

Lecture 11

Lecturer: Michael Kapralov

1 $\Omega(n)$ communication lower bound for *GAPHAM*

So far, we have seen how to prove the memory lower bound for *INDEX* problem and reduce *GAPHAM* to F_0 . However to obtain $\Omega(\frac{1}{\epsilon^2})$ space lower bound for F_0 , one missing part is to show the reduction from *INDEX* to *GAPHAM*, implying an $\Omega(n)$ lower bound for *GAPHAM*. The following proof is due to [2].

Recall the *INDEX* problem, Alice has a vector $u \in \{0, 1\}^n$ and Bob is given a index $i \in [n]$. The goal is to computer u_i on Bob's side after receiving a single message m from Alice. For simplifying the proof, we modify Alice's vector to $u \in \{-1, +1\}^n$. Also *GAPHAM* problem is defined as, given two vector $x, y \in \{-1, +1\}^n$, we want to distinguish whether $\Delta(x, y) \leq \frac{n}{2} - C\sqrt{n}$ or $\Delta(x, y) \geq \frac{n}{2} + C\sqrt{n}$, where $\Delta(x, y)$ is the hamming distance between x and y . Now we show how to derive a algorithm for *Index* problem given a protocol for *GAPHAM* problem. Our plan is described as follows,

- (1) Pick N i.i.d. vector r^1, r^2, \dots, r^N where for all $k \in [N]$, $r^k \sim \text{UNIF}(\{-1, +1\}^n)$
- (2) For each $k = 1 \dots N$, let $x_k = \text{sgn}(\langle u, r^k \rangle)$ and $y_k = \text{sgn}(\langle e_i, r^k \rangle)$, where e_i is the standard 0-1 basis vector corresponding to Bob's input.
- (3) Feed vector $x, y \in \{-1, +1\}^N$ into *GAPHAM* solver. Output $u_i = -1$ if the *GAPHAM* solver recognizes that $\Delta(x, y) \geq \frac{n}{2} + C\sqrt{n}$, otherwise output $u_i = +1$ if $\Delta(x, y) \leq \frac{n}{2} - C\sqrt{n}$

Note that,

$$\Delta(x, y) = |\{k \in [n] : \text{sgn}(\langle u, r^k \rangle) \neq \text{sgn}(\langle e_i, r^k \rangle)\}|$$

The sketch of this method is to produce a random bit for Alice and Bob without interaction and guarantee that if u_j is -1, the bit will differ with probability at least $\frac{1}{2} + \frac{c}{\sqrt{n}}$ and if u_j is 1, the bit will differ with probability at most $\frac{1}{2} - \frac{c}{\sqrt{n}}$. Then repeat this procedure N times (N will be specified latter) to make sure that hamming distance either at least $\frac{n}{2} + C\sqrt{n}$ or at most $\frac{n}{2} - C\sqrt{n}$ with high probability, which can be proved by Chernoff Bound. We formalize the proof,

Claim 1 *If $r \sim \text{UNIF}(\{-1, +1\}^n)$, then*

$$\Pr[\text{sgn}(\langle u, r \rangle) \neq \text{sgn}(\langle e_i, r \rangle)] = \begin{cases} \geq \frac{1}{2} + \frac{c}{\sqrt{n}}, & \text{if } u_i = -1 \\ \leq \frac{1}{2} - \frac{c}{\sqrt{n}}, & \text{if } u_i = 1 \end{cases}$$

where c is a positive constant.

Proof Assume without loss of generality that n is odd. $\langle u, r \rangle = \sum_{j=1}^n u_j r_j = u_i r_i + \sum_{j \neq i}^n u_j r_j$. Denote $w = \sum_{j \neq i}^n u_j r_j$, there are two cases to consider when $u_i = -1$

- Case 1 $w \neq 0$, then $|w| \geq 2$ for $|w|$ is even. Then we can obtain $\text{sgn}(\langle u, r \rangle) = \text{sgn}(w)$, which implies that $\Pr[\text{sgn}(\langle u, r \rangle) = -1] = \Pr[\text{sgn}(\langle u, r \rangle) = 1] = \frac{1}{2}$. Thus $\Pr[\text{sgn}(\langle u, r \rangle) \neq \text{sgn}(\langle e_i, r \rangle)] = \frac{1}{2}$.
- Case 2 $w = 0$, then $\text{sgn}(\langle u, r \rangle) = u_i r_i$. Thus $\Pr[\text{sgn}(\langle u, r \rangle) \neq \text{sgn}(\langle e_i, r \rangle)] = 1$.

