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Lecture 11

Lecturer: Michael Kapralov

1 Q(n) communication lower bound for GAPHAM

So far, we have seen how to prove the memory lower bound for INDEX problem
and reduce GAPHAM to F,. However to obtain (%) space lower bound for F,
one missing part is to show the reduction from INDEX to GAPHAM, implying
an Q(n) lower bound for GAPHAM. The following proof is due to [2].

Recall the INDEX problem, Alice has a vector u € {0,1}" and Bob is
given a index i € [n]. The goal is to computer u; on Bob’s side after receiving
a single message m from Alice. For simplifying the proof, we modify Alice’s
vector to u € {—1,41}". Also GAPHAM problem is defined as, given two
vector z,y € {—1,+1}", we want to distinguish whether A(z,y) < & —Cy/n or
A(z,y) > & + Cy/n, where A(z,y) is the hamming distance between x and y.
Now we show how to derive a algorithm for Index problem given a protocol for
GAPHAM problem. Our plan is described as fellows,

(1) Pick N i.i.d. vector r*,72 ... r™ where for all k € [N], ¥ ~ UNIF({—1,+1}")

(2) For each k = 1...N, let o3, = sgn({u,r*)) and y; = sgn({e;,r*)), where e; is the standard 0-1
basis vector corresponding to Bob’s input.

(3) Feed vector z,y € {—1,+1}" into GAPHAM solver. Output u; = —1 if the GAPHAM solver
recognizes that A(z,y) > § + Cy/n, otherwise output u; = +1 if A(z,y) < § —Cy/n

Note that,

A(z,y) = |{k € [n] : sgn((u, ")) # sgn((e:, "))}

The sketch of this method is to produce a random bit for Alice and Bob
without interaction and guarantee that if u; is -1, the bit will differ with prob-
ability at least % + ﬁ and if u; is 1, the bit will differ with probability at most

% — ﬁ Then repeat this procedure N times (N will be specified latter) to

make sure that hamming distance either at least % +C'\/n or at most § —C/n
with high probability, which can be proved by Chernoff Bound. We formalize
the proof,

Claim 1 Ifr ~ UNIF({—1,+1}"), then

>3+ =, ifuy=-1
Pr[sgn((u,’l‘>) 75 Sgn(<€i,7“>)] = {< i _ ﬁ Z:Z =1
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where ¢ is a positive constant.

Proof Assume without loss of generality that n is odd. (u,r) = 3>7_ u;r; =

n n .
wiri + 54, urj. Denote w =370, ujr;, there are two cases to consider when

e Case 1 w # 0, then |w| > 2 for |w| is even. Then we can obtain

sgn({u,r)) = sgn(w), which implies that Pr[sgn({u,r)) = —1] = Pr[sgn({u,r)) =

1] = 1. Thus Pr[sgn({u,r)) # sgn((e;,r))] = 3.

e Case 2w = 0, then sgn({u, r)) = u;r;. Thus Pr[sgn({u,r)) # sgn({e;,r))] =
1.

Note that w is the sum of n — 1 even number uniformly distributed variables
in {—1,41}. By Stirling’s formula, when n is large enough, for some constant
d >0, Prlw=0] > \;—% (Another proof is that the distribution of w is coverage
to a Gaussian distribution with variance y/n, thus the pdf of this distribution
between —y/n and \/n is Q(y/n)). Letting ¢ = %, we can obtain the following
result, when u; = —1, Pr[sgn({u, r)) # sgn({e;, r))] = Prlw = 0] + $(1 — Prjw =

0) >3 +f 2+ﬁ.l

To boost this probability, we pick N i.i.d vectors, and denote

1, if T 7& Yk
Zy = .
0, if zp =y

N C
Then A(z,y) = Y-, Z and E[Z,] > § + £
Claim 2 When u; = —1, i[5 7 < § + CVN] < 0.1

Proof By Chernoft’s bound, we have

N N
Pr[>  Zk < (1-0) Y E[Z]] < exp(—NE[Z,]6%/3) < exp(—Nd*/6),
k=1

where ¢ is chosen so that ( )Zk E[Zk] = § +CV/N. We now lower bound
5. Since YN E[Zy] > N/(1/2+c/f), we have
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If we choose N so that ﬁ > % (which can be achieved by choosing any

N > 932") and also assume C' > 100 (this is without loss of generality, as

C > 100 corresponds to an easier GAPHAM problem), then ¢ > \CF > 30*

Thus we can conclude that when u; = —1, Pr[zgzl Zr < ¥+ CV/N] <
exp(—N§2/6) < exp(—%N/G) < 0.1 Similarly, we can also prove that when
=41, Py, 2, > Y~ C0VN| <01 W




2 Lower bound for approximating maximum match-
ings in graph streams

We will prove

Theorem 3 Let ALG be a single pass streaming algorithm that for some con-
stant § > 0 outputs a (2/3 + §)-approximation to the marimum matching in an
input graph G = (V, E), |V| = n presented as a stream of edges and succeeds with
some constant probability. Then ALG must use n*t?(1/loglogn) 5 nlogo(l) n
bits of space.

