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1 The heavy-hitters problem
In this section we show how one can approximate individual entries of x pre-
sented as a stream of updates using a small sketch. Specifically, can we approx-
imate top k elements of x? What about at least k = 1 case?

The answer is, in general, ‘NO’. But ‘YES’ if max coordinate contributes
a nontrivial fraction of the mass of x. We assume that entries in x are non-
negative at the end. We start the discussion by formally defining ‘a coordinate
contributing a nontrivial fraction of the mass of x’.

Definition 1 (`2 Heavy Hitter) We call i ∈ [n] a φ-heavy hitter if |xi| ≥
φ‖x‖2 for φ ∈ (0, 1).

Goal: Design a linear sketch that,

1. Approximates xi up to (φ/4)||x|| error, for every i ∈ [n].

2. Outputs a list L ⊆ [n] that contains all φ-heavy hitters and does not
contain any element that is not a φ/2-heavy hitter.

Remark Note that the definition above makes sense with the `2 norm re-
placed with the `1 norm. The fact that we are able to solve the problem under
the above definition with `2 norm is surprising. For example, consider a stream
of length n where one item occurs

√
n times, and the remaining n −

√
n items

are distinct. Note that the ‘heavy’ item is heavy in `2 sense, but not in `1 sense.
In particular, if one samples a random location in the stream, the probabil-
ity of hitting the ‘heavy’ item is only 1/

√
n. Nevertheless, the CountSketch

algorithm recovers this ‘heavy’ item using O(log n) space.

‖x‖2 ≤ ‖x‖1 for
all x, and
‖x‖2 � ‖x‖1
for some x

The CountSketch algorithm of Charikar, Chen and Farach-Colton [1] pro-
ceeds as follows. Choose R pairwise independent hash functions

hr : [n]→ [B], r = 1, 2, . . . , R

mapping the universe [n] to B buckets. Also choose a sequence of R sign func-
tions

sr : [n]→ {±1}, r = 1, 2, . . . , R

from a pairwise independent family.
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The CountSketch algorithm maintains, for each bucket b ∈ [B] and repe-
tition r ∈ R,

yr,b =
∑

j∈[n] s.t. hr(j)=b

sr(j)xj ,

where x ∈ Rn is the frequency vector of the data stream. Frequency estima-
tion is performed as follows. First, for i ∈ [n] and r ∈ [R] define

x̂ri = sr(i)yr,hr(i).
This is basically
a hash table
lookup

Our estimate for i ∈ [n] is then given by

medianr∈[R]{x̂ri }.

We now given the analysis of CountSketch. Consider an arrangement of
xi s such that |x1| ≥ |x2|... ≥ |xn|. We then define the head and tail of x as
follows. Define the head of the signal as H = {1, 2, ...k} (top k frequencies) and
the tail as T = {k + 1, ...n}.

1.1 Bounding estimation error for fixed r ∈ [R]

We now analyze the estimation error. It is convenient to consider the contribu-
tion of the head and the tail of the signal separately to the estimation error:

x̂ri − xi = sr(i)yr,hr(i) − xi
=

∑
j∈[n]\{i} s.t. hr(j)=hr(i)

sr(i)sr(j)xj

=
∑

j∈H\{i}
hr(i)=hr(j)

sr(i)sr(j)xj

︸ ︷︷ ︸

=

0 if i is alone in its’ bucket

+
∑

j∈T\{i}
hr(i)=hr(j)

sr(i)sr(j)xj

︸ ︷︷ ︸

=

∆(i,r)

(1)

Denote the event that i does not collide with any of the head elements of
the signal in its bucket in the r-th hashing by Eno−collisions(i, r). Note that this
event is quite likely if the number of buckets is much larger than k. Formally,
we have for every r ∈ [R] and i, j ∈ [n], i 6= i

Pr [hr(j) = hr(i)] =
1

B
.

We thus have that the probability that i does not collide with any of the
head elements in its bucket is upper bounded by

Pr [∃ j ∈ H\{i} : hr(i) = hr(j)] ≤
k

B
,

where we used the union bound over at most k elements of H. Choosing B ≥
10k, we get that this probability is at most 1

10 , giving that Pr [Eno−collisions(i, r)] ≥
9/10, and thus the first term in (1) is zero with probability at least 9/10.
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We next show that the second term, namely ∆(i, r), is small in absolute
value with high probability. We first show that the expectation of the second
term is zero, and then bound the variance. For the expectation we have

E[∆(i, r)] = E

 ∑
j∈T\{i}

hr(i)=hr(j)

sr(i)sr(j)xj


=

∑
j∈T\{i}

hr(i)=hr(j)

E[sr(i)sr(j)]xj

= 0

We now bound the variance, conditioned on a specific choice of hr:

Es[∆(i, r)2] = E[∆(i, r)2]− (E[∆(i, r)])2

= Es


 ∑

j∈T\{i}
hr(j)=hr(i)

sr(i) sr(j) xj


2 (since E[∆(i, r)] = 0)

= Es

 ∑
j∈T\{i}

hr(i)=hr(j)

∑
j′∈T\{i}

hr(i)=hr(j′)

sr(i)
2sr(j)sr(j

′)xjxj′


=
∑
j,j′

Es[sr(j)sr(j′)]xjxj′ (since sr(i)2 is always 1)

=
∑

j∈T\{i}

x2
j ( since Es[sr(j)sr(j′)] = 0 if j 6= j′ and 1 if j = j′)

We thus have

Pr

∆(i, r)2 ≥ 10
∑

j∈T\{i}
hr(i)=hr(j)

x2
j

 ≤ 1

10
,

where the probability is over s, conditioned on a fixed choice of hr.
Define the event Esmall−noise(i, r) by

Esmall−noise(i, r) :=

∆(i, r)2 ≤ 10
∑

j∈T\{i}
hr(i)=hr(j)

x2
j

 .

