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1 Ω(n) communication lower bound for GAPHAM

So far, we have seen how to prove the memory lower bound for INDEX problem
and reduce GAPHAM to F0. However to obtain Ω( 1

ε2 ) space lower bound for F0,
one missing part is to show the reduction from INDEX to GAPHAM, implying
an Ω(n) lower bound for GAPHAM. The following proof is due to [2].

Recall the INDEX problem, Alice has a vector u ∈ {0, 1}n and Bob is
given a index i ∈ [n]. The goal is to computer ui on Bob’s side after receiving
a single message m from Alice. For simplifying the proof, we modify Alice’s
vector to u ∈ {−1,+1}n. Also GAPHAM problem is defined as, given two
vector x, y ∈ {−1,+1}n, we want to distinguish whether ∆(x, y) ≤ n

2 −C
√
n or

∆(x, y) ≥ n
2 + C

√
n, where ∆(x, y) is the hamming distance between x and y.

Now we show how to derive a algorithm for Index problem given a protocol for
GAPHAM problem. Our plan is described as fellows,

(1) Pick N i.i.d. vector r1, r2, . . . , rN where for all k ∈ [N ], rk ∼ UNIF({−1,+1}n)

(2) For each k = 1 . . . N , let xk = sgn(〈u, rk〉) and yk = sgn(〈ei, rk〉), where ei is the standard 0-1
basis vector corresponding to Bob’s input.

(3) Feed vector x, y ∈ {−1,+1}N into GAPHAM solver. Output ui = −1 if the GAPHAM solver
recognizes that ∆(x, y) ≥ n

2 + C
√
n, otherwise output ui = +1 if ∆(x, y) ≤ n

2 − C
√
n

Note that,

∆(x, y) = |{k ∈ [n] : sgn(〈u, rk〉) 6= sgn(〈ei, rk〉)}|

The sketch of this method is to produce a random bit for Alice and Bob
without interaction and guarantee that if uj is -1, the bit will differ with prob-
ability at least 1

2 + c√
n
and if uj is 1, the bit will differ with probability at most

1
2 −

c√
n
. Then repeat this procedure N times (N will be specified latter) to

make sure that hamming distance either at least n
2 +C

√
n or at most n

2 −C
√
n

with high probability, which can be proved by Chernoff Bound. We formalize
the proof,

Claim 1 If r ∼ UNIF({−1,+1}n), then

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] =

{
≥ 1

2 + c√
n
, if ui = −1

≤ 1
2 −

c√
n
, if ui = 1
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where c is a positive constant.

Proof Assume without loss of generality that n is odd. 〈u, r〉 =
∑n
j=1 ujrj =

uiri +
∑n
j 6=i ujrj . Denote w =

∑n
j 6=i ujrj , there are two cases to consider when

ui = −1

• Case 1 w 6= 0, then |w| ≥ 2 for |w| is even. Then we can obtain
sgn(〈u, r〉) = sgn(w), which implies that Pr[sgn(〈u, r〉) = −1] = Pr[sgn(〈u, r〉) =
1] = 1

2 . Thus Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] = 1
2 .

• Case 2 w = 0, then sgn(〈u, r〉) = uiri. Thus Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] =
1.

Note that w is the sum of n−1 even number uniformly distributed variables
in {−1,+1}. By Stirling’s formula, when n is large enough, for some constant
c′ > 0, Pr[w = 0] ≥ c′√

n
(Another proof is that the distribution of w is coverage

to a Gaussian distribution with variance
√
n, thus the pdf of this distribution

between −
√
n and

√
n is Ω(

√
n)). Letting c = c′

2 , we can obtain the following
result, when ui = −1, Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] = Pr[w = 0] + 1

2 (1−Pr[w =

0]) ≥ 1
2 + c′

2
√
n

= 1
2 + c√

n
.

To boost this probability, we pick N i.i.d vectors, and denote

Zk =

{
1, if xk 6= yk

0, if xk = yk

Then ∆(x, y) =
∑N
k=1 Zk and E[Zk] ≥ 1

2 + c√
n
.