Note that w is the sum of $n - 1$ even number uniformly distributed variables in $\{-1, +1\}$. By Stirling's formula, when n is large enough, for some constant $c' > 0$, $\Pr[w = 0] \geq \frac{c'}{\sqrt{n}}$ (Another proof is that the distribution of w is coverage to a Gaussian distribution with variance \sqrt{n} , thus the pdf of this distribution between $-\sqrt{n}$ and \sqrt{n} is $\Omega(\sqrt{n})$). Letting $c = \frac{c'}{2}$, we can obtain the following result, when $u_i = -1$, $\Pr[\text{sgn}(\langle u, r \rangle) \neq \text{sgn}(\langle e_i, r \rangle)] = \Pr[w = 0] + \frac{1}{2}(1 - \Pr[w = 0]) \geq \frac{1}{2} + \frac{c'}{2\sqrt{n}} = \frac{1}{2} + \frac{c}{\sqrt{n}}$. ■

To boost this probability, we pick N i.i.d vectors, and denote

$$Z_k = \begin{cases} 1, & \text{if } x_k \neq y_k \\ 0, & \text{if } x_k = y_k \end{cases}$$

Then $\Delta(x, y) = \sum_{k=1}^N Z_k$ and $\mathbb{E}[Z_k] \geq \frac{1}{2} + \frac{c}{\sqrt{n}}$.

Claim 2 When $u_i = -1$, $\Pr[\sum_{k=1}^N Z_k < \frac{N}{2} + C\sqrt{N}] < 0.1$

Proof By Chernoff's bound, we have

$$\Pr\left[\sum_{k=1}^N Z_k < (1 - \delta) \sum_{k=1}^N \mathbb{E}[Z_k]\right] \leq \exp(-N\mathbb{E}[Z_k]\delta^2/3) \leq \exp(-N\delta^2/6),$$

where δ is chosen so that $(1 - \delta) \sum_{k=1}^N \mathbb{E}[Z_k] = \frac{N}{2} + C\sqrt{N}$. We now lower bound δ . Since $\sum_{k=1}^N \mathbb{E}[Z_k] \geq N/(2 + c/\sqrt{n})$, we have

$$\delta \geq 1 - \frac{\frac{N}{2} + C\sqrt{N}}{N(\frac{1}{2} + \frac{c}{\sqrt{n}})} = 1 - \frac{1 + \frac{2C}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{n}}} = \frac{\frac{2c}{\sqrt{n}} - \frac{2C}{\sqrt{n}}}{1 + \frac{2c}{\sqrt{n}}} \geq \frac{\frac{2c}{\sqrt{n}} - \frac{2C}{\sqrt{n}}}{2} = \frac{c}{\sqrt{n}} - \frac{C}{\sqrt{N}}$$

If we choose N so that $\frac{c}{\sqrt{n}} \geq \frac{3C}{2\sqrt{N}}$ (which can be achieved by choosing any $N \geq \frac{9C^2 n}{4c^2}$) and also assume $C > 100$ (this is without loss of generality, as $C > 100$ corresponds to an easier GAPHAM problem), then $\delta \geq \frac{C}{2\sqrt{N}} \geq \frac{50}{\sqrt{N}}$. Thus we can conclude that when $u_i = -1$, $\Pr[\sum_{k=1}^N Z_k < \frac{N}{2} + C\sqrt{N}] \leq \exp(-N\delta^2/6) \leq \exp(-\frac{50^2}{N}N/6) \leq 0.1$. Similarly, we can also prove that when $u_i = +1$, $\Pr[\sum_{k=1}^N Z_k > \frac{N}{2} - C\sqrt{N}] \leq 0.1$ ■

2 Lower bound for approximating maximum matchings in graph streams

We will prove

Theorem 3 *Let ALG be a single pass streaming algorithm that for some constant $\delta > 0$ outputs a $(2/3 + \delta)$ -approximation to the maximum matching in an input graph $G = (V, E)$, $|V| = n$ presented as a stream of edges and succeeds with some constant probability. Then ALG must use $n^{1+\Omega(1/\log \log n)} \gg n \log^{O(1)} n$ bits of space.*

