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Reminder: A Teachable Scheme 

Decomposition of the vision process into 
smaller manageable and implementable 
steps. 
--> Paradigm followed in this course 
--> May not be the one humans use

Image(s)

Edge information Texture information Shape information

Scene objects

Scene interpretation
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Shape From X

• One image: 
• Shading  
• Texture  

• Two images or more: 
• Stereo 
• Contours 
• Motion
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Shading

• Shading models 
• Shape from shading 

• Variational Methods  
• Deep Learning Methods 
• Photometric Stereo
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Bump Mapping

Simple mesh + 2D bump map =  Complex looking object
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Lambertian Half-Sphere 

Gray level changes are interpreted as changes in 
the direction of the surface normal.
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Solving an Inverse Problem

• Shading gives information about surface normals. 
• Recovering the 3D surfaces amounts to solving a 

differential equation. 

Boundary conditions are required to do so.
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Boundary Conditions

 —> The carefully designed contour gives 
us an erroneous perception!
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Reminder: Image Formation

• The light source illuminates a 3D surface. 
• The 3D surface reemits some the light. 
• It goes through a lens and forms an image on the image plane.  
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Reminder: Fundamental Radiometric Equation

Scene Radiance (Rad): Amount of light radiation emitted from 
a surface point (Watt / m2 / Steradian) 

Image Irradiance (Irr): Amount of light incident at the image 
of the surface point. (Watt / m2) 

 

when the camera is photometrically calibrated.

Irr =
π
4

(
d
f

)2cos4(α)Rad ,

⇒ I ∝ Rad ,

 Image intensity 



⃗L 
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Lambertian Shading Model

 da α

• The amount of light radiation P 
in the cylinder of section da in 
direction  is spread over the 
surface area dA. 

• Some light is absorbed (0 < 
albedo < 1).  

⃗L

 dA

 Illuminated surface

 Radiance:

 da = cos( )dA 
 cos( ) = 

α
α ⃗L ⋅ ⃗N

Rad ∝ albedo P/dA
P ∝ da

⇒ P ∝ albedo
da
dA

P ∝ albedo ⃗L ⋅ ⃗N 

⃗N⃗L
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Ideal Lambertian Surface 

Perfectly matte surface: The radiance depends 
only on angle of incidence and not on viewing 
direction. This is known as diffuse reflection.

 

⃗L⃗N

I = max(0,albedo  ⃗L ⋅ ⃗N )

 No negative light!
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Estimated Albedo

*=

 Albedo

⃗L ⋅ ⃗N

 Original image.

 —> The “albedo” image looks much flatter 
than the original one.
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Diffuse vs Specular

Diffuse reflection Specularities

 

Shadow

 Real-world surfaces are not really Lambertian!
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Specularities

• At specular points Lambertian assumptions are violated. 
• The surface behaves like a mirror.   
• This is known as specular reflection.  
• Most surfaces are a combination of diffuse and specular reflectors. 
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Mirror-Like Behavior

 
 

• Specularities occur when the two directions are symmetric 
with respect to the normal.  

• If the light source direction is known, they can be used to 
infer the normals. 

 i  e =
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Radiance under Indirect Lighting

• The light source is not visible. Yet there still is light. 
• The light enters through the windows and bounces 

of the walls.
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Visualizing Secondary Illumination

 Reflections produce 
indirect lighting. 

 Unique light source 
assumption doe not 
allow correct albedo 
recovery. Lambertian 

shading
Lambertian  
albedoes

 This is not right!
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Simplifying Assumptions 

 

 ⃗N⃗V

• Accounting for secondary illumination in the computer vision 
context remains an open research problem.  

•  We will mostly ignore it in this class and make the following 
assumptions. 

- The illumination sources are distant from the imaged 
surfaces. 

- Secondary illumination is not significant. 
- There are no cast shadows.

⃗L
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Ideal Synthetic Case

 Goal:  
• Recover the 3D shape of the head from the 2D image. 

