

Lecture 6

Lecturer: Kshitij Sheth

1 Least squares regression

The *exact* least squares regression is the following problem: given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, find

$$x^* = \operatorname{argmin}_{x \in \mathbb{R}^d} \|Ax - b\|_2.$$

The least squares problem often comes up in the following setting. We are observing samples $a_i \in \mathbb{R}^d, i = 1, \dots, n$ (rows of A) together with a value of some unknown function f on the samples, perhaps corrupted by noise. The value of the function on the i -th sample is denoted by b_i . Then if the function f is linear in the attributes of the sample, i.e. coordinates of a_i , the least squares problem is asking to recover the coefficients x that allow one to predict b_i from a_i . In fact, in fairly general settings (e.g. when the vector b equals the value of the unknown linear function plus i.i.d. noise), a least squares fit is the best (unbiased) estimate of the linear function that one can obtain from the samples – see the Gauss-Markov theorem.

How do we solve least squares in general? The solution is $(A^T A)^+ A^T b$, where $(A^T A)^+$ is the Moore-Penrose pseudoinverse of $A^T A$, and can be computed via an SVD computation, taking $O(nd^2)$ time.

The *approximate* least squares problem is the following. We are given $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^n$, $\epsilon \in (0, 1)$. Let $x^* := \operatorname{argmin}_{x \in \mathbb{R}^d} \|Ax - b\|_2$. We would like to find $x' \in \mathbb{R}^d$ such that

$$\|Ax' - b\|_2 \leq (1 + \epsilon) \|Ax^* - b\|_2. \quad (1)$$

We will solve least squares approximately using *subspace embeddings*:

Definition 1 A random matrix $\Pi \in \mathbb{R}^{m \times n}$ is a (d, ϵ, δ) -subspace embedding if for every d -dimensional subspace $P \subseteq \mathbb{R}^n$ one has

$$\mathbf{Prob}[\|\Pi x\|_2 - \|x\|_2 \leq \epsilon \|x\|_2 \text{ for all } x \in P] \geq 1 - \delta.$$

The runtime of our final solution will be $O(\operatorname{nnz}(A) + \operatorname{poly}(d, 1/\epsilon))$, where $\operatorname{nnz}(A)$ denotes the number of nonzeros in A . Note that the leading order term is normally $\operatorname{nnz}(A)$ (if n is much larger than d), and hence this is much faster than the nd^2 time for SVD, especially if the matrix A is sparse.

Given a $(d + 1, \epsilon, \delta)$ -subspace embedding Π , our algorithm will be simple: solve

$$x' := \operatorname{argmin}_{x \in \mathbb{R}^d} \|\Pi Ax - \Pi b\|_2. \quad (2)$$

Why does this work? Consider the (at most) $(d + 1)$ -dimensional subspace of \mathbb{R}^n given by the span of $[A; b] \in \mathbb{R}^{n \times (d+1)}$. Since Π is a $(d + 1, \epsilon, \delta)$ -subspace embedding, we have that with probability at least $1 - \delta$ over Π for every $x \in \mathbb{R}^d$

$$\|[[A; b] \cdot [x^T; -1]^T]_2 - \|\Pi[A; b] \cdot [x^T; -1]^T\|_2 \leq \epsilon \|\Pi[A; b] \cdot [x^T; -1]^T\|_2. \quad (3)$$

Here $[x^T; -1]^T$ stands for a column vector obtained from $x \in \mathbb{R}^d$ by appending 1 as the last coordinate.

