Reminder: A Teachable Scheme
oot |
_ seememerormien |

Decomposition of the vision process into
smaller manageable and implementable

steps.
--> Paradigm followed in this course

--> May not be the one humans use
EPFL
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Shape From X

e One image:
¢ Shading
e Texture

e Two images or more:
e Stereo
e Contours
e Motion
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Shading

e Shading models
e Shape from shading

e Variational Methods
e Deep Learning Methods
e Photometric Stereo



Bump Mapping
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Flat and smooth surface. Bumpy sufrace. Sides of the
All areas appear bright bump appear darker

Simple mesh + 2D bump map = Complex looking object



Lambertian Half-Sphere

Gray level changes are interpreted as changes in
the direction of the surface normal.



Solving an Inverse Problem

e Shading gives information about surface normals.

e Recovering the 3D surfaces amounts to solving a
differential equation.

—>Boundary conditions are required to do so.



Boundary Conditions

—> The carefully designed contour gives
Us an erroneous perception!



Reminder: Image Formation

e The light source illuminates a 3D surface.
e The 3D surface reemits some the light.
e It goes through a lens and forms an image on the image plane.

=PrL



Reminder: Fundamental Radiometric Equation

Scene Radiance (Rad): Amount of light radiation
a surface point (Watt / m2 / Steradian)

emitted from

Image Irradiance (Irr): Amount of light incident at the image

of the surface point. (Watt / m2)

Image intensity

d
Irr = %(—)20084(05)Rad ,

VA

:>®o< Rad ,

when the camera is photometrically calibrated.
=PrL




Lambertian Shading Model

* The amount of light radiation P
in the cylinder of section da n

direction /. 1s spread over the

/ surface area dA.
da = cos(a)dA

cos(a)= L - N
 Some light 1s absorbed (0 <
Illuminated surface albedo < 1).
Radiance: Rad « albedo P/dA
P « da
da

= P x albedo—
dA

“PEL P « albedo . - N
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Ideal Lambertian Surface

|

/Y / |

= mz;x(O,albedo L - N>)

No negative light!

11

Perfectly matte surface: The radiance depends
only on angle of incidence and not on viewing
direction. This is known as diffuse reflection.

L



Estimated Albedo

L-N

|
*

Original 1mage.

—> The “albedo 1mage looks much flatter
than the original one.



Diffuse vs Specular

Diffuse reflection Specularities

Shadow

Real-world surfaces are not really Lambertian!
=PFL
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Specularities

At specular points Lambertian assumptions are violated.

The surface behaves like a mirror.

This is known as specular reflection.

Most surfaces are a combination of diffuse and specular reflectors.



Mirror-Like Behavior

1| = |e .@

Specularities occur when the two directions are symmetric
with respect to the normal.

If the light source direction is known, they can be used to
infer the normals.



Radiance under Indirect Lighting

e The light source is not visible. Yet there still is light.

e The light enters through the windows and bounces
=pr=  Of the walls.



Visualizing Secondary lllumination

Reflections produce
indirect lighting.

!

Unique light source
assumption doe not
allow correct albedo

reCovery. Lambertian Lambertian
shading albedoes

This 1s not right!
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Simplifying Assumptions

X, pS

e Accounting for secondary illumination in the computer vision
context remains an open research problem.

o We will mostly ignore it in this class and make the following
assumptions.

- The illumination sources are distant from the imaged
surfaces.

- Secondary illumination is not significant.

- There are no cast shadows.
P-L



Ideal Synthetic Case

Goal:
 Recover the 3D shape of the head from the 2D image.

Questions:
1. Given the surface normals, can we recover the surface?
2. Can we recover the normals?



Monge Surface

A Monge surface 1s defined by z = {(x,y).
Not all surfaces can be represented this way.




Surface Normals

f(z,y)
02

0x
0z




Tangent Vectors

f(z,y)
02

0x
0z




Shape from Normals

EN

Normals 3D shape
Elevation and normal:
z=fx,y)
I s
N —q

_\/1+p2+q2 1

Orthographic projection:



Re-Parametrization

Perform a change of variables z = f(u,v) where u and v
are 1mage coordinates.




Shape From Normals (1)

Since u = sx and v = sy, the normal vector N 1s
SR

ZX 1 _g
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Shape From Normals (2)

e Let us assume we are given the normal at each pixel (u,v).

o Letny(u,v) = — n(u,v)/nu,v) and ny(u,v) = — n(u, v)/n(u,v).
e From the previous slide, we have
07

nu,v)=—=zu+ 1,v) —z2(u,v)

ou
Yu,v _
07

ny(u,v) = ~Z(u,v+1)—ZzZ(u,v)

v

* We therefore have roughly twice as many equations as we have
unknowns, the scaled distances z(u, v).

 This can be solved in the least squares sense.

—> (G1ven the normals at every pixel we can recover the distances up
to a scale factor.

