
CS-448 Sublinear Algorithms for Big Data Analysis April 30, 2025

Lecture 10
Lecturer: Michael Kapralov

In this lecture we prove the lower bound for the INDEX problem, and then show
a number of applications.

1 The INDEX problem

Alice has x ∈ {0, 1}n and Bob is given i ∈ [n]. Then, the goal is to compute
f(x, i) = xi on Bob’s end with a single message m from Alice. Recall that
Rpub,→δ (f) stands for the public coin one-way communication complexity of
computing a function f(x, y) with error probability at most δ on every input:
Alice holds x, Bob holds y, they share a source of random bits and Alice sends
a single message to Bob, after which he must output the correct answer with
probability at least 1− δ on every fixed pair of inputs.

Claim 1
Rpub→δ (INDEX) ≥ (1−H2(δ))n

where H2(δ) = δ log2
1
δ + (1− δ) log2

1
1−δ is the binary entropy at δ.

Proof Let X denote the length n vector that Alice holds, and let X ∼
UNIF ({0, 1})n. Let the size of the message that Alice sends be s (we can
assume without loss of generality that Alice always sends messages of the same
length), and let M be the message. First note that

Rpub,→δ (M) ≥ H(M) ≥ I(M ;X),

The first inequality follows since Alice sends s bits, so |supp(M)| ≤ 2s, and
thus H(M) ≤ s. The second inequality follows from the definition of mutual
information and nonnegativity of entropy: I(M ;X) = H(M) − H(M |X) ≤
H(M).

By correctness of the protocol we know that for any x and i Bob correctly
guesses xi with probability at least 1− δ (over randomness in Alice’s message),
i.e., for every i there exists gi such that PrM [gi(M(x)) 6= xi] ≤ δ. Letting for

1

any i ∈ [n] X<i denote the vector (X1, . . . , Xi−1), we get

I(X;M) =

n∑
i=1

I(Xi;M |X<i)

=

n∑
i=1

H(Xi|X<i)−H(Xi|M,X<i)

≥
n∑
i=1

H(Xi)−H(Xi|M)

=

n∑
i=1

(1−H(Xi|M))

≥ (1−H2(δ))n.

We applied the chain rule for mutual information in the first line, used the fact
that Xi are i.i.d. and conditioning does not increase entropy in the third line,
the fact that Xi are binary in the forth line, and Fano’s inequality in the last
line.

2 MEDIAN lower bound

We define the MEDIAN problem is as follows: given y1, . . . , yn, n odd, as a
stream, output the exact median of such sequence.

Claim 2 Any algorithm that solves MEDIAN with Ω(1) success probability
must use Ω(n) bits of space.

Proof We reduce INDEX to MEDIAN as follows. Let ALG be an algo-
rithm that solves exact MEDIAN . Let x ∈ {0, 1}n be Alice’s vector and i ∈ [n]
Bob’s index. Alice forms stream R = (2 +x1, 4 +x2, 6 +x3, . . . , 2n+xn). Then,
Alice sends the state of ALG(R) to Bob (let this memory contents be s bits).
Now, Bob feeds 0 (n− i times) and 2n+ 2 (i− 1 times) to ALG in its current
memory state. Note that adding 0’s and 2n+2 to the stream centers the stream
around the 2i+ xi. Then, the value of the median in this extended stream will
be either 2i or 2i+ 1 and we recover xi exactly. Thus, the space complexity of
MEDIAN with Ω(1) success probability is at least Rpub,→1−Ω(1)(INDEX) = Ω(n)

3 Lower bounds for counting with deletions

We first define the AUGMENTED-INDEX problem, prove communication lower
bound for it, and then use it to show that any algorithm for constant factor ap-
proximate counting with deletions on streams of length n must use Ω(log n) bits
of space. This is in contrast to the constant factor approximate algorithm for
insertion only streams that uses O(log log n) space that we developed in the first
lecture of the course (Morris’ algorithm).

2

The AUGMENTED-INDEX problem is a version of INDEX where Bob is
given, in addition to i ∈ [n], a prefix of x, i.e. x<i. The proof is almost identical
to the lower bound for INDEX presented above:

Claim 3 Rpub,→δ (AUG-INDEX) ≥ (1−H2(δ))n

Claim 4 Any streaming algorithm for (1±1/3)-approximate counting with dele-
tions that succeeds with probability at least 9/10 for each fixed input that works
in streams of length of length up to poly(n) must use Ω(log n) bits of space.

