
CS-448 Sublinear Algorithms for Big Data Analysis March 26, 2025

Lecture 6
Lecturer: Kshiteej Sheth

1 Least squares regression
The exact least squares regression is the following problem: given A ∈ Rn×d and b ∈ Rn, find

x∗ = argminx∈Rd ||Ax− b||2.

The least squares problem often comes up in the following setting. We are observing samples
ai ∈ Rd, i = 1, . . . , n (rows of A) together with a value of some unknown function f on the samples,
perhaps corrupted by noise. The value of the function on the i-th sample is denoted by bi. Then
if the function f is linear in the attributes of the sample, i.e. coordinates of ai, the least squares
problem is asking to recover the coefficients x that allow one to predict bi from ai. In fact, in fairly
general settings (e.g. when the vector b equals the value of the unknown linear function plus i.i.d.
noise), a least squares fit is the best (unbiased) estimate of the linear function that one can obtain
from the samples – see the Gauss-Markov theorem.

How do we solve least squares in general? The solution is (ATA)+AT b, where (ATA)+ is the
Moore-Penrose pseudoinverse of ATA, and can be computed via an SVD computation, taking O(nd2)
time.

The approximate least squares problem is the following. We are given A ∈ Rn×d, b ∈ Rn,
ε ∈ (0, 1). Let x∗ := argminx∈Rd ||Ax− b||2. We would like to find x′ ∈ Rd such that

||Ax′ − b||2 ≤ (1 + ε)||Ax∗ − b||2. (1)

We will solve least squares approximately using subspace embeddings:

Definition 1 A random matrix Π ∈ Rm×n is a (d, ε, δ)-subspace embedding if for every d-dimensional
subspace P ⊆ Rn one has

Prob[|||Πx||2 − ||x||2| ≤ ε||x||2 for all x ∈ P] ≥ 1− δ.

The runtime of our final solution will be O(nnz(A) + poly(d, 1/ε)), where nnz(A) denotes the
number of nonzeros in A. Note that the leading order term is normally nnz(A) (if n is much larger
than d), and hence this is much faster than the nd2 time for SVD, especially if the matrix A is
sparse.

Given a (d+ 1, ε, δ)-subspace embedding Π, our algorithm will be simple: solve

x′ := argminx∈Rd ||ΠAx−Πb||2. (2)

Why does this work? Consider the (at most) (d+ 1)-dimensional subspace of Rn given by the span
of [A; b] ∈ Rn×(d+1). Since Π is a (d+ 1, ε, δ)-subspace embedding, we have that with probability at
least 1− δ over Π for very x ∈ Rd∣∣||[A; b] · [xT ;−1]T ||2 − ||Π[A; b] · [xT ;−1]T ||2

∣∣ ≤ ε ∣∣||[A; b] · [xT ;−1]T ||2
∣∣ . (3)

Here [xT ;−1]T stands for a column vector obtained from x ∈ Rd by appending 1 as the last coordi-
nate.

1

Since x′ is the optimum in (2), we have

||ΠAx′ −Πb||2 ≤ ||ΠAx∗ −Πb||2. (4)

By (3) applied with x = x∗ we have

||Ax∗ − b||2 ≥ ||ΠAx∗ −Πb||2 − ε||Ax∗ − b||2

so
||ΠAx∗ −Πb||2 ≤ (1 + ε)||Ax∗ − b||2.

Similarly by (3) applied with x = x′ we have

||Ax′ − b||2 ≤ ||ΠAx′ −Πb||2 + ε||Ax′ − b||2

so
||Ax′ − b||2 ≤

1

1− ε
||ΠAx′ −Πb||2.

Putting these two bounds together with (4), we get

||Ax′ − b||2 ≤
1

1− ε
||ΠAx′ −Πb||2 ≤

1

1− ε
||ΠAx∗ −Πb||2 ≤

1 + ε

1− ε
||Ax∗ − b||2,

and hence x′ from (2) satisfies (1), as required.

2 CountSketch is a subspace embedding
Recall that the CountSketch matrix is defined as follows. Fix a number B of buckets, a hash function
h : [n]→ [B] and a sign function σ : [n]→ {−1,+1}. For r ∈ [B] and a ∈ [n] let

Sra =

{
σ(a) if h(a) = r

0 o.w.

