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Lecture 9

Lecturer: Michael Kapralov

In several exercise sessions so far we have proved streaming lower bounds for
deterministic algorithms. In this lecture we start designing tools for proving
lower bounds for randomized algorithms.

1 Communication complexity

Lower bounds for randomized algorithms are typically proved via reductions
from appropriately defined communication problems.

We will study two party communications problems, where Alice holds input
X € {0,1}", Bob holds input Y € {0,1}", and they want to compute a function
f(X,Y). We will study one-way communication problems, where Alice com-
presses her input X into a message m, and sends the message to Bob. Bob then
outputs the answer based on m and his input Y. We now outline the relation
to streaming algorithms. Suppose that there exists a small space streaming
algorithm ALG for computing f(X,Y) when X and Y are given in a stream.
ALG yields a communication efficient protocol as follows: Alice feeds ALG her
part of the input, i.e. X, then communicates the state of the memory of the
algorithm to Bob, who finishes the execution of ALG and outputs the answer.
Thus, if we can prove a lower bound of s bits on the one-way communication
complexity of f, a lower bound of s bits on the space complexity of ALG follows
immediately.

We will consider several communication settings in what follows.

Let D(f) denote the minimum communication complexity of a deterministic
communication protocol for computing f. Let Rg"b( f) denote the minimum
communication complexity of a randomized communication protocol for com-
puting f with error probability at most 4 on every input, where Alice and Bob
have access to a source of shared randomness. Let Ry (f) denote the minimum
communication complexity of a randomized communication protocol for com-
puting f with error probability at most § on every input, where Alice and Bob
only have private randomness. Let D, 5(f) denote the distributional complexity
of computing f with error probability at most § over inputs X,Y drawn from
the distribution p.

2 The INDEX problem

Alice has = € {0,1}" and Bob is given i € [n]. Then, the goal is to compute
f(z,i) = z; on Bob’s end with a single message m from Alice. Recall that

RE“"7(f) stands for the public coin one-way communication complexity of



computing a function f(x,y) with error probability at most § on every input:
Alice holds x, Bob holds y, they share a source of random bits and Alice sends
a single message to Bob, after which he must output the correct answer with
probability at least 1 — § on every fixed pair of inputs.

Claim 1
RV (INDEX) > (1 — Ha(6))n

where Hy(6) = §logy § + (1 — 8)log, 155 is the binary entropy at é.

2.1 Information theory crash course
Let X and Y be discrete random variables. Define
o Entropy: H(X) =", p(x)log, ﬁ = Ex[log, ﬁ]
e Joint entropy: H(X,Y) = Z(w’y) p(x,y)log, p(%’y) = Ex y[log, ﬁ]

e Conditional entropy: H(X|Y) =3 p(y)H(X]Y =y) = Ey[H(X]Y =
y)]

o Mutual information: 1(X;Y) = H(X) — H(X|Y)
Lemma 2 The following relations hold:
e Chain rule for entropy: H(X,Y)=H(X)+ H(Y|X)
e Chain rule for mutual information: I(X;Y,Z) =1(X;Z)+ I(X;Y|2)

Entropy subadditivity: H(X,Y) < H(X)+ H(Y)

Conditioning does not increase entropy: H(X|Y) < H(X)

H(X) < logy(|supp(X)])

e Data processing inequality: for any function f one has H(f(X)) < H(X)

2.1.1 Fano’s inequality

Theorem 3 Let X and Y be discrete random variables and g an estimator
(based on'Y ) of X such that Pr[g(Y) # X] = 5. Then,

H(X|Y) < H3(0) + dlogy(|supp(X)| — 1)

Intuition suggests that as estimator g(Y) for X gets better (e.g. lower error
probability), then Y reduces the uncertainty (entropy) about X. Fano’s in-
equality makes this intuition quantitative. Lastly, note that for binary X the
second term in the right hand side of the inequality is 0.

Equipped with the information theoretic claims above, we can now give a
proof of Claim 1:
Proof of Claim 1: Let X denote the length n vector that Alice holds, and let
X ~UNIF({0,1})™. Let the size of the message that Alice sends be s (we can
assume without loss of generality that Alice always sends messages of the same
length), and let M be the message. First note that

Ry (M) > H(M) > I(M; X),



The first inequality follows since Alice sends s bits, so |supp(M)| < 2%, and
thus H(M) < s. The second inequality follows from the definition of mutual
information and nonnegativity of entropy: I(M;X) = H(M) — HM|X) <

By correctness of the protocol we know that for any = and i Bob correctly
guesses x; with probability at least 1 — ¢ (over randomness in Alice’s message),
i.e., for every i there exists g; such that Prys[g;(M(z)) # ;] < 0. Letting for
any ¢ € [n] X<; denote the vector (X1,...,X;_1), we get
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H(X;) — H(X;|M) (X; are iid, and conditioning does not increase entropy)
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— Hy(d))n, (by correctness of INDEX 3Jg; : Pr[g;(M) # X;] < ¢ and Fano’s inequality)

as required. l



