CS-448 Sublinear Algorithms for Big Data Analysis March 26, 2025

Lecture 6

Lecturer: Kshiteej Sheth

1 Least squares regression
The ezxact least squares regression is the following problem: given A € R"*? and b € R, find
¥ = argming cpa||Az — b|2.

The least squares problem often comes up in the following setting. We are observing samples
a; €R4i=1,...,n (rows of A) together with a value of some unknown function f on the samples,
perhaps corrupted by noise. The value of the function on the i-th sample is denoted by b;. Then
if the function f is linear in the attributes of the sample, i.e. coordinates of a;, the least squares
problem is asking to recover the coefficients x that allow one to predict b; from a;. In fact, in fairly
general settings (e.g. when the vector b equals the value of the unknown linear function plus i.i.d.
noise), a least squares fit is the best (unbiased) estimate of the linear function that one can obtain
from the samples — see the Gauss-Markov theorem.

How do we solve least squares in general? The solution is (AT A)* ATb, where (AT A)* is the
Moore-Penrose pseudoinverse of AT A, and can be computed via an SVD computation, taking O(nd?)
time.

The approzimate least squares problem is the following. We are given A € R"*4 b € R",
€ € (0,1). Let 2* := argmin,cpa||Az — b||2. We would like to find 2’ € R? such that

[|Az" = bl2 < (1+ €)||Az™ — b]|2. (1)
We will solve least squares approximately using subspace embeddings:

Definition 1 A random matrizII € R™*™ is a (d, €, §)-subspace embedding if for every d-dimensional
subspace P C R"™ one has

Prob[||[IIz||2 — ||z||2] < €l|z|l2 for allx € P] > 1 —4.

The runtime of our final solution will be O(nnz(A) + poly(d, 1/e€)), where nnz(A) denotes the
number of nonzeros in A. Note that the leading order term is normally nnz(A) (if n is much larger
than d), and hence this is much faster than the nd? time for SVD, especially if the matrix A is
sparse.

Given a (d + 1, ¢, §)-subspace embedding II, our algorithm will be simple: solve

z' := argming cpa||ITAz — IID||5. (2)

Why does this work? Consider the (at most) (d 4 1)-dimensional subspace of R™ given by the span
of [A;b] € R™* (441 Since IT is a (d + 1, €, §)-subspace embedding, we have that with probability at
least 1 — 6 over II for very = € R?

1A 8] - 275 =]]2 — [IT0[A; 0] - [T = 1] [[2] < €][[[As8] - [T =1]7 |2 - 3)

Here [zT; —1]T stands for a column vector obtained from x € R? by appending 1 as the last coordi-
nate.

Since 2’ is the optimum in (2), we have
|[TLAz" — TIb| |y < ||TTAz* — T1b)]5. (4)
By (3) applied with = 2* we have

[|Az* — b||2 > ||TTAz* — TIb||2 — €||Ax™ — b|2

SO
[|[TTAz™ — TIb||2 < (1 + €)||Ax™ = b]]2.
Similarly by (3) applied with z = 2’ we have
||Az" — bl|2 < ||TTAZ" — T1b||2 + €||Az" — b]|2
S0

1
||A{l7l — b||2 § 17||HA.’L'I — Hb||2
—€
Putting these two bounds together with (4), we get

1+e¢
1—¢

1 1 X X
||A$l—b||2§:”HA%I—HZ?HZS:HHA?C — IIbf|2 < || Az™ — b|2,

and hence z’ from (2) satisfies (1), as required.

2 CountSketch is a subspace embedding

Recall that the CountSketch matrix is defined as follows. Fix a number B of buckets, a hash function
h:[n] = [B] and a sign function ¢ : [n] — {—1,+1}. For r € [B] and a € [n] let

S, = { o(a) if hla)=r

0 0.W.

In other words, the CountSketch matrix multiplies an input vector by a diagonal sign matrix,
and then hashes elements of the resulting vector into B buckets. We will need h to be pairwise
independent, and o to be four-wise independent.

We will show that for every subspace U € R™"*? if B is sufficiently large as a function of d, 1/e
and d, then

Probl|||[IIz||2 — ||z]|2] < €||x||2 for every x in the span of the columns of U] > 1 — 4. (5)

Our plan is as follows. We first show that in order to achieve the subspace embedding property
in (5), it suffices to show that the matrix UTTITTIU is spectrally close to the identity matrix. We
then note that proving that UTTITIU is close to the identity in the Frobenius norm is even stronger,
and prove the required upper bound on the Frobenius norm of UTTITTIU — I in the next section.

The final result (see section 2.3) will be that CountSketch with B buckets is a (d, €,2d?/(e? B))-
subspace embedding. Setting B = Cd?/e? for a large enough absolute constant C' gives a subspace
embedding with large constant probability.

2.1 Reducing to an upper bound on |[UTSTSU — I||r
We start by noting that (5) is equivalent to

(1 =e)llzll2 < ||Hz|]2 < (1 + €)]|z||]2 for every x in the span of the columns of U.

