evaluate some function f on some
data. However, we can’t afford reading the entire data set. A sublinear time
algorithm is essentially a method of sampling a subset of the dataset and
computing (an approximation to) the desired function based on the sample.
The above example of finding a community in a social network that a given
node belongs to falls into this category, and the sampling is done using a
random walk in the social network.

- Sublinear Space: The data is too large to be stored in memory, and we wish
to evaluate some function f on the input while using o(n) space. This is

1

known as the streaming model of computation. The above example of find
the most frequent items in a large data stream falls into this category. The
main algorithmic techniques is that achieves sublinear space is a combination
of hashing and random projections. The resulting algorithm can be thought
of as an approximate hashing scheme.

- Sublinear Communication: The data is too big to be stored on one machine,
so the data is divided into chunks and stored on multiple machines. The
goal now is to compute some function f on the data, while using o(n) bits
of communication between the different machines, usually while minimizing
the number of rounds in the computation. This corresponds to the massively
parallel computing setting.

Sublinear algorithms are typically approximate and randomized, and we will
prove formal information theoretic lower bounds that this is necessary. Since
randomization is key, we do a quick probability review, and then design a very
basic sublinear algorithm for counting. The algorithm will be approximate and
randomized, but will use an extremely small amount of space.

2 Probability Review
We start by reviewing some probability tools that we will be using in the analysis
of the algorithms presented in this course. In particular, we present some bounds
on the probability that a random variable deviates from its expected value. For
a more complete reference, we refer the reader to the following textbook [MR95].

Let X be a discrete random variable taking values in S ⊆ R, we define its
expected value and its variance respectively as follows

E[X] =
∑
x∈S

xPr[X = x]

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

Theorem 1 (Markov’s Inequality) Let X be a non-negative random variable.
Then for all a > 0,

Pr[X ≥ aE[X]] ≤ 1

a

Proof We assume that X takes a positive value with some positive probabil-
ity, as otherwise the result is trivial.

We then have

E[X] =
∑

x<aE[X]

xPr[x] +
∑

x≥aE[X]

xPr[x]

≥
∑

x≥aE[X]

xPr[x]

≥ aE[X]
∑

x≥aE[X]

Pr[x]

= aE[X] Pr[x ≥ aE[X]],

where the first inequality follows from X being non-negative. Dividing both
sides of the equation by E[X] gives the result.

2

Chebyshev’s inequality uses more information, namely the second moment
of the random variable:

Theorem 2 (Chebyshev’s Inequality) Let X be a random variable with expec-
tation µX and variance σ2

X . Then for every λ > 0,

Pr[|X − µX | > λ] ≤ σ2
X

λ2

Proof We apply Markov’s inequality with parameter a = λ2/σ2
X to the non-

negative random variable Y = (X − µX)2. Combining this with µY = V ar[X],
we prove the theorem.

Sums of independent random variables satisfy much tighter tail bounds hold.
Let X1, X2 . . . Xn be independent Bernoulli random variables such that Xi = 1
with probability p and 0 otherwise, and let Y =

∑
iXi. Then by the Central

Limit Theorem Y−E[Y]√
V ar(Y)

approaches N (0, 1) (the standard normal distribution)

as n→∞. Therefore, for t > 0

Pr[|Y − E[Y]| > t
√
V ar(Y)] ≈ 1

t
e−t

2/2

Chernoff bounds provide non-asympotic upper bounds on the probability of
deviation from the mean by a given amount:

Theorem 3 (Chernoff Bound) Let Y =
∑n
i=1Xi where Xi’s are independent

Bernoulli random variables, such that Xi = 1 with probability pi and 0 otherwise.
Also, let µY denote E[Y]. Then for any δ ∈ (0, 1)

Pr[|Y − µY | > δµY] ≤ 2e−
δ2µY

3 .

Proof To prove the theorem, we need to show

1. Pr[Y > (1 + δ)µY] ≤ e−
δ2µY

3

2. Pr[Y < (1− δ)µY] ≤ e−
δ2µY

3

We start by proving the upper tail inequality: For any t > 0, we have

Pr[Y > (1 + δ)µY] = Pr[etY > et(1+δ)µY]

due to monotonicity of exp(·). By Markov’s Inequality,

Pr[Y > (1 + δ)µY] ≤
E[etY]
et(1+δ)µY

To bound Pr[Y > (1 + δ)µY] it thus suffices to bound

E
[
etY
]
= E

[
et

∑
Xi
]
= E

[
n∏
i=1

etXi

]
=

n∏
i=1

E[etXi] (1)

=

n∏
i=1

(etpi + (1− pi)) =
n∏
i=1

(1 + pi(e
t − 1)) (2)

≤
n∏
i=1

epi(e
t−1) (3)

3

where the last equality in (1) follows from the independence of the random
variables, and (3) follows since (1 + x) ≤ ex for any non-negative x. Putting all
of this together, we get

Pr[Y > (1 + δ)µY] ≤
∏n
i=1 e

pi(e
t−1)

et(1+δ)µY

=
e
∑
pi(e

t−1)

et(1+δ)µY
=
eµY (et−1)

et(1+δ)µY
=
(ee

t−1

et(1+δ)

)µY
Setting t = ln(1 + δ) yields the best bound, which can be easily seen by differ-
entiating the last expression with respect to t and setting it to zero.