How small is
∑

j∈T\{i}
hr(i)=hr(j)

x2
j typically? Taking the expectation over the hash
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function h, we get

Eh

 ∑
j∈T\{i}

hr(i)=hr(j)

x2
j

 = E

 ∑
j∈T\{i}

x2
j · 1[hr(j)=hr(i)]


=

∑
j∈T\{i}

x2
j · Pr [hr(j) = hr(i)]

≤ 1

B

∑
j∈T

x2
j ,

where the probability is over the choice of hr.
Now using Markov’s Inequality, we get

Pr

 ∑
j∈T\{i}

hr(i)=hr(j)

x2
j >

10

B

∑
j∈T

x2
j

 ≤ 1

10

We define Esmall-var(i, r) by

Esmall-var(i) :=


∑

j∈T\{i}
hr(i)=hr(j)

x2
j <

10

B

∑
j∈T

x2
j

 .

Letting xT denote the restriction of x onto coordinates in T , we get
∑
j∈T x

2
j =

‖xT ‖22. Using this notation, we get by a union bound over Eno−collisions(i, r), Esmall−noise(i, r)
and Esmall−var(i, r) that

Pr

[
|x̂ri − xi|2 ≤

100 ‖xT ‖2
B

]
≥ 1− 1

10
− 1

10
− 1

10
≥ 7/10.

1.2 Putting it together
We repeat this process R = C1 log n times for a sufficiently large constant C > 0
to get x̂1

i , x̂
2
i , . . . , x̂

R
i . Recall that our final estimate is

x̂i = medianr∈[R]{x̂ri }.

By standard median trick analysis we have |x̂i−xi| ≤
100‖xT ‖2√

B
with probability

at least 1 − 1/n2 for every fixed i ∈ [n]. By a union bound over all i ∈ [n] we
thus have

‖x̂− x‖∞ ≤
10 ‖xT ‖2√

B

with probability at least 1− 1/n.
To solve the original problem, just let B = C2k/φ

2 for a sufficiently large
C2 to ensure that 10‖xT ‖2√

B
< (φ/4)||xT ||2 ≤ (φ/4)||x||2, and let the output list

be defined as
L = {i ∈ [n] : |x̂i| > (3φ/4)||x||2}.
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Remark Note that we proved stronger upper bounds on the quality of estima-
tion provided by CountSketch than are needed for the application to heavy
hitters. Specifically, we showed that our estimate errs by at most 10‖xT ‖2√

B
, i.e.

the error depends on the `2 mass in the tail of the signal only. We will use these
stronger bounds when we talk about sparse recovery.

2 Sparse recovery
Definition 2 Let xj denote the j-th largest element (in absolute value) of x,
then given a fixed k, we define x(1,2...,k) = xH as the head of x and x(k+1,...,n) =
x− xH = xT as the tail of x.

Claim 3 When x(i) ∼ i−α (distribution satisfying power law) for α ∈ ( 1
2 , 1),

||x(k+1,...,n)||22
||x||22

∼ k−2α+1

Proof We have
∞∑
i=k

(i−α)2 =
∞∑
i=k

(i−2α) ≈ k−2α+1 � 1, which can be seen by

evaluating the integral
∫∞
k
x−2αdx = 1

2α+1k
−2α+1.

Checking the above claim for `1 norm, we obtain ||x(k+1,...,n)||1
||x||1 ∼ kα+1 (since

∞∑
i=k

(i−α) ≈ k−α+1), thus the tail is not as sparse for the `2 norm as it is for `1

norm for distributions obeying the power law.

Definition 4 (Sparse Recovery) Given Ax for some x ∈ Rn and an integer
k ≥ 1 and a precision parameter C > 1, reconstruct y ∈ Rn s.t

||x− y||p ≤ C min
k−sparse z

(||x− z||q)

= C||xT ||q.

Note that C can be close to 1, in which case we talk about C = 1 + ε-
approximate sparse recovery. Specific instantiations of p and q include the fol-
lowing.

`1/`1 guarantee : Given Ax reconstruct y such that

||x− y||1 ≤ C min
k−sparse z

||x− z||1

`2/`2 guarantee:

||x− y||2 ≤ C min
k−sparse z

||x− z||2

y satisfies the `∞/`1 guarantee if:

||x− y||∞ ≤
ε

k
||xT ||1

y satisfies the `∞/`2 guarantee if:

||x− y||∞ ≤
ε√
k
||xT ||2
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Claim 5 For every integer k ≥ 1, every ε ∈ (0, 1) if y be the vector of estimates
given by CountMin with B = Θ(kε ) and R = C log n for a sufficiently large
constant C > 0, then with probability at least 1− 1/n

||x− y||∞ ≤
ε

k
||xT ||1

Claim 6 For every integer k ≥ 1, every ε ∈ (0, 1) if y be the vector of estimates
given by CountSketch with B = Θ( kε2 ) and R = C log n for a sufficiently
large constant C > 0, then with probability at least 1− 1/n

||x− y||∞ ≤
ε√
k
||xT ||2

References
[1] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent

items in data streams. In International Colloquium on Automata, Languages,
and Programming, pages 693–703. Springer, 2002.

6