PFL But how do we get the normals?
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Back to Estimating the Normals

|

s o= Sy

0% \

P = @
_
4 = Ov

V

What does the image tell us about them?
=PFL



Reflectance Map

In the Lambertian case and for a constant albedo:

—

I(u,v) x L - N

L+ [pla) — qten]’
x Ref(p(u,v), g(u,v))

e The function Ref is known as the reflectance map.
e For non-Lambertian surfaces it can be more complex.
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Lambertian Reflectance Map

Reflectance map and shaded surface for Lambertian
surface illuminated in the direction [-1 -0.5 -1].

=PrL



Earth Seem from the Moon

Apollo 8, 1968.



Lambertian Reflectance Map

Reflectance map and shaded surface for Lambertian
surface illuminated in the direction [0 0 -1].

=PrL



Lambertian Reflectance Map

Reflectance map and shaded surface for Lambertian
surface illuminated in the direction [1 0.5 -1].

=PrL



Inverse Problem

Can we determine (p,q) uniquely for each image
point independently?

N

[=Ref(p,q)

No because many p and q yield the same Ref(p,q).
—> Global optimization required.

m

PFL



Variational Method (1)

Minimize:

/] (Inu,v)Ref(p,q)FH

op 2 op 2 0q : 0q : op  dq 2
(@) *(%I +(—u> *(%) *“I%‘@ dude

A A A
I I I
Data term Smoothness term Integrability term
5 ) 2
ﬁ B i 07z

v du  dudv

1. Recover the normals and make them integrable.

2. Integrate to recover the 3D surface.
=PrL



Variational Method (2)

—
Minimize:
52 0z 522\ 522 \° 522\ °
A
I |
Data term Smoothness term

- Recover the surface directly, which means solving a second
order differential equation instead of a first order one.

 Both approaches are valid and require boundary conditions.

=PrL



Moonscape

Moon image Depth map
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Faces from Shading

e Generic Monge surface
e Low resolution images

Prados and Faugeras, CVPR’05.

* Deep face model
* High resolution images

P-L Bagautdinov et al. , CVPR’18.
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T-Shirt

input image SIRFS

Works because the albedo is constant!

Barron & Malik, PAMI’15



Combining Stereo and Shading

Stereo Only Stereo + Flow

Shape-from-shading can be
used in conjunction with other
modalities to refine the shape
and provide high-frequency
details.

We will come back to this when
we talk about stereo and
motion.

Valgaerts et al. SIGGRAPH Asia’12



From Variational to Deep

NORMAL

normal map MAP depth map
STREAM
decoder — E—— E—
(224 x 224 x 3) (224 x 224 x 1)
input image
latent depth map I?,IE\I:,TH
representation STREAM
encoder A decoder —p

(7x7x256)

(224x224x 1)

(224 x 224 x 3)
MESH

STREAM

mesh

(31x31x3)

The deep net is trained to:
e produce both a depth map and a map of normals,
eensure they are consistent with each other.

—> Can be understood as another way to solve the variational problem.

=PrL Bednarik et al. , ECCV’18



Improved Results

input image Deep SIRFS

The deep net recovers more details ......
...... but requires training data.



Reminder: Ambiguities

Back where we started.
Let us look at them more closely.



Bas-Relief Ambiguity

Looks like a normal human head ... ... but not when seen from the side.

Why is that?



Bas-Relief Ambiquity

By moving the light source, it is possible to produce
the same image for different 3D shapes.



Bas-Relief Ambiguity Explained (1)
Ref =N - L

For any invertible 3x3 linear transformation A:

(AN) - (A7'L) = (AN)"(A'L)
= NTATA™TL
= N'L
=N-L
In theory, applying A to the normals and A-! to the light source would

not change the 1image.

However, the normals must remain integrable, which means that not all
transformations of the normals are valid.

In particular, for a Monge surface z = f(u,v), we must have

dz Oz
& _ & _ 522
O ou  Ouov



Bas-Relief Ambiguity Explained (2)

Let us write the integrability constraint in our specific case:

5 ny ) ] y n. n

Su = Tt 6% 6ot z 7|
4 S zZ N

5. i (T 5o T Tou with | ny, | = A | ny

o< = -z *

ov nt J - n, | Ny

1 0 O
= A restrictedto |0 1 O
u v A

—> The surface f(u, v) can be changed into
AM(u,v) + pu + vv and still produce the same
1mage.

=PrL




Convex/Concave Ambiguity

It can happen even when the light source is
known!



Convex/Concave Ambiguity

All four profiles will produce the same image
under the illumination shown here.

The SfS problem under orthographic projection
with a distant light-source is ill-posed.
=PFL



Making the SfS Problem Well-Posed

Use perspective projection model.
Radiance depends on distance to light source:
Albedo- (N * S)
I = 2
d

instead of

I = Albedo- (N * S)
Light source located at the optical center.

-> Unique solution but more complex computations.

m

Pr-L Prados and Faugeras, CVPR’05.



Endoscopy

=Pr-L



Endoscopy 2005

* The problem becomes well-posed but the variational approach

assumes constant albedo, which is limiting.

- Can we take advantage of deep learning to overcome this

m

problem?

Pr-L Prados and Faugeras, CVPR’05.



Endoscopy 2023
f LightDepth_\

Albedo

decoder \
Depth

l decoder

[ o J - J B

_ .