 Questions: 
1. Given the surface normals, can we recover the surface? 
2. Can we recover the normals? 
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Monge Surface

 x y

• A Monge surface is defined by z = f(x,y). 
• Not all surfaces can be represented this way. 
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Surface Normals

 x y

 

€ 

−p,−q,1[ ]T
z = f(x, y)

p =
�z

�x

q =
�z

�y
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 x y

€ 

1,0, p[ ]

Tangent Vectors

€ 

0,1,q[ ]z = f(x, y)

p =
�z

�x

q =
�z

�y
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Shape from Normals

 Normals  3D shape

 Elevation and normal: 

 
 

 Orthographic projection: 

 

z = f(x, y)

N =
1

1 + p2 + q2 [
−p
−q

1]
u = sx
v = sy
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Re-Parametrization

 u v

Perform a change of variables z = f(u,v) where u and v 
are image coordinates.
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Shape From Normals (1)
 Since u = sx and v = sy, the normal vector N is 

 

 

where  is the scaled distance. 

nx
ny
nz

=
1

1 + δz
δx

2
+ δz

δy

2

− δz
δx

− δz
δy

1

,

⇒
δz
δx

= −
nx

nz
 and 

δz
δy

= −
ny

nz
,

⇒
δz
δu

= −
1
s

nx

nz
 and 

δz
δv

= −
1
s

ny

nz
,

⇒
δz̄
δu

= −
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nz
= n1 and 

δz̄
δv

= −
ny

nz
= n2 ,

z̄ = sz
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Shape From Normals (2)
• Let us assume we are given the normal at each pixel (u,v).  
• Let  and . 
• From the previous slide, we have  

 
  

• We therefore have roughly twice as many equations as we have 
unknowns, the scaled distances .  

• This can be solved in the least squares sense. 

—> Given the normals at every pixel we can recover the distances up 
to a scale factor.  

But how do we get the normals? 

n1(u, v) = − nx(u, v)/nz(u, v) n2(u, v) = − ny(u, v)/nz(u, v)

∀u, v
n1(u, v) =

δz̄
δu

≈ z̄(u + 1,v) − z̄(u, v)

n2(u, v) =
δz̄
δv

≈ z̄(u, v + 1) − z̄(u, v)

z̄(u, v)
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Back to Estimating the Normals

 u v

 

€ 

−p,−q,1[ ]T
z = f(u, v)

p =
�z

�u

q =
�z

�v

 What does the image tell us about them?
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Reflectance Map 

In the Lambertian case and for a constant albedo: 

 

• The function Ref is known as the reflectance map. 
• For non-Lambertian surfaces it can be more complex.  

I(u, v) ∝ L ⋅ ⃗N

∝ L ⋅ [−p(u, v), − q(u, v),1]T

∝ Ref(p(u, v), q(u, v))
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Lambertian Reflectance Map

 Reflectance map and shaded surface for Lambertian 
surface illuminated in the direction [-1 -0.5 -1]. 

 p

 q
Terminator. 
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Earth Seem from the Moon

Apollo 8, 1968. 

•Terminator: The boundary 
between night and day. 
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Lambertian Reflectance Map

 Reflectance map and shaded surface for Lambertian 
surface illuminated in the direction [0 0 -1]. 
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Lambertian Reflectance Map

 Reflectance map and shaded surface for Lambertian 
surface illuminated in the direction [1 0.5 -1]. 
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Inverse Problem

 No because many p and q yield the same Ref(p,q).  

 —> Global optimization required.

Can we determine (p,q) uniquely for each image 
point independently?

 I=Ref(p,q)
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Variational Method (1) 

Minimize:

 Data term  Smoothness term  Integrability term

Z Z  
[I(u, v)�Ref(p, q)]2 + �
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�u

◆2

+
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�p

�v

◆2

+
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�q

�u

◆2

+
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�v
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#
+ µ


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�v
� �q

�u

�2!
dudv

1. Recover the normals and make them integrable. 
2. Integrate to recover the 3D surface.

�z
�u

�v
=

�z
�v

�u
=

�2z

�u�v
<latexit sha1_base64="qNRitMpbD3PWOOiWTHrch/S8i14="></latexit>
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Variational Method (2) 

Minimize:

 Data term  Smoothness term

Z Z  
I(u, v)�Ref(

�z

�u
,
�z

�v
)

�2
+ �

"✓
�2z

�u2
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• Recover the surface directly, which means solving a second 
order differential equation instead of a first order one. 

