CS-448 Sublinear Algorithms for Big Data Analysis

Lecture 7

Lecturer: Michael Kapralov

April 2, 2025

1 Graph sketching

We now show how to use ¢y sampler to obtain an algorithm for dynamic connec-
tivity [1]. Suppose that a graph G = (V, E) is presented as a stream of dynamic
edge updates (i.e. edges are inserted or deleted). We would like to design a
streaming algorithm that uses n logo(l) n space and allows listing the connected
components of the graph G at the end of the stream, together with a spanning
forest.

We start with the following simple (non-streaming) algorithm for finding
connected components.

Algorithm 1 CONNECTEDCOMPONENTS(G = (V, E))
1: procedure CONNECTEDCOMPONENTS(G = (V| E))

2: Initialize Cp := U, ey {u} > Initially all vertices are in connected
components by themselves

3: fort=1to T do > T = O(logn) suffices

4: E 0

5: Each component in C;_; chooses an outgoing edge

6: C; +—new set of components obtained by adding E’ to C;_;

7 end for

8: return Cr

9: end procedure

Note that if we start with a connected graph, then the number of connected
components reduces by a factor of at least 2 in each iteration. Thus, T =
O(logn) iterations suffice to connect the graph. Applying this reasoning to
every connected component of a general graph G shows that Cp is the list of
connected components at the end of the execution of the algorithm above.

We now show how to implement the algorithm above using a sketch. Recall

that the edge incidence matrix of a graph G is a matrix B € R(Z)X”7 where rows
are indexed by pairs of vertices and columns by vertices. For a pair of vertices
{u,v} € (‘2/) the row by, .y is zero if {u,v} is not an edge, and otherwise has
two nonzero entries — one in position v and the other in v. One of the entries
equals +1, and the other equals —1.

The following claim will be crucial.

Claim 1 For every S C V the vector B -1g € R(g) has entries in the set
{=1,0,4+1}, and the nonzero entries are exactly the edges that cross the cut

(S,V'\ S). Here ‘
(1S)u{ 1 ifues

0 0.W.

is the indicator vector of the cut S.

Proof The rows corresponding to nonedges are zero, so it suffices to consider
the rows that correspond to the edges. If e = (u,v) is an edge, then if both
endpoints of e are in S b, - 1g = 0, since the two nonzeros of b, in positions u
and v have different signs and hence cancel. If both endpoints of e are in V'\ S,
then b, - 1g = 0. Finally, if one endpoint is S and the other outside, we get that
be - 1g is either +1 or —1. W

We will need the concept of £,-samplers, which we now define.

Definition 2 (¢, sampler) An (€,01,02) €, sampler is a linear sketching A €
R™*™ together with a decoding algorithm D : R™ — [n] U {L} that satisfy the
following conditions for every x € R™\ {0}:

1. Pr[D(Az) =1] < &, (i.e. the decoder outputs I don’t know’ with proba-
bility at most 61)

2. Pr[D(Az) fails] < 02 (i.e. the decoder fails, without necessarily knowing
that, with probability at most d2)

3. conditioned on D(Ax) not failing and not outputting L, one has, for every
i € supp(x)

(L= ail? (1 + e)fzl”

Pr[D(Ax) =i € ,
Dldn) =i € | E T elE

Remark Note that ¢, samplers are usually defined with only one failure
probability §, which can be thought of as setting §; = d2 = /2. In this
lecture we will get a slightly stronger construction that allows setting o inverse
polynomially small without losing much in the space complexity.

The following result is known:

Theorem 3 [2/ There exists an o-sampler with € = 0,81 = & and do = 1/n'0
that uses O(lognlog(1/4)) bits of space.

Now let Ly,..., Ly € R 7x(3) denote independent £y-samplers for vec-
tors in dimension (g) We get the following algorithm:

Note that if both failure probabilities (§; and ;) were less than 1/n10, say,
then Claim 1 Algorithm 2 would directly implement Algorithm 1. As we show
below, it still works if §; is a small constant (say, 1/100) and dy = 1/n'0. This
setting of parameters yields the asymptotically tight bound of O(n log® n) on
the space complexity of dynamic spanning forest computation.

