
CS-448 Sublinear Algorithms for Big Data Analysis April 2, 2025

Lecture 7
Lecturer: Michael Kapralov

1 Graph sketching
We now show how to use `0 sampler to obtain an algorithm for dynamic connec-
tivity [1]. Suppose that a graph G = (V,E) is presented as a stream of dynamic
edge updates (i.e. edges are inserted or deleted). We would like to design a
streaming algorithm that uses n logO(1) n space and allows listing the connected
components of the graph G at the end of the stream, together with a spanning
forest.

We start with the following simple (non-streaming) algorithm for finding
connected components.

Algorithm 1 ConnectedComponents(G = (V,E))
1: procedure ConnectedComponents(G = (V,E))
2: Initialize C0 :=

⋃
u∈V {u} . Initially all vertices are in connected

components by themselves
3: for t = 1 to T do . T = O(log n) suffices
4: E′ ← ∅
5: Each component in Ct−1 chooses an outgoing edge
6: Ct ←new set of components obtained by adding E′ to Ct−1
7: end for
8: return CT

9: end procedure

Note that if we start with a connected graph, then the number of connected
components reduces by a factor of at least 2 in each iteration. Thus, T =
O(log n) iterations suffice to connect the graph. Applying this reasoning to
every connected component of a general graph G shows that CT is the list of
connected components at the end of the execution of the algorithm above.

We now show how to implement the algorithm above using a sketch. Recall
that the edge incidence matrix of a graph G is a matrix B ∈ R(

n
2)×n, where rows

are indexed by pairs of vertices and columns by vertices. For a pair of vertices
{u, v} ∈

(
V
2

)
the row b{u,v} is zero if {u, v} is not an edge, and otherwise has

two nonzero entries – one in position u and the other in v. One of the entries
equals +1, and the other equals −1.

The following claim will be crucial.

1

Claim 1 For every S ⊆ V the vector B · 1S ∈ R(
n
2) has entries in the set

{−1, 0,+1}, and the nonzero entries are exactly the edges that cross the cut
(S, V \ S). Here

(1S)u =

{
1 if u ∈ S
0 o.w.

is the indicator vector of the cut S.

Proof The rows corresponding to nonedges are zero, so it suffices to consider
the rows that correspond to the edges. If e = (u, v) is an edge, then if both
endpoints of e are in S be · 1S = 0, since the two nonzeros of be in positions u
and v have different signs and hence cancel. If both endpoints of e are in V \S,
then be ·1S = 0. Finally, if one endpoint is S and the other outside, we get that
be · 1S is either +1 or −1.

We will need the concept of `p-samplers, which we now define.

Definition 2 (`p sampler) An (ε, δ1, δ2) `p sampler is a linear sketching A ∈
Rm×n together with a decoding algorithm D : Rm → [n] ∪ {⊥} that satisfy the
following conditions for every x ∈ Rn \ {0}:

1. Pr [D(Ax) =⊥] ≤ δ1 (i.e. the decoder outputs ’I don’t know’ with proba-
bility at most δ1)

2. Pr [D(Ax) fails] ≤ δ2 (i.e. the decoder fails, without necessarily knowing
that, with probability at most δ2)

3. conditioned on D(Ax) not failing and not outputting ⊥, one has, for every
i ∈ supp(x)

Pr [D(Ax) = i] ∈
[
(1− ε)|xi|p

||x||pp
,
(1 + ε)|xi|p

||x||pp

]
Remark Note that `p samplers are usually defined with only one failure
probability δ, which can be thought of as setting δ1 = δ2 = δ/2. In this
lecture we will get a slightly stronger construction that allows setting δ2 inverse
polynomially small without losing much in the space complexity.

The following result is known:

Theorem 3 [2] There exists an `0-sampler with ε = 0, δ1 = δ and δ2 = 1/n10

that uses O(log n log(1/δ)) bits of space.

Now let L1, . . . , LT ∈ RlogO(1) n×(n2) denote independent `0-samplers for vec-
tors in dimension

(
n
2

)
. We get the following algorithm:

Note that if both failure probabilities (δ1 and δ2) were less than 1/n10, say,
then Claim 1 Algorithm 2 would directly implement Algorithm 1. As we show
below, it still works if δ1 is a small constant (say, 1/100) and δ2 = 1/n10. This
setting of parameters yields the asymptotically tight bound of O(n log3 n) on
the space complexity of dynamic spanning forest computation.