Since x' is the optimum in (2), we have

$$\|\Pi A x' - \Pi b\|_2 \leq \|\Pi A x^* - \Pi b\|_2. \quad (4)$$

By (3) applied with $x = x^*$ we have

$$\|A x^* - b\|_2 \geq \|\Pi A x^* - \Pi b\|_2 - \epsilon \|A x^* - b\|_2$$

so

$$\|\Pi A x^* - \Pi b\|_2 \leq (1 + \epsilon) \|A x^* - b\|_2.$$

Similarly by (3) applied with $x = x'$ we have

$$\|A x' - b\|_2 \leq \|\Pi A x' - \Pi b\|_2 + \epsilon \|A x' - b\|_2$$

so

$$\|A x' - b\|_2 \leq \frac{1}{1 - \epsilon} \|\Pi A x' - \Pi b\|_2.$$

Putting these two bounds together with (4), we get

$$\|A x' - b\|_2 \leq \frac{1}{1 - \epsilon} \|\Pi A x' - \Pi b\|_2 \leq \frac{1}{1 - \epsilon} \|\Pi A x^* - \Pi b\|_2 \leq \frac{1 + \epsilon}{1 - \epsilon} \|A x^* - b\|_2,$$

and hence x' from (2) satisfies (1), as required.

2 CountSketch is a subspace embedding

Recall that the CountSketch matrix is defined as follows. Fix a number B of buckets, a hash function $h : [n] \rightarrow [B]$ and a sign function $\sigma : [n] \rightarrow \{-1, +1\}$. For $r \in [B]$ and $a \in [n]$ let

$$S_{ra} = \begin{cases} \sigma(a) & \text{if } h(a) = r \\ 0 & \text{o.w.} \end{cases}$$

In other words, the CountSketch matrix multiplies an input vector by a diagonal sign matrix, and then hashes elements of the resulting vector into B buckets. We will need h to be pairwise independent, and σ to be four-wise independent.

We will show that for every subspace $U \in \mathbb{R}^{n \times d}$, if B is sufficiently large as a function of $d, 1/\epsilon$ and δ , then

$$\mathbf{Prob}[\|\Pi x\|_2 - \|x\|_2 \leq \epsilon \|x\|_2 \text{ for every } x \text{ in the span of the columns of } U] \geq 1 - \delta. \quad (5)$$

Our plan is as follows. We first show that in order to achieve the subspace embedding property in (5), it suffices to show that the matrix $U^T \Pi^T \Pi U$ is spectrally close to the identity matrix. We then note that proving that $U^T \Pi^T \Pi U$ is close to the identity in the Frobenius norm is even stronger, and prove the required upper bound on the Frobenius norm of $U^T \Pi^T \Pi U - I$ in the next section.

The final result (see section 2.3) will be that CountSketch with B buckets is a $(d, \epsilon, 2d^2/(\epsilon^2 B))$ -subspace embedding. Setting $B = Cd^2/\epsilon^2$ for a large enough absolute constant C gives a subspace embedding with large constant probability.

2.1 Reducing to an upper bound on $\|U^T S^T S U - I\|_F$

We start by noting that (5) is equivalent to

$$(1 - \epsilon)\|x\|_2 \leq \|\Pi x\|_2 \leq (1 + \epsilon)\|x\|_2 \quad \text{for every } x \text{ in the span of the columns of } U.$$

Rescaling ϵ appropriately we get that it suffices to ensure that for every x in the span of the columns of U

$$(1 - \epsilon)\|x\|_2^2 \leq \|\Pi x\|_2^2 \leq (1 + \epsilon)\|x\|_2^2.$$

Writing $x = Uy$ for $y \in \mathbb{R}^d$, we get that the latter condition is equivalent

$$(1 - \epsilon)y^T y \leq y U^T \Pi^T \Pi U y \leq (1 + \epsilon)y^T y \quad \text{for all } y \in \mathbb{R}^d,$$

which is equivalent to

$$\|U^T \Pi^T \Pi U - I_d\|_2 \leq \epsilon.$$

Since Frobenius norm upper bounds spectral norm, it suffices to show that if B is sufficiently large, then with high probability