Proof Let Alice have x ∈ {0, 1}logn. Also, Bob has i ∈ [log(n)] and x>i.
Alice starts by forming stream R with 10j events for each j such that xj = 1.
Alice sends the memory contents of ALG(R) to Bob. Bob, using x>i that is
given to him, runs ALG, starting with memory state communicated by Alice,
on 10j deletions per element in the suffix Bob has. Note that ALG, conditioned
on the success event that occurs with probability at least 9/10 by assumption,
outputs a (1 ± 1/3)-approximation w to

∑i
j=0 10jxj . If w ≥ 2

310i then Bob
concludes that xi = 1, else xi = 0.

We now prove correctness. First note that
∑
j≤i 10jxj = 10ixi+

∑i−1
j=0 10jxj ,

where the second term in the sum is upper bounded by 1
310i (by summing

the geometric series). Thus, if xi = 1,
∑
j≤i 10jxj ≥ 10i, and when xi = 0,∑

j≤i 10jxj ≤ 10i/3. Thus, a 1±1/3 approximation cannot report a value lower
than (2/3)10i in the former case and higher than (1 + 1/3) · 10i/3 < (2/3)10i in
the latter case, as required. Thus, Bob guesses xi correctly with probability at
least 9/10, and the lower bound of Ω(log n) bits follows.

4 Gap Hamming Distance (GAPHAM)

Let Alice and Bob have x ∈ {0, 1}n and y ∈ {0, 1}n respectively. We know that
exactly one of the following two inequalities is satisfied:

∆(x, y) ≥ n

2
+ C
√
n

∆(x, y) ≤ n

2
− C
√
n,

where ∆(x, y) is the Hamming distance between x and y (e.g. number of entries
where they differ). The goal of Alice and Bob is to determine which of the two
cases above they are in. We will show

Claim 5 For any constant C one has Rpub,→1/10 (GAPHAM) = Ω(n).

Note that if x and y are chosen uniformly at random, then each of two cases
above occurs with constant probability.

4.1 Lower bound for (1+ ε)-approximate distinct elements

Claim 6 Any ALG that outputs a 1±ε-approximation to ‖x‖0 with 9/10 success
probability on every fixed input requires Ω(1/ε2) space.

3

Proof We reduce from GAPHAM on vectors of length m. Let Alice and
Bob’s inputs be denoted by x ∈ {0, 1}m and y ∈ {0, 1}m respectively.

First note that 2‖x+y‖0 = ‖x‖0 +‖y‖0 +∆(x, y). Indeed, interpreting x and
y as indicator vectors for sets in [m], we get that ‖x+ y‖0 is be the cardinality
of the union, ‖x‖0 and ‖y‖0 the cardinality of each set separately and ∆(x, y)
the cardinality of the symmetric difference, so the identity follows.

To solve GAPHAM, Alice sends the memory contents of ALG(x) (s bits)
together with ‖x‖0 (log2m bits) to Bob. Bob finishes the run of ALG on x+ y,
and thus computes (with constant success probability, as assumed in the claim)
L̂ s.t. |2‖x+ y‖0 − L̂| ≤ ε‖x+ y‖0 ≤ εm. Noting that

∣∣∣∆(x, y)− (2L̂− ||x||0 − ||y||0)
∣∣∣ = 2

∣∣∣||x+ y||0 − L̂
∣∣∣ ≤ 2εm <

√
m

as long as m < 1/(2ε2). We thus get that Alice and Bob can distinguish between
∆(x, y) ≥ m/2 + C

√
m and ∆(x, y) ≤ m/2 − C

√
m with probability at least

9/10 on every fixed input using space s+ log2m. We thus get by Claim 5 that
s+ log2m = Ω(m), and hence s = Ω(m) = Ω(1/ε2), as required.

5 Ω(n) communication lower bound for GAPHAM

So far, we have seen how to prove the memory lower bound for INDEX problem
and reduce GAPHAM to F0. However to obtain Ω(1

ε2) space lower bound for
F0, one missing part is to show the reduction from INDEX to GAPHAM,
implying an Ω(n) lower bound for GAPHAM.

Recall the INDEX problem, Alice has a vector u ∈ {0, 1}n and Bob is given
a index i ∈ [n]. The goal is to computer ui on Bob’s side after receiving a single
message m from Alice. We will think of Alice’s input in the INDEX problem
as a vector u ∈ {−1,+1}n. Also GAPHAM problem is defined as, given two
vector x, y ∈ {−1,+1}n, we want to distinguish whether ∆(x, y) ≤ n

2 −C
√
n or

∆(x, y) ≥ n
2 + C

√
n, where ∆(x, y) is the hamming distance between x and y.