It is important to note that we prepared independent sketches L; for use
in the T = O(logn) iterations of the process. This is because an ¢, sampler
is only guaranteed to output a uniformly random element of the support of
input x (except for the failure events) when the randomness of the sketch is

Algorithm 2 CONNECTEDCOMPONENTSSKETCH(G = (V, E))

1: procedure CONNECTEDCOMPONENTSSKETCH(G = (V, E))
2: Initialize Co := U, ey {u} > Initially all vertices are in connected
components by themselves
Prepare L;B for all j =1,...,T > T = O(logn) suffices
fort=1toT do
E' + 0
for each component S CV in C;_; do
If Decode(L;B1g) #1, add output edge to E’
end for
C; +—new set of components obtained by adding E’ to C;_;
10: end for
11: return Cp
12: end procedure

© P NP Ew

independent of x, i.e. when z is chosen first, and then the coins are flipped to
design the sketch. Using a single sketch L instead of Lq, ..., Ly would violate
this assumption.

We now show correctness. Suppose that G is connected (if not, repeat the
same argument on each connected component). Let X; = 1 if the number of
connected components decreased by at least a factor of 2/3 in round ¢ and
X; = 0 otherwise. Since the number of connected components never increases,
we have

of connected components after round ¢t < n - (2/3)2?:1 X

where T' = C'logn is the number of iterations that the algorithm runs for.

Consider iteration ¢, and let Z; denote the number of connected components
in that iteration. Let A; denote that number of connected components that
receive at least one edge incident on them in that iteration. Note that if A; >
(9/10)Z;, we have

Zig1 < Aif2+ (Zi — As) < (9/10)Z:/2 4 (1/10)Z; < (1/2+1/10)Z; < (2/3)Z;,

and also note that if fewer than 1/10 fraction of supernodes have their sketches
fail, we get A; > (9/10)Z;. Finally, it remains to note that by an application of
Markov’s inequality the probability that at most a 1/10 fraction of the nodes
succeed is at most 1/10 (i.e. with probability at least 9/10 at least a 9/10
fraction of the nodes succeed). Putting the above together, we conclude that
E[X;] > 9/10 for every i as long as the number of connected components at
step ¢ is larger than 1. Finally, since X;’s are independent, we get by Chernoff
bounds Zszl X; > logg /5 n with probability at least 1 —1/n if C' is larger than
an absolute constant, as required.

2 [(y-samplers

In what follows we design a slightly less efficient version of ¢y samplers than
what is provided by Theorem 3. First note that if = is 1-sparse (i.e. contains
exactly one nonzero element), we can recover it exactly using techniques from
previous lecture, and if x is not l-sparse, we can subsample the universe [n]

at a sequence of geometric rates, and run our 1-sparse solution on one of the
geometric scales. We will need several primitives to execute on this plan. We
design the primitives below.

Checking that z # 0. This can be accomplished using a constant number of
dot products of x with a random sign vector. More precisely, we use the AMS
sketch with precision € = 1/2 and desired failure probability. We can ensure
that the failure probability is at most §’ with O(log(1/¢")) rows.

Recovering a 1-sparse vector. In this case in order to recover z, it suffices to
store two dot products (z,u) and (z,v), where u; =1 for all j € [n], and v; = j
for every j € [n]. We use the notation [n] = {1,2,...,n}. Given o := (x,u) and
B := (x,v), our reconstruction procedure proceeds by first checking if o # 0. If
a = 0, we conclude that x is the zero vector and output nothing. If o # 0, we
let j* := 8/a and conclude that the only nonzero entry of x is entry 7%, with a
value of a.

Reducing from the case of general sparsity to the case of 1-sparse
xz. Now suppose that x is not l-sparse. Consider a hash function h : [n] —
{1,2,...,logyn} that hashes every i € [n] to bucket j € {1,2,...,log, n} with
probability 277 for all j, and disregards the item with remaining probability
Zj>log2 n 277

For each b € {1,2,...,log, n} define y* € R™ by

b { w; i h(i) =b

Yi = 0 0.W.