Claim 2 When ui = −1, Pr[
∑N
k=1 Zk <

N
2 + C

√
N ] < 0.1

Proof By Chernoff’s bound, we have

Pr[

N∑
k=1

Zk < (1− δ)
N∑
k=1

E[Zk]] ≤ exp(−NE[Zk]δ2/3) ≤ exp(−Nδ2/6),

where δ is chosen so that (1−δ)
∑N
k=1 E[Zk] = N

2 +C
√
N . We now lower bound

δ. Since
∑N
k=1 E[Zk] ≥ N/(1/2 + c/

√
n), we have

δ ≥ 1−
N
2 + C

√
N

N( 1
2 + c√

n
)

= 1−
1 + 2C√

n

1 + 2c√
n

=

2c√
n
− 2C√

N

1 + 2c√
n

≥
2c√
n
− 2C√

N

2
=

c√
n
− C√

N

If we choose N so that c√
n
≥ 3C

2
√
N

(which can be achieved by choosing any

N ≥ 9C2n
4c2 ) and also assume C > 100 (this is without loss of generality, as

C > 100 corresponds to an easier GAPHAM problem), then δ ≥ C
2
√
N
≥ 50√

N
.

Thus we can conclude that when ui = −1, Pr[
∑N
k=1 Zk < N

2 + C
√
N ] ≤

exp(−Nδ2/6) ≤ exp(− 502

N N/6) ≤ 0.1 Similarly, we can also prove that when
ui = +1, Pr[

∑N
k=1 Zk >

N
2 − C

√
N ] ≤ 0.1
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2 Lower bound for approximating maximum match-
ings in graph streams

We will prove

Theorem 3 Let ALG be a single pass streaming algorithm that for some con-
stant δ > 0 outputs a (2/3 + δ)-approximation to the maximum matching in an
input graph G = (V,E), |V | = n presented as a stream of edges and succeeds with
some constant probability. Then ALG must use n1+Ω(1/ log logn) � n logO(1) n
bits of space.

We will use

Definition 4 A bipartite graph G = (P,Q,E), |P | = |Q| = n is an (ε, k, n)-
Ruzsa-Szemerédi graph if the edge set of G can be expressed as a union of k
induced matchings of size εn, i.e. E =

⋃k
i=1Mi, where Mi is matching between

subsets Ai ⊆ P and Bi ⊆ Q with |Ai| = |Bi| = εn, and the subgraph of G
induced by Ai ∪Bi is Mi.

and

Lemma 5 [1] For every δ ∈ (0, 1) there exists an ( 1
2−δ, k, n)-Ruzsa-Szemerédi graph

G = (P,Q,E), E =
⋃k
i=1Mi, with k = n1+Ωδ(1/ log logn).

In what follows we prove the lower bound assuming Lemma 5.

Construction of a hard instance. Let G = (P,Q,E) be a (1/2− δ/10)-RS
graph, where δ > 0 is the constant advantage over 2/3 approximation that we
would like to rule out. LetMi = (Ai, Bi, Ei) denote the matchings that form the
edges of G. For each i = 1, . . . , k let Xi ∈ {0, 1}Mi , and let X =

⋃k
i=1X

i. Let
Xe = 1 independently with probability 1−δ/10 and 0 otherwise. Let G′ contain
every edge e ∈ E of G such that Xe = 1, and let M ′i denote the corresponding
induced matchings. For every i ∈ [k] let G′i denote the graph obtained from G′i
by adding two new sets S and T together with a perfect matching from S to
P \Ai and from T to Q \Bi.

The following claim follows easily from Chernoff bounds:

Claim 6 The graph G′i contains a matching of size at least (1− δ/5)(3/2)n for
every i ∈ [k], k ≤ n with probability at least 1− e−Ωδ(n).

Denote the success event from Claim 6 by Elarge−matching. We also have

Claim 7 For every matching M̂ in G′i one has

|M̂ | ≤ |P \Ai|+ |Q \Bi|+ |M̂ ∩M ′i |.

Proof This follows by the max-flow/min-cut theorem after attaching a source
s with a directed edge to every vertex in Q, and a sink t with a directed edge
from every vertex in P , and directing all edges of G to go from Q to P . Indeed,
consider the cut with {s}∪S∪(P \Ai)∪Bi on one size and {t}∪T ∪(Q\Bi)∪Ai
on the other side. There are |P \Ai|+ |Q \Bi| edges that cross the cut and are
incident on either s or t (these are accounted for by the first two terms on the
rhs), and the only edges of G that cross the cut are the edges that go from Bi
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to Ai. The latter set is exactly the set of edges of M ′i by the induced property
of matchings in Ruzsa-Szemerédi graphs, yielding the |M̂ ∩M ′i | term.