• Both approaches are valid and require boundary conditions. 
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Moonscape

 Moon image  Depth map
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Faces from Shading

 Prados and Faugeras, CVPR’05.

Bagautdinov et al. , CVPR’18.

• Deep face model 
• High resolution images

• Generic Monge surface 
• Low resolution images



42

T-Shirt

Works because the albedo is constant!

input image GT OUR SIRFS OUR SIRFSinput image GT OUR SIRFS OUR SIRFS

 Barron & Malik, PAMI’15
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 Combining Stereo and Shading

 Stereo Only  Stereo + Flow

• Shape-from-shading can be 
used in conjunction with other 
modalities to refine the shape 
and provide high-frequency 
details. 

• We will come back to this when 
we talk about stereo and 
motion.

 Valgaerts et al. SIGGRAPH Asia’12
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From Variational to Deep

input image

(224 x 224 x 3)

normal map

(224 x 224 x 3)

depth map

(224 x 224 x 1)

depth map

(224 x 224 x 1)

mesh

(31 x 31 x 3)

(7 x 7 x 256)

latent
representation

NORMAL 
MAP
STREAM

DEPTH
MAP
STREAM

MESH
STREAM

encoder

decoder

decoder

FC

 Bednarik et al. , ECCV’18

The deep net is trained to:  
•produce both a depth map and a map of normals, 
•ensure they are consistent with each other. 

—> Can be understood as another way to solve the variational problem.
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Improved Results

 The deep net recovers more details ……

input image GT OUR SIRFS OUR SIRFS Deep

 …… but requires training data. 
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Reminder: Ambiguities

• Back where we started.  
• Let us look at them more closely.
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Bas-Relief Ambiguity

Looks like a normal human head … … but not when seen from the side.

 Why is that? 
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Bas-Relief Ambiguity

By moving the light source, it is possible to produce 
the same image for different 3D shapes.
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Bas-Relief Ambiguity Explained (1)

For any invertible 3x3 linear transformation A: 

(AN) ⋅ (A−TL) = (AN)T(A−TL)
= NTATA−TL
= NTL
= N ⋅ L

• In theory, applying A to the normals and A-1 to the light source would 
not change the image.  
• However, the normals must remain integrable, which means that not all 
transformations of the normals are valid.  
• In particular, for a Monge surface z = f(u,v), we must have

�z
�u

�v
=

�z
�v

�u
=

�2z

�u�v
<latexit sha1_base64="qNRitMpbD3PWOOiWTHrch/S8i14="></latexit>

Ref = N ⋅ L
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Bas-Relief Ambiguity Explained (2)

—> The surface f(u, v) can be changed into 
λf(u,v) + µu + νv and still produce the same    
image.

 Let us write the integrability constraint in our specific case: 

⇒ A restricted to 
1 0 0
0 1 0
μ ν λ

�z
�u = �n⇤

x
n⇤
z

�z
�v = �n⇤

y

n⇤
z

)
)

�
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z

�v =
�
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y

n⇤
z

�u with

2

4
n⇤
x

n⇤
y
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z

3
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4
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ny

nz

3

5−T



51

Convex/Concave Ambiguity

 It can happen even when the light source is 
known!
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Convex/Concave Ambiguity

• All four profiles will produce the same image 
under the illumination shown here. 
• The SfS problem under orthographic projection 
with a distant light-source is ill-posed. 
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Making the SfS Problem Well-Posed
• Use perspective projection model. 
• Radiance depends on distance to light source: 

 instead of 

• Light source located at the optical center. 

-> Unique solution but more complex computations.   

€ 

I =
Albedo⋅ (N • S)

d2

€ 

I = Albedo⋅ (N • S)
 

  

€ 

! 
N 

  

€ 

! 
S 

 d

 Prados and Faugeras, CVPR’05.



54

Endoscopy

+
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Endoscopy 2005

 Prados and Faugeras, CVPR’05.

• The problem becomes well-posed but the variational approach 
assumes constant albedo, which is limiting. 