$$\|U^T \Pi^T \Pi U - I_d\|_F \leq \epsilon.$$

2.2 Upper bounding $\|U^T S^T S U - I\|_F$

In what follows we will show that for every orthonormal $U \in \mathbb{R}^{n \times d}$, if $\Pi = S$, with S a CountSketch matrix with B buckets, one has with probability at least $1 - 2d^2/(\epsilon^2 B)$ over S

$$\|U^T S^T S U - I\|_F \leq \epsilon \tag{6}$$

We start by noting that for every $i, j \in [1 : d]$ the matrix $M := U^T S^T S U$ satisfies

$$\begin{aligned} M_{ij} &= \sum_{r=1}^B \sum_{a=1}^n \sum_{b=1}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j} \\ &= \sum_{a=1}^n U_{a,i} U_{a,j} \left(\sum_{r=1}^B S_{r,a}^2 \right) + \sum_{r=1}^B \sum_{a=1}^n \sum_{b=1, b \neq a}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j} \\ &= \delta_{i,j} + \sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j}, \end{aligned}$$

where $\delta_{i,j}$ equals 1 if $i = j$ and equals 0 otherwise. We thus have, for every $i, j \in [1 : d]$, that

$$(M - I)_{ij} = \sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j},$$

We prove (6) by first upper bounding the expectation of $\|M - I\|_F^2$, and then applying Markov's

inequality. We have

$$\begin{aligned}
\mathbf{E}[||M - I||_F^2] &= \sum_{i=1}^d \sum_{j=1}^d \mathbf{E}[(M - I)_{ij})^2] \\
&= \sum_{i=1}^d \sum_{j=1}^d \mathbf{E} \left[\left(\sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j} \right)^2 \right] \\
&= \sum_{i=1}^d \sum_{j=1}^d \mathbf{E} \left[\sum_{r=1}^B \sum_{r'=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n \sum_{\substack{a',b'=1, \\ a' \neq b'}}^n S_{r,a} U_{a,i} S_{r,b} U_{b,j} \cdot S_{r',a'} U_{a',i} S_{r',b'} U_{b',j} \right] \\
&= \sum_{i=1}^d \sum_{j=1}^d \sum_{r=1}^B \sum_{r'=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n \sum_{\substack{a',b'=1, \\ a' \neq b'}}^n \mathbf{E} [S_{r,a} S_{r,b} S_{r',a'} S_{r',b'}] U_{a,i} U_{b,j} U_{a',i} U_{b',j}
\end{aligned}$$

The set $\{a, b, a', b'\}$ must contain every element an even number of times if $\mathbf{E} [S_{r,a} S_{r,b} S_{r',a'} S_{r',b'}] \neq 0$, since the random sign function raised to an odd power has zero expectation, and the signs are four-wise independent by assumption.

Thus, it suffices to consider two cases.

Case 1: $a = a'$, $b = b'$. Note that we must have $r = r'$, as otherwise $S_{r,a} \cdot S_{r',a} = 0$. We thus get

$$\begin{aligned}
&\sum_{i=1}^d \sum_{j=1}^d \sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n \mathbf{E} [S_{r,a}^2 S_{r,b}^2] U_{a,i}^2 U_{b,j}^2 \\
&= \frac{1}{B^2} \sum_{i=1}^d \sum_{j=1}^d \sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n U_{a,i}^2 U_{b,j}^2 \quad (\text{since } \mathbf{E}[S_{r,a}^2] = \mathbf{Prob}[h(a) = r] = 1/B \text{ and } h \text{ is pairwise independent}) \\
&\leq \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \sum_{a,b=1}^n U_{a,i}^2 U_{b,j}^2 \\
&= \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \left(\sum_{a=1}^n U_{a,i}^2 \right) \left(\sum_{b=1}^n U_{b,j}^2 \right) \\
&\leq \frac{d^2}{B}.
\end{aligned}$$

In going from line 1 to line 2 we used the fact that

$$\mathbf{E}[S_{r,a}^2 S_{r,b}^2] = \mathbf{Prob}[h(a) = r \text{ and } h(b) = r] = 1/B^2$$

by pairwise independence of h . In going from line 2 to line 3 we used the fact that all terms in the summation are nonnegative. In going from line 4 to line 5 we used the fact that $\sum_{a=1}^n U_{a,i}^2 = \sum_{b=1}^n U_{b,j}^2 = 1$ by orthonormality of columns of U .