Note that for every b € {1,2,...,log, n} we have E;[|supp(y®)|] = 2~°|supp(=)|,
so if b = log, [supp(x)|, we should expect y® to be about 1-sparse! We now make
this precise. Let b be such that ||z||g < 2° < 2||z||g. We claim that y® is 1-sparse
with a constant probability:

Pr[y” is 1-sparse] = Z Pr[h(i) = b and h(i") # b for all i’ € supp(z) \ {i}]

i€supp(z)

= Z Pr[h(i) = b] H Pr[h(i") #b] (by independence of h)
icsupp(x) i €supp(a)\ i}

= Z 270(1 — 27 b)llello—1
i€supp(x)

(1/2)(1 =270 71 (since [|alfo < 2" < 2|allo)
> (1/2)(1— 272" (since 1 — 2% < 1)

We now show that the expression on the last line above is lower bounded by
a constant for all b > 1. Indeed, we have

2b+1

(1—270"" = ((1-27"2")2 > (1/2)? = 1/4,

since (1 —1/n)™ is monotone increasing in n, and the minimum is achieved at
n =1/2 (i.e. b=1) in our case. Putting the bounds above together, we get

Pr [yb is l—sparse] >1/8.

Now we can run 1-sparse recovery on the y®’s. Since one of them will be
1-sparse, recovery will succeed. There is one problem, however: recovery may
fail on vectors that are not actually 1-sparse without alerting us to the fact that
it failed. We need a way to test whether recovery was successful.

Checking that recovery succeeded. Fix b. Suppose that we run 1-sparse
recovery on y” and it outputs (j*,a*), i.e. claims that y* = ¢, where § is a 1-
sparse vector with value o* in coordinate j*. We need to test whether j—y® = 0
so that the test is correct with probability 1 —1/n', say. We can do that using
another copy of the AMS sketch, where we set € = 1/2 and §' = 1/n'°. Indeed,
just store AyP, where A is the corresponding AMS sketch matrix. Once we
recover §j, compute Af, and run the AMS decoding primitive on Ay’ — Ag.
since the randomness of the AMS sketch is independent of the randomness that
we used to generate g, the AMS guarantee holds.
We now summarize our sketch. For each b € {1,2,...,log, n} we maintain

1. (u,y?), where u is the all-ones vector;

2. (v,y°), where v; = j for all j € [n];

3. an AMS sketch of y* with e = 1/2 and ¢’ = 1/16;
4. an AMS sketch of y* with e = 1/2 and ¢’ = 1/n!°.

The decoding works as follows. For each b € {1,...,log,n} run l-sparse
recovery on y° if it is nonzero (test using the first AMS sketch). If recovery
outputs a vector ¥, use the second sketch to test for correctness. If recovery was
correct, output the result and stop.

We claim that this primitive outputs a uniformly random element of supp(x)
with probability at least 1/128. This follows by noting that if for a bucket
b we have that y® is 1-sparse, then sparse recovery succeeds and returns the
only nonzero element of y°, which is a uniformly random element of supp(z).
Furthermore, by our derivations above there exists a value of b such that

Pr [yb is 1—sparse] >1/8.

Sparse recovery is invoked on that particular 4° if the AMS sketch reports that
y® # 0, which occurs with probability at least 1/8 —1/16 = 1/16. Finally, note
that sparse recovery may be invoked on a non-sparse input, but the result is
then reported with probability at most log, n/n'® < 1/n? by a union bound
over log, n buckets that sparse recovery could be run on. Thus, our primitive
outputs a uniformly random element with probability at least 1/8 — 1/16 —
1/n° > 1/32, outputs an incorrect answer with probability at most 1/n° and
outputs L otherwise.We have thus obtained a (0,01, d2)-¢p sampler with d; =
1—1/32 and d5 < 1/n°. We can always decrease 6; by independent repetition of
the construction above, getting a (0, d1, O(log(1/81))/n?)-fo-sampler with factor
O(log(1/61)) more space.

The space complexity is O(log®n) bits for a single repetition of our con-
struction (the AMS sketch with 1/n!? failure probability is the bottleneck), and
hence we get O(log® nlog(1/6,)) bits after independent repetition. Finally, the
hash function h can be implemented in small space using Nisan’s PRG at the
cost of another log n factor in space complexity.

AMS sketch
(1+ -
approximates
||z]|2 using
}2 logo(l) n
space.

References

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph

2]

structure via linear measurements. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 459-467, 2012.

Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for Ip
samplers, finding duplicates in streams, and related problems. In Proceedings
of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages
49-58, 2011.