- J —

T

1/d 2 term 1s incorporated in the renderer and makes the problem well-posed by
relating depths, albedos, and pixel intensities.

—> The training is fully self-supervised.
=Pr-L Puigvert et al. ICCV’23.



Network Architecture

LightDepth U-Net
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Colonoscopy Images



Gastroscopy Images

Image Synthesized Albedo

Normals Depth



Automating Intubation

Goal:

* Provide real-time automated guidance.

* Enable a broader range of personnel to perform one in an
emergency.



Phantom Reconstructions

Real Image Synthetic Image Depth



Photometric Stereo

s15 AR 825

Given multiple images of the same surface
under different known lighting conditions, can
we recover the surface shape?

— Yes! (Woodham, 1978).

— This gave rise to an early and still practical
application of computer vision.
=PFL
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Basic ldea

L

\\\\\

Take several images under different
lighting conditions.

Infer the normals from the changes in
illumination.

Given at least three different lights, there
are no more ambiguities.

1




One Single Light Source

Many potential normals for each image point.

=PrL



Two Light Sources

Still some ambiguities.



Three Light Sources

No more ambiguities even if the albedo is unknown.



Algebraic Formulation

Lambertian model:

I = «aL-N)= (L -M)
Three light sources:

Unknown 3 vector that can be estimated by

solving a 3x3 linear system.

I L /
I — L, | M
M
N —
M|
a = ||M]]



Using More Lights

One can use as many lights as one wants:

I=LM, with I =
I

_Il_

L n

= L'LM = L'T (Least - squares So!

and L =

_Ll_

L

L n

ution)

—> This 1s known as an over-constraint problem and, the
more camera, the more robust to noise the solution is.

m

PFL



Discounting Shadows

e Shadowed pixels for a dqiven light source position do
not conform to the model.

. Prem_ultiplyin% by the intensities reduces their
contributions because their intensities tend be lower.

m
U
"1
r



Synthetic Sphere Images

Five different light sources:

Recovered surface normals

Recovered albedo



Scanning Michel Angelo’s Pieta

e One camera and five light sources.

e The positions of the light sources w.r.t. the camera are
exactly known.
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Full 3D Model

Normals Shaded surface Full rendering

e This was done for the whole statue.
o All the fragments were then “glued” together.

—> A full 3D model that can be visualized from any viewpoint
Pl and under any illumination conditions.



Optional: Shape from Specularities

eMove the light around and compute its position each time.
oFind the bright spots and the image and assume they are secularities.

. .
CPEL Infer the normals at those points. Chen et al.. CVPR 2006



Optional: Shape from Specularities

e Excellent precision can be achieved because the secularities are very
sensitive to the exact normal direction.

* However, this only works well for shiny, that is, highly specular, objects.

=Pr-L Chen et al., CVPR 2006



Deep Photogrammetric Stereo

Build an observation map at each pixel.

Each map pixel represents an under an illumination
direction defined on a unit-hemisphere.

=Pr-L Ikehata, ECCV’18



Deep Photogrammetric Stereo

Observation maps as input to a CNN.
Take the relationship between neighboring pixels into account.

P-L Ikehata, ECCV’18



Optional: Bring in the Transformers

L
r Ikehata, ICCV’23



Optional: ConvNeXt-4D

= | everages both spatial and photometric
context in every layer

= Input: Arbitrarily large patches of
observation maps

= Output: Patches of normals

{ Standard ConvNeXt ConvNeXt-4D
block block

LN
GELU

é 192-d 1x1x1x1, 192 Spatial dimension kept
stride 1,1,1,1 at the same resolution
v

2x2x1x1, 192 Photometric dimensions
down-sampled

=pEL Honzatko, arXiv’24



Optional: Two-Stage Training

ConvNeXt block ConvNeXt—4D block
d7x7, 96 | |Pre-trained | d7x7x1x1, 96 |
|
Dirac [ | | d1x1X7x7, 96 |
\ ‘ o J
\/ 1x1, 384 \\— ! Pre-trained | 1x1x1x1, 384 \
\ ‘ G / ) GELU
\/ 1x1, 96 % ~ Pre-trained | 1x1x1x1, 96 |
\ \
“/,» ‘J" ~ \\“} “’/,» j" ~ \\\:

e Pre-train ConvNeXt as a per-pixel method.
e Fine-tune ConvNeXt-4.



Optional: Online Rendering

using Mitsuba3 ray-tracer

* ABC dataset with 10e6 objects

* Possibility to use custom dataset of objects relevant for
particular application

* Infinite number of BRDFs (e.g. Disney, MERL, RGL, NBRDF,
Plastic, Metallic, ...)

* No spatial limitation

= Designed a PS path tracer that renders 8 illums. at once



=PrL

Optional: BenchMarking

PS-FCN 15.9 13.3
Attention-PSN 6.1 154 12.9




Shape-from-Shading in Short

Traditional Shape-from-Shading requires strong assumptions:

e Constant or piece-wise constant albedo
e No interreflections

e No shadows

e No specularities

= In a single image context, it is most useful in conjunction with other
information sources.

= These assumptions can be relaxed when the light-source is nearby or
when using multiple images.