Case 2: $a = b'$, $b = a'$. Note that we must have $r = r'$, as otherwise $S_{r,a} \cdot S_{r',a} = 0$. We thus get

$$\begin{aligned}
& \left| \sum_{i=1}^d \sum_{j=1}^d \sum_{r=1}^B \sum_{\substack{a,b=1, \\ a \neq b}}^n \mathbf{E} [S_{r,a}^2 S_{r,b}^2] U_{a,i} U_{a,j} U_{b,i} U_{b,j} \right| \\
&= \left| \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \sum_{\substack{a,b=1, \\ a \neq b}}^n U_{a,i} U_{a,j} U_{b,i} U_{b,j} \right| \quad (\text{since } \mathbf{E}[S_{r,a}^2] = \mathbf{Prob}[h(a) = r] = 1/B \text{ and } h \text{ is pairwise independent}) \\
&\leq \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \sum_{\substack{a,b=1, \\ a \neq b}}^n |U_{a,i}| \cdot |U_{a,j}| \cdot |U_{b,i}| \cdot |U_{b,j}| \quad (\text{by triangle inequality}) \\
&\leq \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \sum_{a,b=1}^n |U_{a,i}| \cdot |U_{a,j}| \cdot |U_{b,i}| \cdot |U_{b,j}| \quad (\text{since all terms in the summation are nonnegative}) \\
&= \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \left(\sum_{a=1}^n |U_{a,i}| |U_{a,j}| \right) \left(\sum_{b=1}^n |U_{b,i}| |U_{b,j}| \right) \\
&\leq \frac{1}{B} \sum_{i=1}^d \sum_{j=1}^d \sum_{a=1}^n U_{a,i}^2 \sum_{b=1}^n U_{b,j}^2 \quad (\text{by Cauchy-Schwarz}) \\
&\leq \frac{d^2}{B} \quad (\text{since } \sum_{a=1}^n U_{a,i}^2 = \sum_{b=1}^n U_{b,j}^2 = 1 \text{ by orthonormality of } U)
\end{aligned}$$

2.3 Putting it together

Putting the bounds from previous sections together, we get that

$$\mathbf{E}[||M - I||_F^2] \leq 2d^2/B,$$

and thus by Markov's inequality

$$\mathbf{Prob}[||M - I||_F^2 > \epsilon^2] \leq 2d^2/(\epsilon^2 B),$$

and since $||M - I||_2 \leq ||M - I||_F$,

$$\mathbf{Prob}[||M - I||_2 > \epsilon] \leq 2d^2/(\epsilon^2 B).$$

We thus get that CountSketch with B buckets is a $(d, \epsilon, 2d^2/(\epsilon^2 B))$ -subspace embedding. Setting $B = Cd^2/\epsilon^2$ for a large enough absolute constant C gives a subspace embedding with large constant probability.

How efficiently can we solve least squares using this approach? We need to find

$$\operatorname{argmin}_{x \in \mathbb{R}^d} ||SAx - Sb||_2.$$

The matrix SA is a $B \times d$ matrix, and hence this computation can be done in time $\text{poly}(d)$ using SVD. How much time does it take to form the matrix SA and the vector Sb ? Since every column of S has exactly one nonzero, the runtime of this is proportional to the number of nonzeros in the matrix A and the vector b . Thus, if the matrix is sparse, this is very efficient! The final runtime is $O(nnz(A) + \text{poly}(d, 1/\epsilon))$, which is a significant improvement over $O(nd^2)$ for direct SVD.