• Can we take advantage of deep learning to overcome this 
problem? 
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 term is incorporated in the renderer and makes the problem well-posed by 
relating depths, albedos, and pixel intensities. 

—> The training is fully self-supervised.  

1/d2

Losses

LightDepth Albedo prediction

Depth prediction

Rendered view

Depth 
decoder

Encoder Albedo 
decoder

RGB image

Normals from depth

 Puigvert et al. ICCV’23.

Endoscopy 2023
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Rendered 3D 
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depth 
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Network Architecture

LightDepth U-Net
or 

LightDepth DPT

Differentiable 
Rendering

Depth2Normal

Rendered 3D 
reconstruction

albedo

depth

normals

encoder
(ResNet)

albedo 
decoder

depth 
decoder

LightDepth DPT

Embed
(Resnet)

transformed
tokens

Albedo 
Transformer

Depth 
Transformer

tokens

transformed
tokens

Reassemble

FusionReassemble

Fusion

skip connections

LightDepth U-Net

Head

Head

Convolutional Transformer
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Colonoscopy Images
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Gastroscopy Images

Image Synthesized Albedo

Normals Depth
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Automating Intubation

Goal:  
• Provide real-time automated guidance. 
• Enable a broader range of personnel to perform one in an 
emergency.   
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Phantom Reconstructions

Real Image Synthetic Image Depth
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Photometric Stereo

Given multiple images of the same surface 
under different known lighting conditions, can 
we recover the surface shape? 

– Yes! (Woodham, 1978). 
– This gave rise to an early and still practical 

application of computer vision. 

 

b1
b2

b3

 s1
 s2

 s3
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Basic Idea

• Take several images under different 
lighting conditions. 

• Infer the normals from the changes in 
illumination. 

• Given at least three different lights, there 
are no more ambiguities. 
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One Single Light Source

 Many potential normals for each image point. 
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Two Light Sources

 Still some ambiguities. 
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Three Light Sources

No more ambiguities even if the albedo is unknown. 



I = ↵(L ·N) = (L ·M)

2

4
I1
I2
I3

3

5 =

2

4
L1

L2

L3

3

5M

N =
M

||M||
↵ = ||M|| 67

Algebraic Formulation

Lambertian model: 

Three light sources:
I = ↵(L ·N) = (L ·M)

2

4
I1
I2
I3

3

5 =

2

4
L1

L2

L3

3

5M

N =
M

||M||
↵ = ||M||

 Unknown 3 vector that can be estimated by 
solving a 3x3 linear  system.   

 N and a can then be inferred from M.  
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Using More Lights

One can use as many lights as one wants:

€ 

I = LM,  with I =

I1
:
In

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 and L =

L1

:
Ln

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⇒ LtLM = LtI (Least - squares solution)

—> This is known as an over-constraint problem and, the 
more camera, the more robust to noise the solution is.
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Discounting Shadows

• Shadowed pixels for a given light source position do 
not conform to the model. 

• Premultiplying by the intensities reduces their 
contributions because their intensities tend be lower.

  

€ 

I1 0 0
0 ! 0
0 0 In

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
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I1 0 0
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0 0 In

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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Synthetic Sphere Images
Five different light sources:

Recovered albedo Recovered surface normals
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Scanning Michel Angelo’s Pieta

• One camera and five light sources. 
• The positions of the light sources w.r.t. the camera are 

exactly known.
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Full 3D Model

• This was done for the whole statue. 
• All the fragments were then “glued” together.  
—> A full 3D model that can be visualized from any viewpoint 
and under any illumination conditions. 

 Normals  Shaded surface  Full rendering
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Optional: Shape from Specularities

 Chen et al., CVPR 2006

•Move the light around and compute its position each time. 
•Find the bright spots and the image and assume they are secularities.  
•Infer the normals at those points.  
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Optional: Shape from Specularities

 Chen et al., CVPR 2006

 

• Excellent precision can be achieved because the secularities are very 
sensitive to the exact normal direction.  
• However, this only works well for shiny, that is, highly specular, objects. 
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Deep Photogrammetric Stereo

• Build an observation map at each pixel.  
• Each map pixel represents an observation under an illumination 
direction defined on a unit-hemisphere. 