In other words, the CountSketch matrix multiplies an input vector by a diagonal sign matrix,
and then hashes elements of the resulting vector into B buckets. We will need h to be pairwise
independent, and σ to be four-wise independent.

We will show that for every subspace U ∈ Rn×d, if B is sufficiently large as a function of d, 1/ε
and δ, then

Prob[|||Πx||2 − ||x||2| ≤ ε||x||2 for every x in the span of the columns of U] ≥ 1− δ. (5)

Our plan is as follows. We first show that in order to achieve the subspace embedding property
in (5), it suffices to show that the matrix UT ΠT ΠU is spectrally close to the identity matrix. We
then note that proving that UT ΠT ΠU is close to the identity in the Frobenius norm is even stronger,
and prove the required upper bound on the Frobenius norm of UT ΠT ΠU − I in the next section.

The final result (see section 2.3) will be that CountSketch with B buckets is a (d, ε, 2d2/(ε2B))-
subspace embedding. Setting B = Cd2/ε2 for a large enough absolute constant C gives a subspace
embedding with large constant probability.

2

2.1 Reducing to an upper bound on ||UTSTSU − I||F
We start by noting that (5) is equivalent to

(1− ε)||x||2 ≤ ||Πx||2 ≤ (1 + ε)||x||2 for every x in the span of the columns of U.

Rescaling ε appropriately we get that it suffices to ensure that for every x in the span of the columns
of U

(1− ε)||x||22 ≤ ||Πx||22 ≤ (1 + ε)||x||22.

Writing x = Uy for y ∈ Rd, we get that the latter condition is equivalent

(1− ε)yT y ≤ yUT ΠT ΠUy ≤ (1 + ε)yT y for all y ∈ Rd,

which is equivalent to
||UT ΠT ΠU − Id||2 ≤ ε.

Since Frobenius norm upper bounds spectral norm, it suffices to show that if B is sufficiently large,
then with high probability

||UT ΠT ΠU − Id||F ≤ ε.

2.2 Upper bounding ||UTSTSU − I||F
In what follows we will show that for every orthonormal U ∈ Rn×d, if Π = S, with S a CountSketch
matrix with B buckets, one has with probability at least 1− 2d2/(ε2B) over S

||UTSTSU − I||F ≤ ε (6)

We start by noting that for every i, j ∈ [1 : d] the matrix M := UTSTSU satisfies

Mij =

B∑
r=1

n∑
a=1

n∑
b=1

Sr,aUa,iSr,bUb,j

=

n∑
a=1

Ua,iUa,j

(
B∑

r=1

S2
r,a

)
+

B∑
r=1

n∑
a=1

n∑
b=1,b6=a

Sr,aUa,iSr,bUb,j

= δi,j +

B∑
r=1

n∑
a,b=1,
a6=b

Sr,aUa,iSr,bUb,j ,

where δi,j equals 1 if i = j and equals 0 otherwise. We thus have, for every i, j ∈ [1 : d], that

(M − I)ij =

B∑
r=1

n∑
a,b=1,
a6=b

Sr,aUa,iSr,bUb,j ,

We prove (6) by first upper bounding the expectation of ||M − I||2F , and then applying Markov’s

3

inequality. We have

E[||M − I||2F] =

d∑
i=1

d∑
j=1

E[((M − I)ij)
2]

=

d∑
i=1

d∑
j=1

E


 B∑

r=1

n∑
a,b=1,
a 6=b

Sr,aUa,iSr,bUb,j


2

=

d∑
i=1

d∑
j=1

E

 B∑
r=1

B∑
r′=1

n∑
a,b=1,
a6=b

n∑
a′,b′=1,
a′ 6=b′

Sr,aUa,iSr,bUb,j · Sr′,a′Ua′,iSr′,b′Ub′,j


=

d∑
i=1

d∑
j=1

B∑
r=1

B∑
r′=1

n∑
a,b=1,
a6=b

n∑
a′,b′=1,
a′ 6=b′

E [Sr,aSr,bSr′,a′Sr′,b′]Ua,iUb,jUa′,iUb′,j

The set {a, b, a′, b′}must contain every element an even number of times ifE [Sr,aSr,bSr′,a′Sr′,b′] 6=
0, since the random sign function raised to an odd power has zero expectation, and the signs are
four-wise independent by assumption.