We now proceed to prove Theorem 3. Let Π denote the state of the memory
of a possibly randomized algorithm that on every input with probability at least
1/3 outputs a matching M̂ such that M̂ ⊆ E and |M̂ | ≥ (2/3+δ)|MOPT |, where
MOPT is the maximum matching in the input graph.

By Claim 7 we have

|M̂ | ≤ |P \Ai|+ |Q \Bi|+ |M̂ ∩M ′i | ≤
(

1

2
+ δ/10

)
2n+ |M̂ ∩M ′i |.

Thus, since by Claim 6 the graph G′i contains a matching of size at least (1 −
δ/5)(3/2)n with probability at least 9/10 if n is large enough, it must be that

(2/3 + δ)(1− δ/5)(3/2)n ≤ (
1

2
+ δ/10)2n+ |M̂ ∩M ′i |.

This in particular implies that

|M̂ ∩M ′i | ≥ (2/3 + δ)(1− δ/5)(3/2)n− (
1

2
+ δ/10)2n

≥ [(1 + δ)(1− δ/5)− (1 + δ/10)]n

≥ [(1 + δ − δ/5)− (1 + δ/10)]n

≥ (δ/2)n.

(1)

Let Ei be a binary variable that equals 1 if the algorithm is not correct on
the graph G′i or if the maximum matching size in G′i is below (1 − δ/5)(3/2)n
and 0 otherwise. By Claim 6 and the assumption on correctness of ALG we
have

Prob[Ei = 1] ≤ 2/3 + e−Ωδ(n) ≤ 3/4. (2)

We have

H(X|Π) =

k∑
i=1

H(Xi|Π, X<i)

≤
k∑
i=1

H(Xi, Ei|Π, X<i)

=

k∑
i=1

H(Ei|Π, X<i) +H(Xi|Π, X<i, Ei)

=

k∑
i=1

(1 +H(Xi|Π, X<i, Ei))

(3)

We now upper bound H(Xi|Π, X<i, Ei). Note that if Ei = 0, then by (1)
one has

|M̂ ∩M ′i | ≥ (δ/2)n. (4)

For every e ∈Mi such that e ∈ M̂ we know that if Ei = 0 (i.e. the algorithm is
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correct) then Xe = 1 (the edge is present in the graph). We thus have

H(Xi|Π, X<i, Ei)

= H(Xi|Π, X<i, Ei = 1)Prob[Ei = 1] +H(Xi|Π, X<i, Ei = 0)Prob[Ei = 0]

= H(Xi)Prob[Ei = 1] +H(Xi|Π, X<i, Ei = 0)Prob[Ei = 0]

≤ H(Xi)Prob[Ei = 1] +
∑
e∈Mi

H(Xi
e|Π, X<i, Ei = 0)Prob[Ei = 0] (by subadditivity of entropy)

≤ H(Xi)Prob[Ei = 1] +
∑

e∈Mi\M̂

H(Xi
e|Π, X<i, Ei = 0)Prob[Ei = 0] (since Xi

e = 1 for all e ∈ M̂)

≤ H(Xi)Prob[Ei = 1] + (|Mi| − (δ/2)n)H(Xi
e)Prob[Ei = 0] (by (4) and since conditioning reduces entropy)

≤ H(Xi)Prob[Ei = 1] + (1− Ω(1))H(Xi)Prob[Ei = 0]

≤ (1− Ω(1))H(Xi) (since Prob[Ei] is larger than a constant by (2))

Putting this together with (5), we get

H(X|Π) ≤
k∑
i=1

(1 + (1− Ω(1))H(Xi))

≤
k∑
i=1

(1− Ω(1))H(Xi) (for sufficiently large n)

(5)

Thus, we get that

H(X|Π) ≤ (1− Ω(1))H(X),

implying that

H(Π) ≥ I(X; Π) = H(X)−H(X|Π) = Ω(1)H(X),

and thus message length must be n1+Ω(1/ log logn) bits for any constant δ > 0,
as required.
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