

Exercise XI, Sublinear Algorithms for Big Data Analysis 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers with other students, and solve as many problems as you can. Problems marked (*) are more difficult, but also more rewarding. These problems have been taken from various sources on the Internet, too numerous to cite individually.

- 1 Let $G = (P, Q, E)$ be defined as follows. Let $P = \{0, 1\}^n, Q = \{0, 1\}^n, N = 2^n$, and let $E = \bigcup_{i=1}^n M_i$, where M_i is a matching between $A_i := \{x \in \{0, 1\}^n : x_i = 1\}$ and $B_i := \{x \in \{0, 1\}^n : x_i = 0\}$ defined as follows. For every $x \in A_i$ insert an edge $(x, x + e_i)$ into M_i , where e_i is the i -th coordinate vector and addition is modulo 2. Show that the matchings M_i are induced, and hence G is a $(1/2, \log_2 N, 2N)$ -Ruzsa-Szemerédi graph.
- 2 Extend the construction above to obtain $(1/2^k, (\log_2 N)^k, 2N)$ -Ruzsa-Szemerédi graphs for every integer $k \geq 1$.
- 3 In this problem you will construct $(1/12, 2^{\Omega((\log \log N)^2, N)})$ -Ruzsa-Szemerédi graphs. We will use

Theorem 0.1 (Grothmusz'2000) *Let m have $r > 1$ distinct prime divisors. Then for $h > 0$, there exists a uniform set system \mathcal{H} over $[h]$ with:*

1. $|\mathcal{H}| \geq \exp\left(c \frac{(\log h)^r}{(\log \log h)^{r-1}}\right)$
2. $|H| \equiv 0 \pmod{m}$ for all $H \in \mathcal{H}$
3. $|G \cap H| \not\equiv 0 \pmod{m}$ for $G \neq H$

This is very surprising since such a system does not exist if m is prime:

Theorem 0.2 (Frankl–Wilson) *Let \mathcal{F} be a set system over a universe of n elements, and let $\mu_0, \mu_1, \dots, \mu_s$ be distinct residues modulo a prime p , such that:*

- For all $F \in \mathcal{F}$, $|F| = k \equiv \mu_0 \pmod{p}$,
- For any two distinct $F, G \in \mathcal{F}$, $|F \cap G| \equiv \mu_i \pmod{p}$ for some $i \in \{1, \dots, s\}$.

If $k + s \leq n$, then

$$|\mathcal{F}| \leq \binom{n}{s}.$$

Let $v_1, \dots, v_m \in \{0, 1\}^n$, with $|v_i| \equiv 0 \pmod{6}$, and $\langle v_i, v_j \rangle \not\equiv 0 \pmod{6}$ for $i \neq j$, as per the Grothmusz construction. We define a graph G by letting $V = \mathbb{Z}_6^n$ and defining edges as follows. For every $i = 1, \dots, m$ define $A_i = \{u \in V : \langle u, v_i \rangle \equiv 0 \pmod{6}\}$. For each $u \in A_i$, include an edge $\{u, u + v_i\}$. Prove that this defines a $(1/6, 2^{\Omega((\log \log N)^2, N)})$ -Ruzsa-Szemerédi graph.