Pr[Y > (1 + δ)µY] ≤
(

eδ

(1 + δ)(1+δ)

)µY
Proof by
calculus. One has (1 + δ) ln(1 + δ) ≥ δ + δ2/3, which yields

Pr[Y > (1 + δ)µY] ≤ e−
δ2µY

3

as required. The proof of the lower tail can be proved by a similar approach.

3 The Counting Problem
The first problem we consider is the counting problem. In this problem, a number
of events occur, and we want to design a counter for these events. Intuitively,
this is the approximate timekeeping task: you listen to a clock tick, and would
like to have an estimate of how much time has passed, i.e. how many ticks you
have heard, and not spend too much of your memory on this task (i.e. certainly
not know exactly how many seconds have passed). A different formulation is:
we are given a stream of data s = (s1, s2, s3 · · · sn) one item at a time, and we
want to compute the length n of this stream.

The trivial way to do this is to maintain a counter, and increment it when-
ever we encounter an event. The space required by this algorithm is dlog2 ne,
which we write as O(log n) since we only focus on asymptotic complexity in this
course. Note that if we want to compute the count exactly, then we can’t do
better than that, since O(log n) bits are necessary to store a number of value
n. In order to improve the space requirement, we relax this problem to the
approximate counting problem, where we allow our answer to be approximate
and probabilistic.

3.1 The Approximate Counting Problem
In this version of the problem, we are interested in designing an algorithm that
provides an (ε, δ)-approximation to the counting problem.

Definition 4 ((ε, δ)-approximate counter) A (randomized) algorithm pro-
vides an (ε, δ)-approximation n̂ for a counter n if

Pr [(1− ε)n ≤ n̂ ≤ (1 + ε)n] ≥ 1− δ,

where the probability is over the internal randomness of the algorithm.

4

Below we present Morris Algorithm, one of the oldest known streaming al-
gorithm (dating back to 1978), which uses O(log log n) space to solve the ap-
proximate counting problem1. Before doing that, however, let’s generate some
intuition for why the bound of O(log log n) bits is natural to expect. For that,
imagine a simpler scenario where you are given the exact value of n, and would
like to send a short message to your friend, from which your friend should be
able to reconstruct a factor 2 approximation n̂ to n.

We discourage
such messaging
in an exam
setting.

What would you do? Sim-
ply round n to the closest power of two and send the power! Specifically, find
j ≥ 1 such that 2j−1 < n ≤ 2j and send j to your friend. This takes

dlog je = log2 log2 n+O(1) = O(log log n)

bits. This is of course a simpler setting: we only solved the compression problem,
where we are given n and want to write it down succinctly while allowing a
factor 2 approximation. The actual counting problem asks us for a way to
update such a compression continuously. The Morris counter provides a very
clean solution: once you hear a tick of the clock (or, equivalently, a data stream
element arrives), increment j by 1 with probability 2−j . This turns out to give
an unbiased estimator at all times. The details are presented below.

3.1.1 The Morris Algorithm

The following algorithm provides a O(1)-approximation with constant probabil-
ity.

(1) We maintain a counter X: X ← 0

(2) For each event, increment X w.p. 2−X

(3) Output 2X − 1

The space required by Morris is O(log log n) since we are maintaining X, which
can be of value at most O(log n), O(log log n) bits suffice to store X.

This assumes
free random
bits.

Claim 5 Let Xn be the value of X after the ocurrence of n events, then

E[2Xn] = n+ 1

Proof We prove the claim by induction of the number of steps n.

Base case: n = 0. For n = 0, Xn is trivially 0, so E[2Xn] = n + 1 holds
trivially for the base case.

1We will present a basic version of the algorithm that does not quite get optimal bounds,
but still illustrates the main ideas. Recent work of [NY22] shows how to achieve asymptotic
optimality.

5

Inductive step: n→ n+1. We assume that the claim holds for n, and show
that it still holds for n+ 1.

E[2Xn+1] =

∞∑
j=0

Pr[Xn = j]× E[2Xn+1 |Xn = j]

=

∞∑
j=0

Pr[Xn = j]× (2−j2j+1 + (1− 2−j)2j)

=

∞∑
j=0

Pr[Xn = j](1 + 2j)

=

∞∑
j=0

Pr[Xn = j]2j +

∞∑
j=0

Pr[Xn = j]

= E[2Xn] + 1

= n+ 2

where the last equality follows from the inductive hypothesis.

References
[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.

Cambridge University Press, New York, NY, USA, 1995.

[NY22] Jelani Nelson and Huacheng Yu. Optimal bounds for approximate
counting. In Leonid Libkin and Pablo Barceló, editors, PODS ’22:
International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, pages 119–127. ACM, 2022.

6

