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1 The heavy-hitters problem

In this section we show how one can approximate individual entries of z pre-
sented as a stream of updates using a small sketch. Specifically, can we approx-
imate top k elements of 7 What about at least k = 1 case?

The answer is, in general, ‘NO’. But ‘YES’ if max coordinate contributes
a nontrivial fraction of the mass of x. We assume that entries in x are non-
negative at the end. We start the discussion by formally defining ‘a coordinate
contributing a nontrivial fraction of the mass of z’.

Definition 1 ({2 Heavy Hitter) We call i € [n] a ¢-heavy hitter if |z;| >
ollz|l2 for ¢ € (0,1).

Goal: Design a linear sketch that,
1. Approximates x; up to (¢/4)||z|| error, for every i € [n].

2. Outputs a list L C [n] that contains all ¢-heavy hitters and does not
contain any element that is not a ¢/2-heavy hitter.

Remark Note that the definition above makes sense with the /5 norm re-
placed with the ¢; norm. The fact that we are able to solve the problem under
the above definition with £5 norm is surprising. For example, consider a stream
of length n where one item occurs y/n times, and the remaining n — /n items
are distinct. Note that the ‘heavy’ item is heavy in {5 sense, but not in ¢; sense.
In particular, if one samples a random location in the stream, the probabil-
ity of hitting the ‘heavy’ item is only 1/y/n. Nevertheless, the COUNTSKETCH
algorithm recovers this ‘heavy’ item using O(logn) space.

The COUNTSKETCH algorithm of Charikar, Chen and Farach-Colton [1] pro-
ceeds as follows. Choose R pairwise independent hash functions

hr:[n]—[B], r=12,...,R

mapping the universe [n] to B buckets. Also choose a sequence of R sign func-
tions

$r:[n] = {£1}, r=1,2,...,R

from a pairwise independent family.

[#][2 < [[=[[x for
all x, and

[[z]l2 < [la]x
for some




The COUNTSKETCH algorithm maintains, for each bucket b € [B] and repe-
tition r € R,

Yrb = Z sr(j)mja

j€[n] s.t. hy(j)=b

where z € R" is the frequency vector of the data stream. Frequency estima-
tion is performed as follows. First, for 7 € [n] and r € [R] define

~r . This is basically
i = $e(Yrn,0)- a hash table
lookup

Our estimate for ¢ € [n] is then given by

medianTE[R] {fl,f}

We now given the analysis of COUNTSKETCH. Consider an arrangement of
x; s such that |z1] > |za|... > |x,|. We then define the head and tail of = as
follows. Define the head of the signal as H = {1, 2, ...k} (top k frequencies) and
the tail as T = {k + 1, ..n}.

1.1 Bounding estimation error for fixed r € [R]

We now analyze the estimation error. It is convenient to consider the contribu-
tion of the head and the tail of the signal separately to the estimation error:

53\: —T; = Sr(i)yﬂhr(i) — %
_ Z Sy (’L)Sr (]).’L‘]
J€MI\{i} st he(§)=hr ()

= > s@seGr; + Y. se(i)se(h)x; (1)

JER\(i} JeT\(i}
he(3)=h.(3) hr (1)=h,(j)
Il I
0 if i is alone in its’ bucket A(i,r)

Denote the event that i does not collide with any of the head elements of
the signal in its bucket in the r-th hashing by £,0—cottisions(i,7). Note that this
event is quite likely if the number of buckets is much larger than k. Formally,
we have for every r € [R] and 4,5 € [n],i # i

_ . 1
Pr () = ha(i)] = -
We thus have that the probability that ¢ does not collide with any of the
head elements in its bucket is upper bounded by

Pr3j € H\{i} : h(i) = b ()] <
where we used the union bound over at most &k elements of H. Choosing B >
10k, we get that this probability is at most %0, giving that Pr [E,0—coltisions (4, 7)] >
9/10, and thus the first term in (1) is zero with probability at least 9/10.



We next show that the second term, namely A(7,r), is small in absolute
value with high probability. We first show that the expectation of the second
term is zero, and then bound the variance. For the expectation we have

EAGN=E| Y sili)s ()
JET\{i}

hor (D)=hr(5)

Z E[sr(i)s,(4))z;

JET\{i}
hr(i)=hr(j)

=0

We now bound the variance, conditioned on a specific choice of h,.:

E,[Ai,1)°] = E[AG,7)%] - (B[AG,1)])?