It is important to note that we prepared independent sketches Lj for use
in the T = O(log n) iterations of the process. This is because an `0 sampler
is only guaranteed to output a uniformly random element of the support of
input x (except for the failure events) when the randomness of the sketch is

2

Algorithm 2 ConnectedComponentsSketch(G = (V,E))
1: procedure ConnectedComponentsSketch(G = (V,E))
2: Initialize C0 :=

⋃
u∈V {u} . Initially all vertices are in connected

components by themselves
3: Prepare LjB for all j = 1, . . . , T . T = O(log n) suffices
4: for t = 1 to T do
5: E′ ← ∅
6: for each component S ⊆ V in Ct−1 do
7: If Decode(LtB1S) 6=⊥, add output edge to E′
8: end for
9: Ct ←new set of components obtained by adding E′ to Ct−1

10: end for
11: return CT

12: end procedure

independent of x, i.e. when x is chosen first, and then the coins are flipped to
design the sketch. Using a single sketch L instead of L1, . . . , LT would violate
this assumption.

We now show correctness. Suppose that G is connected (if not, repeat the
same argument on each connected component). Let Xi = 1 if the number of
connected components decreased by at least a factor of 2/3 in round i and
Xi = 0 otherwise. Since the number of connected components never increases,
we have

of connected components after round t ≤ n · (2/3)
∑T

i=1 Xi

where T = C log n is the number of iterations that the algorithm runs for.
Consider iteration i, and let Zi denote the number of connected components

in that iteration. Let Ai denote that number of connected components that
receive at least one edge incident on them in that iteration. Note that if Ai ≥
(9/10)Zi, we have

Zi+1 ≤ Ai/2 + (Zi −Ai) ≤ (9/10)Zi/2 + (1/10)Zi ≤ (1/2 + 1/10)Zi ≤ (2/3)Zi,

and also note that if fewer than 1/10 fraction of supernodes have their sketches
fail, we get Ai ≥ (9/10)Zi. Finally, it remains to note that by an application of
Markov’s inequality the probability that at most a 1/10 fraction of the nodes
succeed is at most 1/10 (i.e. with probability at least 9/10 at least a 9/10
fraction of the nodes succeed). Putting the above together, we conclude that
E[Xi] ≥ 9/10 for every i as long as the number of connected components at
step i is larger than 1. Finally, since Xi’s are independent, we get by Chernoff
bounds

∑T
i=1Xi ≥ log3/2 n with probability at least 1− 1/n if C is larger than

an absolute constant, as required.

2 `0-samplers
In what follows we design a slightly less efficient version of `0 samplers than
what is provided by Theorem 3. First note that if x is 1-sparse (i.e. contains
exactly one nonzero element), we can recover it exactly using techniques from
previous lecture, and if x is not 1-sparse, we can subsample the universe [n]

3

at a sequence of geometric rates, and run our 1-sparse solution on one of the
geometric scales. We will need several primitives to execute on this plan. We
design the primitives below.

Checking that x 6= 0. This can be accomplished using a constant number of
dot products of x with a random sign vector. More precisely, we use the AMS
sketch with precision ε = 1/2 and desired failure probability. We can ensure
that the failure probability is at most δ′ with O(log(1/δ′)) rows.

Recovering a 1-sparse vector. In this case in order to recover x, it suffices to
store two dot products (x, u) and (x, v), where uj = 1 for all j ∈ [n], and vj = j
for every j ∈ [n]. We use the notation [n] = {1, 2, . . . , n}. Given α := (x, u) and
β := (x, v), our reconstruction procedure proceeds by first checking if α 6= 0. If
α = 0, we conclude that x is the zero vector and output nothing. If α 6= 0, we
let j∗ := β/α and conclude that the only nonzero entry of x is entry j∗, with a
value of α.

Reducing from the case of general sparsity to the case of 1-sparse
x. Now suppose that x is not 1-sparse. Consider a hash function h : [n] →
{1, 2, . . . , log2 n} that hashes every i ∈ [n] to bucket j ∈ {1, 2, . . . , log2 n} with
probability 2−j for all j, and disregards the item with remaining probability∑

j>log2 n 2
−j .

For each b ∈ {1, 2, . . . , log2 n} define yb ∈ Rn by

ybi =

{
xi if h(i) = b
0 o.w.