Thus, it suffices to consider two cases.
Case 1: a = a′, b = b′. Note that we must have r = r′, as otherwise Sr,a · Sr′,a = 0. We thus get

d∑
i=1

d∑
j=1

B∑
r=1

n∑
a,b=1,
a 6=b

E
[
S2
r,aS

2
r,b

]
U2
a,iU

2
b,j

=
1

B2

d∑
i=1

d∑
j=1

B∑
r=1

n∑
a,b=1,
a 6=b

U2
a,iU

2
b,j (since E[S2

r,a] = Prob[h(a) = r] = 1/B and h is pairwise independent)

≤ 1

B

d∑
i=1

d∑
j=1

n∑
a,b=1

U2
a,iU

2
b,j

=
1

B

d∑
i=1

d∑
j=1

(

n∑
a=1

U2
a,i)(

n∑
b=1

U2
b,j)

≤ d2

B
.

In going from line 1 to line 2 we used the fact that

E[S2
r,aS

2
r,b] = Prob[h(a) = r and h(b) = r] = 1/B2

by pairwise independence of h. In going from line 2 to line 3 we used the fact that all terms in
the summation are nonnegative. In going from line 4 to line 5 we used the fact that

∑n
a=1

U2
a,i =∑n

b=1
U2
b,j = 1 by orthonormality of columns of U .

4

Case 2: a = b′, b = a′. Note that we must have r = r′, as otherwise Sr,a · Sr′,a = 0. We thus get∣∣∣∣∣∣∣∣
d∑

i=1

d∑
j=1

B∑
r=1

n∑
a,b=1,
a6=b

E
[
S2
r,aS

2
r,b

]
Ua,iUa,jUb,iUb,j

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

B

d∑
i=1

d∑
j=1

n∑
a,b=1,
a6=b

Ua,iUa,jUb,iUb,j

∣∣∣∣∣∣∣∣ (since E[S2
r,a] = Prob[h(a) = r] = 1/B and h is pairwise independent)

≤ 1

B

d∑
i=1

d∑
j=1

n∑
a,b=1,
a6=b

|Ua,i| · |Ua,j | · |Ub,i| · |Ub,j | (by triangle inequality)

≤ 1

B

d∑
i=1

d∑
j=1

n∑
a,b=1

|Ua,i| · |Ua,j | · |Ub,i| · |Ub,j | (since all terms in the summation are nonnegative)

=
1

B

d∑
i=1

d∑
j=1

(

n∑
a=1

|Ua,i||Ua,j |)(
n∑

b=1

|Ub,i||Ub,j |)

≤ 1

B

d∑
i=1

d∑
j=1

n∑
a=1

U2
a,i

n∑
b=1

U2
b,j (by Cauchy-Schwarz)

≤ d2

B
(since

n∑
a=1

U2
a,i =

n∑
b=1

U2
b,j = 1 by orthonormality of U)

2.3 Putting it together
Putting the bounds from previous sections together, we get that

E[||M − I||2F] ≤ 2d2/B,

and thus by Markov’s inequality

Prob[||M − I||2F > ε2] ≤ 2d2/(ε2B),

and since ||M − I||2 ≤ ||M − I||F ,

Prob[||M − I||2 > ε] ≤ 2d2/(ε2B).

We thus get that CountSketch with B buckets is a (d, ε, 2d2/(ε2B))-subspace embedding. Setting
B = Cd2/ε2 for a large enough absolute constant C gives a subspace embedding with large constant
probability.

How efficiently can we solve least squares using this approach? We need to find

argminx∈Rd ||SAx− Sb||2.

The matrix SA is a B × d matrix, and hence this computation can be done in time poly(d) using
SVD. How much time does it take to form the matrix SA and the vector Sb? Since every column
of S has exactly one nonzero, the runtime of this is proportional to the number of nonzeros in the
matrix A and the vector b. Thus, if the matrix is sparse, this is very efficient! The final runtime is
O(nnz(A) + poly(d, 1/ε)), which is a significant improvement over O(nd2) for direct SVD.

5