Ikehata, ECCV’18
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Deep Photogrammetric Stereo

• Observation maps as input to a CNN.  
• Take the relationship between neighboring pixels into account. 

Ikehata, ECCV’18



77

Optional: Bring in the Transformers

Ikehata, ICCV’23
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Optional: ConvNeXt-4D 

4D
 C

N
N

d7x7x1x1, 96

1x1x1x1, 384

1x1x1x1, 96

LN

GELU

96-d

d1x1x7x7, 96

ConvNeXt-4D
block

Depth-wise conv. over
photometric dimensions
Depth-wise conv. over
spatial dimensions

LN

2x2, 192
stride 2,2

96-d

192-d

192-d

LN

2x2x1x1, 192
stride 2,2,1,1

96-d

1x1x1x1, 192
stride 1,1,1,1

d7x7, 96

1x1, 384

1x1, 96

LN

GELU

96-d

Standard ConvNeXt
block

down-sampling down-sampling

Photometric dimensions
down-sampled

Spatial dimension kept
at the same resolution

d7x7x1x1, 96

1x1x1x1, 384

1x1x1x1, 96

LN

GELU

96-d

d1x1x7x7, 96

ConvNeXt-4D
block

Depth-wise conv. over
photometric dimensions
Depth-wise conv. over
spatial dimensions

LN

2x2, 192
stride 2,2

96-d

192-d

192-d

LN

2x2x1x1, 192
stride 2,2,1,1

96-d

1x1x1x1, 192
stride 1,1,1,1

d7x7, 96

1x1, 384

1x1, 96

LN

GELU

96-d

Standard ConvNeXt
block

down-sampling down-sampling

Photometric dimensions
down-sampled

Spatial dimension kept
at the same resolution

▪ Leverages both spatial and photometric 
context in every layer 
▪ Input: Arbitrarily large patches of 

 observation maps 
▪Output: Patches of normals

Honzátko, arXiv’24
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Optional: Two-Stage Training

• Pre-train ConvNeXt as a per-pixel method. 
• Fine-tune ConvNeXt-4.

d7x7x1x1, 96

1x1x1x1, 384

1x1x1x1, 96

LN

GELU

96-d

d1x1x7x7, 96

ConvNeXt–4D block

Pre-trained

Pre-trained

Pre-trained

Dirac

d7x7, 96

1x1, 384

1x1, 96

LN

GELU

96-d

ConvNeXt block
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Optional: Online Rendering 
using Mitsuba3 ray-tracer

• ABC dataset with 10e6 objects 
• Possibility to use custom dataset of objects relevant for 

particular application 
• Infinite number of BRDFs (e.g. Disney, MERL, RGL, NBRDF, 

Plastic, Metallic, …) 
• No spatial limitation 

➡ Designed a PS path tracer that renders 8 illums. at once
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Optional: BenchMarking

Method Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Average

Lambertian 4.1 8.4 14.9 8.4 25.6 18.5 30.6 8.9 16.7 19.8 15.4

PS-FCN 2.8 7.6 7.9 6.2 7.3 8.6 15.9 7.1 7.3 13.3 8.4

Attention-PSN 2.9 4.9 7.8 6.1 8.9 8.4 15.4 6.9 7.0 12.9 7.9

CNN-PS K=10 
(EECV 2018)

2.2 4.1 7.9 4.6 8.0 7.3 14.0 5.4 6.0 12.6 7.2

PX-NET K=10 
(ICCV 2021)

2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2

U-NET 4D K=12 
(3DV 2021)

2.0 3.5 6.9 4.4 4.8 6.7 12.6 4.8 4.6 12.0 6.2

SDM-UniPS  
ICCV 2023

1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8

ConvNeXt-4D 1.8 3.6 6.2 3.9 5.1 7.1 12.8 4.8 4.6 8.0 5.8
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Shape-from-Shading in Short 
Traditional Shape-from-Shading requires strong assumptions: 

• Constant or piece-wise constant albedo 
• No interreflections 
• No shadows 
• No specularities 

➡ In a single image context, it is most useful in conjunction with other 
information sources.  

➡  These assumptions can be relaxed when the light-source is nearby or 
when using multiple images.  