Note that for every b ∈ {1, 2, . . . , log2 n} we have Eh[|supp(yb)|] = 2−b|supp(x)|,
so if b = log2 |supp(x)|, we should expect yb to be about 1-sparse! We now make
this precise. Let b be such that ||x||0 ≤ 2b ≤ 2||x||0. We claim that yb is 1-sparse
with a constant probability:

Pr
[
yb is 1-sparse

]
=

∑
i∈supp(x)

Pr [h(i) = b and h(i′) 6= b for all i′ ∈ supp(x) \ {i}]

=
∑

i∈supp(x)

Pr [h(i) = b]
∏

i′∈supp(x)\{i}

Pr [h(i′) 6= b] (by independence of h)

=
∑

i∈supp(x)

2−b(1− 2−b)||x||0−1

= (1/2)(1− 2−b)2
b+1−1 (since ||x||0 ≤ 2b ≤ 2||x||0)

≥ (1/2)(1− 2−b)2
b+1

(since 1− 2−b < 1)

We now show that the expression on the last line above is lower bounded by
a constant for all b ≥ 1. Indeed, we have

(1− 2−b)2
b+1

= ((1− 2−b)2
b

)2 ≥ (1/2)2 = 1/4,

since (1 − 1/n)n is monotone increasing in n, and the minimum is achieved at
n = 1/2 (i.e. b = 1) in our case. Putting the bounds above together, we get

Pr
[
yb is 1-sparse

]
≥ 1/8.

4

Now we can run 1-sparse recovery on the yb’s. Since one of them will be
1-sparse, recovery will succeed. There is one problem, however: recovery may
fail on vectors that are not actually 1-sparse without alerting us to the fact that
it failed. We need a way to test whether recovery was successful.

Checking that recovery succeeded. Fix b. Suppose that we run 1-sparse
recovery on yb and it outputs (j∗, α∗), i.e. claims that yb = ỹ, where ỹ is a 1-
sparse vector with value α∗ in coordinate j∗. We need to test whether ỹ−yb = 0
so that the test is correct with probability 1− 1/n10, say. We can do that using
another copy of the AMS sketch, where we set ε = 1/2 and δ′ = 1/n10. Indeed,
just store Ayb, where A is the corresponding AMS sketch matrix. Once we
recover ỹ, compute Aỹ, and run the AMS decoding primitive on Ayb − Aỹ.

AMS sketch
(1 + ε)-
approximates
||x||2 using
1
ε2

logO(1) n
space.

since the randomness of the AMS sketch is independent of the randomness that
we used to generate ỹ, the AMS guarantee holds.

We now summarize our sketch. For each b ∈ {1, 2, . . . , log2 n} we maintain

1. (u, yb), where u is the all-ones vector;

2. (v, yb), where vj = j for all j ∈ [n];

3. an AMS sketch of yb with ε = 1/2 and δ′ = 1/16;

4. an AMS sketch of yb with ε = 1/2 and δ′ = 1/n10.

The decoding works as follows. For each b ∈ {1, . . . , log2 n} run 1-sparse
recovery on yb if it is nonzero (test using the first AMS sketch). If recovery
outputs a vector ỹ, use the second sketch to test for correctness. If recovery was
correct, output the result and stop.

We claim that this primitive outputs a uniformly random element of supp(x)
with probability at least 1/128. This follows by noting that if for a bucket
b we have that yb is 1-sparse, then sparse recovery succeeds and returns the
only nonzero element of yb, which is a uniformly random element of supp(x).
Furthermore, by our derivations above there exists a value of b such that

Pr
[
yb is 1-sparse

]
≥ 1/8.

Sparse recovery is invoked on that particular yb if the AMS sketch reports that
yb 6= 0, which occurs with probability at least 1/8− 1/16 = 1/16. Finally, note
that sparse recovery may be invoked on a non-sparse input, but the result is
then reported with probability at most log2 n/n

10 < 1/n9 by a union bound
over log2 n buckets that sparse recovery could be run on. Thus, our primitive
outputs a uniformly random element with probability at least 1/8 − 1/16 −
1/n9 > 1/32, outputs an incorrect answer with probability at most 1/n9 and
outputs ⊥ otherwise.We have thus obtained a (0, δ1, δ2)-`0 sampler with δ1 =
1−1/32 and δ2 ≤ 1/n9. We can always decrease δ1 by independent repetition of
the construction above, getting a (0, δ1, O(log(1/δ1))/n

9)-`0-sampler with factor
O(log(1/δ1)) more space.

The space complexity is O(log3 n) bits for a single repetition of our con-
struction (the AMS sketch with 1/n10 failure probability is the bottleneck), and
hence we get O(log3 n log(1/δ1)) bits after independent repetition. Finally, the
hash function h can be implemented in small space using Nisan’s PRG at the
cost of another log n factor in space complexity.

5

References
[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph

structure via linear measurements. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 459–467, 2012.

[2] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp
samplers, finding duplicates in streams, and related problems. In Proceedings
of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, June 12-16, 2011, Athens, Greece, pages
49–58, 2011.

6