Now we show how to derive a algorithm for INDEX problem given a protocol
for GAPHAM problem. Our plan is described as fellows,

(1) Pick N i.i.d. vectors r1, r2, . . . , rN where for all k ∈ [N], rk ∼
UNIF({−1,+1}n)

(2) For each k = 1 . . . N , let xk = sgn(〈u, rk〉) and yk = sgn(〈ei, rk〉),
where ei is the standard 0-1 basis vector corresponding to Bob’s
input.

(3) Feed vectors x, y ∈ {−1,+1}N into GAPHAM solver. Output
ui = −1 if the GAPHAM solver says ∆(x, y) ≥ N

2 + C
√
N ,

otherwise output ui = +1.

Note that,

∆(x, y) = |{k ∈ [n] : sgn(〈u, rk〉) 6= sgn(〈ei, rk〉)}|

We start with

4

Claim 7 If r ∼ UNIF({−1,+1}n), then

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] =

{
≥ 1

2 + c√
n
, if ui = −1

≤ 1
2 −

c√
n
, if ui = 1

where c is a positive constant.

Proof Assume without loss of generality that n is odd, and write

〈u, r〉 =

n∑
j=1

ujrj = uiri +

n∑
j 6=i

ujrj = uiri + w,

where w =
∑n
j 6=i ujrj . Suppose that ui = −1. We consider two cases:

w 6= 0. Then |w| ≥ 2 for |w| is even. Then sgn(〈u, r〉) = sgn(w), which implies

Pr[sgn(〈u, r〉) = −1] = Pr[sgn(〈u, r〉) = 1] =
1

2
.

Thus Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] = 1
2 .

w = 0 Then sgn(〈u, r〉) = uiri. Thus

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] = 1.

Note that w is the sum of n−1 even number uniformly distributed variables
in {−1,+1}. By Stirling’s formula, when n is large enough, for some constant
c′ > 0, Pr[w = 0] ≥ c′√

n
(also, intuitively the distribution of w coverages to

a Gaussian distribution with standard deviation ≈
√
n, thus the pdf of this

distribution between −
√
n and

√
n is Ω(

√
n)). Thus, when ui = −1, we have

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] = Pr[w = 0]+
1

2
(1−Pr[w = 0]) ≥ 1

2
+

c′

2
√
n

=
1

2
+

c√
n

for a constant c > 0. Similarly, when ui = +1, we have

Pr[sgn(〈u, r〉) 6= sgn(〈ei, r〉)] ≤
1

2
− c√

n
.

For k = 1, 2, . . . , N let

Zk =

{
1, if xk 6= yk

0, if xk = yk

Then ∆(x, y) =
∑N
k=1 Zk and E[Zk] ≥ 1

2 + c√
n

.

Claim 8 When ui = −1, Pr[
∑N
k=1 Zk <

N
2 + C

√
N] < 0.1

5

Proof By the Chernoff bound, we have

Pr

[
N∑
k=1

Zk < (1− δ)
N∑
k=1

E[Zk]

]
≤ exp(−NE[Zk]δ2/3) ≤ exp(−Nδ2/6),

where δ is chosen so that (1−δ)
∑N
k=1 E[Zk] = N

2 +C
√
N . We now lower bound

δ. Since
∑N
k=1 E[Zk] ≥ N/(1/2 + c/

√
n), we have

δ ≥ 1−
N
2 + C

√
N

N(1
2 + c√

n
)

= 1−
1 + 2C√

n

1 + 2c√
n

=

2c√
n
− 2C√

N

1 + 2c√
n

≥
2c√
n
− 2C√

N

2
=

c√
n
− C√

N

If we choose N so that c√
n
≥ 3C

2
√
N

(which can be achieved by choosing any

N ≥ 9C2n
4c2) and also assume C > 100 (this is without loss of generality, as

C > 100 corresponds to an easier GAPHAM problem), then δ ≥ C
2
√
N
≥

50√
N

. Thus we can conclude that when ui = −1, Pr[
∑N
k=1 Zk <

N
2 + C

√
N] ≤

exp(−Nδ2/6) ≤ exp(− 502

N N/6) ≤ 0.1 Similarly, we can also prove that when
ui = +1, Pr[

∑N
k=1 Zk >

N
2 − C

√
N] ≤ 0.1

6