Rescaling e appropriately we get that it suffices to ensure that for every x in the span of the columns
of U

(1= e)llz]3 < [Mz|5 < (1 + €)l]]3-
Writing 2 = Uy for y € R%, we get that the latter condition is equivalent

(1—e)yTy <yUTTITIUy < (1 + €)y’y for all y € RY,
which is equivalent to

|[UTTITIU — I4||s < .
Since Frobenius norm upper bounds spectral norm, it suffices to show that if B is sufficiently large,
then with high probability
|JUTHTTIU — I||F < e

2.2 Upper bounding ||[UTSTSU — I||r

In what follows we will show that for every orthonormal U € R™*?, if Il = S, with S a CountSketch
matrix with B buckets, one has with probability at least 1 — 2d?/(¢2B) over S

[UTSTSU —I||p < e

(6)
We start by noting that for every 4,5 € [1 : d] the matrix M := U7 ST SU satisfies
Mz] = Z Z Sr,aUa,iSr,bUb,j
r=1a=1b=1

n B B n n
= Z Ua)an)j (S?‘,a) + Z Z Z Sr,aUa,iSr,bUb,j
a=1 r=1

r=1a=1b=1,b#a
5i,j + Z Z Sr,aUa,iSr,bUb,j7

r=1a,b=1,
a#b

where ¢; ; equals 1 if ¢ = j and equals 0 otherwise. We thus have, for every 4,5 € [1 : d], that

(M - I)Z] = Z Z Sr,aUa,iSr,bUb,j7

n
r=1a,b=1
b

)

We prove (6) by first upper bounding the expectation of ||M — I||%, and then applying Markov’s

inequality. We have

E[||M - I||F] = ZZE[((M —1)ij)’]

«
Il
-
<
Il
-
3
Il
—
Q
o
Il
-

=
Il
_
<
Il
_
<
I
—
ﬁ\
Il
—
8
o
—
@\
AN
|
—

Il
M=
M=
=
M=
M=
i\g
]
©
Q
=
[
IS
W
Q\
=
&
S

L a#b o'y
n n

d B B
Z Z Z Z Z E [ST,aST,bST/,a’Sr’,b/] Ua,iUb,jUa’,iUb’,j

j=1r=1lr'=1la,b=1,4" b'=1
ab Py

M&

o
Il
-
-
5

)

The set {a, b, a’, b’} must contain every element an even number of times if E [S;. 4.5y 55y /Sy p7] #
0, since the random sign function raised to an odd power has zero expectation, and the signs are
four-wise independent by assumption.

Thus, it suffices to consider two cases.
Case 1: a =a’, b=10. Note that we must have r = 1/, as otherwise S, 4 - S;» = 0. We thus get

d d B n
222 2 BSL.SL] UL,
=1

i=1 j=1lr=la
a b

Q-

d d B =n
Z Z Z Z Ub j (since E[Sf,a] = Prob[h(a) =r] = 1/B and h is pairwise independent)

i=1 j=1r=1la,b

<.

b

n
E az b7]

o
M=
M=

i=1 j=1 a,b=1
1 d d n n
522 QUi Uiy)
i=1j=1 a=1 b=1
d2
<
- B’

In going from line 1 to line 2 we used the fact that
E[S?,S2,] = Prob[h(a) =r and h(b) =r] =1/B>

by pairwise independence of h. In going from line 2 to line 3 we used the fact that all terms in
the summation are nonnegative. In going from line 4 to line 5 we used the fact that Ezzl U 31 =
Zgzl Ui ; = 1 by orthonormality of columns of U.

Case 2: a =10, b =a’. Note that we must have r = r/, as otherwise S, 4 - S;v , = 0. We thus get

a#b
1< "
1B Z Z Z Ua,iUa,jUs,iUy,; (since E[S,%a] = Prob[h(a) =r] = 1/B and h is pairwise independent)
i=1 j=1 a,b=1,
j=lab=1
1A
< B Z Z Z \Ua,il - |Uayl - [Upil - |Up,;| (by triangle inequality)
i=1 j=1a,b=1,
a#b
1< "
< B Z Z Z |Uail - |Uajl - 1Ubil - |Up;| (since all terms in the summation are nonnegative)
i=1 j=1a,b=1
1 n n
= =3 O WaillUas DO Uil U51)
=1 j=1 a=1 b=1
1 d d n n
< B Z Z Z Uii Z UbZ,j (by Cauchy-Schwarz)
i=1 j=1la=1 b=1
d? “ n
< B (since Z Uc%,i = Z sz,j =1 by orthonormality of U)
a=1 b=1

2.3 Putting it together
Putting the bounds from previous sections together, we get that
E[||M - I||7] < 2d%/B,
and thus by Markov’s inequality
Prob[||M — I||% > ¢?] < 2d*/(*B),
and since ||M — ||z < ||M — I||F,
Prob[||M — I||z > €] < 2d*/(¢’B).

We thus get that CountSketch with B buckets is a (d,¢,2d? /(¢ B))-subspace embedding. Setting
B = Cd?/é? for a large enough absolute constant C gives a subspace embedding with large constant
probability.

How efficiently can we solve least squares using this approach? We need to find

argming cpa||SAzx — Sb||2.

The matrix SA is a B x d matrix, and hence this computation can be done in time poly(d) using
SVD. How much time does it take to form the matrix SA and the vector Sb? Since every column
of S has exactly one nonzero, the runtime of this is proportional to the number of nonzeros in the
matrix A and the vector b. Thus, if the matrix is sparse, this is very efficient! The final runtime is
O(nnz(A) + poly(d, 1/€)), which is a significant improvement over O(nd?) for direct SVD.