We will use

Definition 4 A bipartite graph G = (P,Q, E),|P| = |Q| = n is an (¢, k,n)-
Ruzsa-Szemerédi graph if the edge set of G can be expressed as a union of k
induced matchings of size en, i.e. E = Ule M;, where M; is matching between
subsets A; C P and B; C Q with |A;| = |B;| = en, and the subgraph of G
induced by A; U B; is M;.

and

Lemma 5 [1] For every § € (0,1) there exists an (36, k,n)-Ruzsa-Szemerédi graph
G =(P,Q,E),E =, M;, with k = n+9s(1/loglogn),

In what follows we prove the lower bound assuming Lemma 5.

Construction of a hard instance. Let G = (P,Q, E) be a (1/2—§/10)-RS
graph, where § > 0 is the constant advantage over 2/3 approximation that we
would like to rule out. Let M; = (A;, B;, E;) denote the matchings that form the
edges of G. For eachi =1,...,k let X* € {0,1}*:, and let X = U§:1 X?. Let
X, = 1 independently with probability 1 —¢/10 and 0 otherwise. Let G’ contain
every edge e € E of G such that X, = 1, and let M/ denote the corresponding
induced matchings. For every i € [k] let G} denote the graph obtained from G
by adding two new sets S and T together with a perfect matching from S to
P\ A; and from T to Q \ B;.
The following claim follows easily from Chernoff bounds:

Claim 6 The graph G} contains a matching of size at least (1 —6/5)(3/2)n for
every i € [k], k < n with probability at least 1 — e~ (™),

Denote the success event from Claim 6 by £jarge—matching. We also have

Claim 7 For every matching M in G}, one has
M| < [P\ A +1Q\ Bl + [M N M]].

Proof This follows by the max-flow/min-cut theorem after attaching a source
s with a directed edge to every vertex in (), and a sink ¢ with a directed edge
from every vertex in P, and directing all edges of G to go from @ to P. Indeed,
consider the cut with {s}USU(P\ 4;)UB; on one size and {t}UTU(Q\ B;)UA;
on the other side. There are |P\ A;|+ |Q \ B;| edges that cross the cut and are
incident on either s or ¢ (these are accounted for by the first two terms on the
rhs), and the only edges of G that cross the cut are the edges that go from B;



to A;. The latter set is exactly the set of edges of M/ by the induced property
of matchings in Ruzsa-Szemerédi graphs, yielding the |M N M| term. B

We now proceed to prove Theorem 3. Let II denote the state of the memory
of a possibly randomized algorithm that on every input with probability at least
1/3 outputs a matching M such that M C E and |M| > (2/3+6)|Mopr|, where
Mo pr is the maximum matching in the input graph.

By Claim 7 we have

— — 1 —
IM| <[P\ A;|+1Q\ Bi| +|Mn M| < <2+6/10) 2n + |M N M]|.

Thus, since by Claim 6 the graph G} contains a matching of size at least (1 —
§/5)(3/2)n with probability at least 9/10 if n is large enough, it must be that

1 —~
(2/34+6)(1—46/5)(3/2)n < (5 +6/10)2n + |M N M]|.
This in particular implies that

BTN M!| > (2/3 +8)(1 — 5/5)(3/2)n — (% +6/10)2n

>
>[(146)(1—-48/5) — (14 d/10)]n (1)
>[(146-4/5)—(1448/10)]n

> (6/2)n.

Let E; be a binary variable that equals 1 if the algorithm is not correct on
the graph G or if the maximum matching size in G} is below (1 —§/5)(3/2)n
and 0 otherwise. By Claim 6 and the assumption on correctness of ALG we
have

Prob[E; = 1] < 2/3+ e %™ < 3/4, (2)
We have
k
H(X[T) =) H(X,[, X))
i=1
k
<Y H(X;, BT, X )
=1
- 3)

= ) H(E|, X<i)+ H(X[I, X<, E;)
i=1
k
=> (1 + H(X, X, E;))
i=1
We now upper bound H(X;|II, X;, F;). Note that if E; = 0, then by (1)
one has -
|M N M| > (6/2)n. (4)

For every e € M; such that e € M we know that if E; =0 (i.e. the algorithm is



correct) then X, = 1 (the edge is present in the graph). We thus have

H(X1|H7 X<i7 EZ)

= H(Xy|TI, X4, B; = 1)Prob[E; = 1] + H(X;|II, X;, E; = 0)Prob[E; = 0]

= H(X")Prob[E; = 1] + H(X'|Il, X.;, E; = 0)Prob[E; = 0]

< H(X")Prob[E; = 1] + Z H(XYT, X i, E; = 0)Prob[E; = 0] (by subadditivity of entropy)
ecM;

< H(X")Prob[E; =1]+ Y H(X!|I,X.;, E; = 0)Prob[E; =0] (since X! =1 for all e € M)
e€ M\ M

< H(X")Prob[E; = 1] + (|M;| — (§/2)n)H(X!)Prob[E; = 0] (by (4) and since conditioning reduces entropy)
< H(X")Prob[E; = 1]+ (1 — Q(1))H(X")Prob[E; = 0]
< (1-9Q()H(X") (since Prob[FE;] is larger than a constant by (2))

Putting this together with (5), we get

H(X[I) < > (14 (1-Q1)H(X,))

M=

Il
-

7

(1-Q(1))H(X;) (for sufficiently large n)

AMw

@
Il
—

Thus, we get that
H(X[O) < (1-Q(1))H(X),
implying that
H(II) > I(X;11) = H(X) — H(X|II) = Q(1)H (X)),
and thus message length must be n!'t92(1/loglogn) hits for any constant § > 0,
as required.
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