We will use

Definition 4 *A bipartite graph $G = (P, Q, E)$, $|P| = |Q| = n$ is an (ϵ, k, n) -Ruzsa-Szemerédi graph if the edge set of G can be expressed as a union of k induced matchings of size ϵn , i.e. $E = \bigcup_{i=1}^k M_i$, where M_i is matching between subsets $A_i \subseteq P$ and $B_i \subseteq Q$ with $|A_i| = |B_i| = \epsilon n$, and the subgraph of G induced by $A_i \cup B_i$ is M_i .*

and

Lemma 5 [1] *For every $\delta \in (0, 1)$ there exists an $(\frac{1}{2} - \delta, k, n)$ -Ruzsa-Szemerédi graph $G = (P, Q, E)$, $E = \bigcup_{i=1}^k M_i$, with $k = n^{1+\Omega_\delta(1/\log \log n)}$.*

In what follows we prove the lower bound assuming Lemma 5.

Construction of a hard instance. Let $G = (P, Q, E)$ be a $(1/2 - \delta/10)$ -RS graph, where $\delta > 0$ is the constant advantage over $2/3$ approximation that we would like to rule out. Let $M_i = (A_i, B_i, E_i)$ denote the matchings that form the edges of G . For each $i = 1, \dots, k$ let $X^i \in \{0, 1\}^{M_i}$, and let $X = \bigcup_{i=1}^k X^i$. Let $X_e = 1$ independently with probability $1 - \delta/10$ and 0 otherwise. Let G' contain every edge $e \in E$ of G such that $X_e = 1$, and let M'_i denote the corresponding induced matchings. For every $i \in [k]$ let G'_i denote the graph obtained from G'_i by adding two new sets S and T together with a perfect matching from S to $P \setminus A_i$ and from T to $Q \setminus B_i$.

The following claim follows easily from Chernoff bounds:

Claim 6 *The graph G'_i contains a matching of size at least $(1 - \delta/5)(3/2)n$ for every $i \in [k]$, $k \leq n$ with probability at least $1 - e^{-\Omega_\delta(n)}$.*

Denote the success event from Claim 6 by $\mathcal{E}_{\text{large-matching}}$. We also have

Claim 7 *For every matching \widehat{M} in G'_i one has*

$$|\widehat{M}| \leq |P \setminus A_i| + |Q \setminus B_i| + |\widehat{M} \cap M'_i|.$$

Proof This follows by the max-flow/min-cut theorem after attaching a source s with a directed edge to every vertex in Q , and a sink t with a directed edge from every vertex in P , and directing all edges of G to go from Q to P . Indeed, consider the cut with $\{s\} \cup S \cup (P \setminus A_i) \cup B_i$ on one size and $\{t\} \cup T \cup (Q \setminus B_i) \cup A_i$ on the other side. There are $|P \setminus A_i| + |Q \setminus B_i|$ edges that cross the cut and are incident on either s or t (these are accounted for by the first two terms on the rhs), and the only edges of G that cross the cut are the edges that go from B_i

to A_i . The latter set is exactly the set of edges of M'_i by the induced property of matchings in Ruzsa-Szemerédi graphs, yielding the $|\widehat{M} \cap M'_i|$ term. \blacksquare

We now proceed to prove Theorem 3. Let Π denote the state of the memory of a possibly randomized algorithm that on every input with probability at least $1/3$ outputs a matching \widehat{M} such that $\widehat{M} \subseteq E$ and $|\widehat{M}| \geq (2/3 + \delta)|M_{OPT}|$, where M_{OPT} is the maximum matching in the input graph.

By Claim 7 we have

$$|\widehat{M}| \leq |P \setminus A_i| + |Q \setminus B_i| + |\widehat{M} \cap M'_i| \leq \left(\frac{1}{2} + \delta/10\right) 2n + |\widehat{M} \cap M'_i|.$$

Thus, since by Claim 6 the graph G'_i contains a matching of size at least $(1 - \delta/5)(3/2)n$ with probability at least $9/10$ if n is large enough, it must be that

$$(2/3 + \delta)(1 - \delta/5)(3/2)n \leq \left(\frac{1}{2} + \delta/10\right) 2n + |\widehat{M} \cap M'_i|.$$