=E, Z sp(1) 57(J) (since E[A(i,7)] = 0)

JET\{i}
by (§)=hr(7)

=E; § E Sr(i)25r(j)sr(j/)xjxj’
JET\{i}  j'eT\{i}
| e (D)= (3) ho(i)=hr(5")

= ZES[sr(j)sr(j’)]xjxj/ (since s,(7)? is always 1)
JJ

= > a7 (since By[s,(j)s,(j")] =0 if j#j" and 1 if j=j')
J€T\{i}

We thus have

Pr|A(,r)’>10 > 23| <
JET\{i}
h (i) =ho (5)

where the probability is over s, conditioned on a fixed choice of h,..
Define the event Esmaii—noise (%, ) by

1
10’

gsmallfnoiSG(iaT) = A(i,’l‘)Q < 10 Z :L?
JET\{i}
hr(i)=hr(4)

How smallis D jer\ i} acf typically? Taking the expectation over the hash
hr (i)=hr(5)



function h, we get

2 2
Ey, Yoo B =E| DY 2 1p,G)=h0)

jeT\{i} JjeT\{s}

ho(D)=ho(5)
= > @7 Pr(h(j) = he(i)]
JET\{i}

1

JET

where the probability is over the choice of h,..
Now using Markov’s Inequality, we get

A
sl

10
2 2
Pr| > #>5) a
JjeT\{:} JET
e =he (5)

We define Esmalr-var (4, 77) by

. 10
Ssmall-var(l) = Z IL’? < E Z $?
JET\{i} JET
hy(3)=h(5)
Letting z7 denote the restriction of 2 onto coordinates in T', we get > jer x? =
|z ||§ Using this notation, we get by a union bound over &, coliisions (% ')y Esmali—noise (45 T)
and Esmati—var(i,7) that

WOlerl} oy L L L gy

Pr |77 — a2
vl < — = 710 10 10°

1.2 Putting it together

We repeat this process R = C logn times for a sufficiently large constant C' > 0
to get 71,72,..., 7. Recall that our final estimate is

il

7; = median, ¢z {7; }.

By standard median trick analysis we have |z; — ;| < %

with probability
at least 1 — 1/n? for every fixed i € [n]. By a union bound over all i € [n] we
thus have 10 j2rl,
7 -z, < T

with probability at least 1 — 1/n.

To solve the original problem, just let B = Cok/¢? for a sufficiently large
Cs to ensure that % < (¢/4)|lzrll2 < (¢/4)||2]|2, and let the output list
be defined as

L={ie[n]:|z]> B¢/4)|x[]2}



Remark Note that we proved stronger upper bounds on the quality of estima-
tion provided by COUNTSKETCH than are needed for the application to heavy
hitters. Specifically, we showed that our estimate errs by at most %;”2, ie.

the error depends on the #5 mass in the tail of the signal only. We will use these
stronger bounds when we talk about sparse recovery.

2 Sparse recovery

Definition 2 Let z; denote the j-th largest element (in absolute value) of ,
then given a fived k, we define x(1 ... 1y = v as the head of x and T (441, n) =
T —xyg = xr as the tail of x.

Claim 3 When z(;) ~ i~® (distribution satisfying power law) for a € (3,1),

M ~ 20l

|13
o0 o0
Proof We have Y (i7%)? = > (i72%) ~ k=2T! < 1, which can be seen by
i=k i=k
evaluating the integral [, 2™ 2*dx = ﬁk”““. |

. . . xT .
Checking the above claim for ¢; norm, we obtain W ~ kot (since

o0
ST (i7%) ~ k=F1), thus the tail is not as sparse for the £ norm as it is for ¢,
i=k

norm for distributions obeying the power law.

Definition 4 (Sparse Recovery) Given Ax for some x € R™ and an integer
k > 1 and a precision parameter C > 1, reconstruct y € R™ s.t

|z =yl <€ min  ([jz = 2[|)

k—sparse z

= Cllzrllg:

Note that C can be close to 1, in which case we talk about C = 1 + e-
approximate sparse recovery. Specific instantiations of p and q include the fol-
lowing.

01 /¢y guarantee : Given Ax reconstruct y such that

le—ylh <C min [z -z}
k—sparse z
by /by gquarantee:
lze =yl <C  min [z -z
k—sparse z

y satisfies the s /€1 guarantee if:

€
|7 = ylloo < ~llorll1

y satisfies the Uy, /oy guarantee if:

€
Iz = ylloo < ﬁllellz



Claim 5 For every integer k > 1, every e € (0,1) if y be the vector of estimates
giwen by CountMin with B = @(%) and R = Clogn for a sufficiently large
constant C' > 0, then with probability at least 1 — 1/n

€
|z = Ylloo < llzrlly
Claim 6 For every integer k > 1, every e € (0,1) if y be the vector of estimates

giwen by COUNTSKETCH with B = @(eﬁz) and R = Clogn for a sufficiently
large constant C > 0, then with probability at least 1 —1/n

€
Iz = ylloo < ﬁllellz
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