This in particular implies that

$$\begin{aligned} |\widehat{M} \cap M'_i| &\geq (2/3 + \delta)(1 - \delta/5)(3/2)n - \left(\frac{1}{2} + \delta/10\right) 2n \\ &\geq [(1 + \delta)(1 - \delta/5) - (1 + \delta/10)]n \\ &\geq [(1 + \delta - \delta/5) - (1 + \delta/10)]n \\ &\geq (\delta/2)n. \end{aligned} \tag{1}$$

Let E_i be a binary variable that equals 1 if the algorithm is not correct on the graph G'_i or if the maximum matching size in G'_i is below $(1 - \delta/5)(3/2)n$ and 0 otherwise. By Claim 6 and the assumption on correctness of ALG we have

$$\mathbf{Prob}[E_i = 1] \leq 2/3 + e^{-\Omega_\delta(n)} \leq 3/4. \tag{2}$$

We have

$$\begin{aligned} H(X|\Pi) &= \sum_{i=1}^k H(X_i|\Pi, X_{<i}) \\ &\leq \sum_{i=1}^k H(X_i, E_i|\Pi, X_{<i}) \\ &= \sum_{i=1}^k H(E_i|\Pi, X_{<i}) + H(X_i|\Pi, X_{<i}, E_i) \\ &= \sum_{i=1}^k (1 + H(X_i|\Pi, X_{<i}, E_i)) \end{aligned} \tag{3}$$

We now upper bound $H(X_i|\Pi, X_{<i}, E_i)$. Note that if $E_i = 0$, then by (1) one has

$$|\widehat{M} \cap M'_i| \geq (\delta/2)n. \tag{4}$$

For every $e \in M_i$ such that $e \in \widehat{M}$ we know that if $E_i = 0$ (i.e. the algorithm is

correct) then $X_e = 1$ (the edge is present in the graph). We thus have

$$\begin{aligned}
& H(X_i|\Pi, X_{<i}, E_i) \\
&= H(X_i|\Pi, X_{<i}, E_i = 1)\mathbf{Prob}[E_i = 1] + H(X_i|\Pi, X_{<i}, E_i = 0)\mathbf{Prob}[E_i = 0] \\
&= H(X^i)\mathbf{Prob}[E_i = 1] + H(X^i|\Pi, X_{<i}, E_i = 0)\mathbf{Prob}[E_i = 0] \\
&\leq H(X^i)\mathbf{Prob}[E_i = 1] + \sum_{e \in M_i} H(X_e^i|\Pi, X_{<i}, E_i = 0)\mathbf{Prob}[E_i = 0] \quad (\text{by subadditivity of entropy}) \\
&\leq H(X^i)\mathbf{Prob}[E_i = 1] + \sum_{e \in M_i \setminus \widehat{M}} H(X_e^i|\Pi, X_{<i}, E_i = 0)\mathbf{Prob}[E_i = 0] \quad (\text{since } X_e^i = 1 \text{ for all } e \in \widehat{M}) \\
&\leq H(X^i)\mathbf{Prob}[E_i = 1] + (|M_i| - (\delta/2)n)H(X_e^i)\mathbf{Prob}[E_i = 0] \quad (\text{by (4) and since conditioning reduces entropy}) \\
&\leq H(X^i)\mathbf{Prob}[E_i = 1] + (1 - \Omega(1))H(X^i)\mathbf{Prob}[E_i = 0] \\
&\leq (1 - \Omega(1))H(X^i) \quad (\text{since } \mathbf{Prob}[E_i] \text{ is larger than a constant by (2)})
\end{aligned}$$

Putting this together with (5), we get

$$\begin{aligned}
H(X|\Pi) &\leq \sum_{i=1}^k (1 + (1 - \Omega(1))H(X_i)) \\
&\leq \sum_{i=1}^k (1 - \Omega(1))H(X_i) \quad (\text{for sufficiently large } n)
\end{aligned} \tag{5}$$

Thus, we get that

$$H(X|\Pi) \leq (1 - \Omega(1))H(X),$$

implying that

$$H(\Pi) \geq I(X; \Pi) = H(X) - H(X|\Pi) = \Omega(1)H(X),$$

and thus message length must be $n^{1+\Omega(1/\log \log n)}$ bits for any constant $\delta > 0$, as required.

References

- [1] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of maximum bipartite matching. *SODA*, 2012.
- [2] Thathachar S Jayram, Ravi Kumar, and D Sivakumar. The one-way communication complexity of hamming distance. *Theory of Computing*, 4(1):129–135, 2008.