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Shape from X

• One image: 
• Shading  
• Texture 

• Two images or more: 
• Stereo 
• Contours 
• Motion
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Edge-Based Stereo

Matching edges yields stereo information but 
• Potential ambiguities 
• Edge detection is unreliable
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EARLY STEREO APPROACH

• Pro: 
▪ Little computational power required. 

• Con:  
▪ Very ambiguous. 

• Partial remedy: 
▪ Use three or more images to disambiguate.   

Original segments Matched segments

Medioni & Nevatia, CVGIP’85
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Modeling a Building

• The deformable model 
encodes the endpoints of 
the segments.  

• Once it has been adjusted, 
the 3D shape of the 
building is known. 
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Modeling a Ridge Line in 3D

Three different views

Synthetic side view. 
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Automated Driving

Detecting road markings. 
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Different Types of Contours

Depth discontinuity contours Occluding contour

• Depth discontinuity contours have well defined 3D locations.  
• Occluding contours do not and depend on viewpoint. 
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Occluding Contours

Silhouettes let us carve the space:  
• on one side is the object,  
• on the other empty space.
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Line of Sight

The line of sight is tangent to the surface. At one point at 
least: 

• The distance to the line of sight is zero 

• The surface normal is perpendicular to it.
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Combining Stereo and Silhouettes

• Using stereo only, the sides of the face are not accurately 
reconstructed.  

• This can be improved by using the silhouettes. 
Ilic et al. , CVPR’05
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Combining Stereo and Silhouettes

—> Accurate 3D reconstruction even from very low resolution 
noisy images. 
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Augmented Reality

• Track feature points on page 
• Fit page boundary 
• Detect and use silhouettes when they appear. 
• Replace original texture. 
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Robustness to Occlusions

• Because we use several sources of information 
simultaneously, the algorithm is robust to occlusions.  

• This is a general principle. In a practical algorithm, 
you want redundancy. 



Baseball and Bat

14Ngo et, al. PAMI’16
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Modeling from many Photographs

Hernandez et al., CVIU’04
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Image Acquisition
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Visual Hull from One Image

• Silhouettes let us carve the space, on one side is 
the object and on the other empty space. 

• A closed image contour defines a cone inside which 
the object must be.  

• Everything else can be safely removed. 
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Visual Hull from Two Images

The object must be within the intersection of the two cones 
defined by each individual silhouette.  
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Visual Hull from Many Images

Octree volume Mesh Simplified mesh
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Levels of Detail

Real ObjectVisual HullConvex HullBounding box
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Visual Hull in 2D

Concavities are lost
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Visual Hulls in Real Time

M. Niskanen et al. BMVC’05



23

Background Subtraction

Visual hull
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Using Silhouettes

• Shapes inside the visual hull and such 
that the VH surface is tangent along 
viewing edges. 

• Better approximation of the observed 
object shape.

E. Boyer & J.S. Franco CVPR’03
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Visual Shapes
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Texture Mapping

… makes it look a lot better!
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Combining Stereo and Silhouettes

Real Surface Visual Hull Refinement
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Reconstruction Pipeline

Image  
Acquisition

Camera 
Calibration

Shape 
Refinement

Texture 
Mapping

Visual 
Hull
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Circular Camera Motion Calibration

Parameters to be estimated:

θ

Rotation axis

translation

angles

Focal distance

Principal point

–Rotation axis 
–Translation 
–Rotation angles 
–Focal distance 
–Principal point 
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Influence of Calibration

Correct Calibration            Decalibrating

When the cameras are ill calibrated: 
• the cones become inconsistent, 
• the visual hull becomes smaller.
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Visual Hull Reprojection

⊆Silhouettes of 
 Visual Hull

Original 
Silhouettes

⊂ Original  
Silhouettes

Silhouettes of 
 Visual Hull

In theory:

In practice:

 Calibration heuristic:

Maximize overlap of the re-projected visual hulls 
and the silhouettes
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Maximizing the Overlap 

When the cameras are well calibrated the overlap of the 
reprojected visual hull and the original silhouettes is largest. 
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Overlap as a Function of The Rotation Axis
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Rotating Sequence
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Visual Hull
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Second Rotating Sequence
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Combining Two Sequences

• Estimate rigid motion + scaling. 
• Intersect the two visual hulls.  

RTS
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Reconstruction Pipeline

Image  
Acquisition

Camera 
Calibration

Shape 
Refinement

Texture 
Mapping

Visual 
Hull
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3-D Deformable Model

1.   Use the visual hull to initialize the model. 
2.   Maximize 

• color consistency, 
• silhouette consistency, 
• smoothness.
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Color Consistency 

• Define a 3D grid that encloses the object.  
• Each voxel in this grid that lies on the image should project to 

image points that have the same color.  
• This makes it possible to assign to each voxel a “color consistency” 

score. 
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Silhouette Consistency

The line of sight is tangent to the surface. At one point at 
least: 

• The distance to the line of sight is zero 

• The surface normal is perpendicular to it.
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Smoothness Measures
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Gradient Descent

b
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rEx : Derivative of corresponding energy term x.
� : Silhouette coe�cient.
� : Regularization coe�cient.
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Reconstruction

83241 vertices, 166482 triangles
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Reconstruction
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Laser Scanner vs Images

385355 vertices 
770209 triangles

233262 vertices 
466520 triangles

Minolta  
Laser  
Scanner

Silhouettes
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Reconstruction Pipeline

Image  
Acquisition

Camera 
Calibration

Shape 
Refinement

Texture 
Mapping

Visual 
Hull
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Texture Map

Norm

Colo (x,y,z

Surfac

Particl Color 

• The texture map is obtained by projecting individual surface 
points into the images and averaging their colors.  

• The reconstruction process ensures that these colors are 
consistent across images. 
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57639 vertices, 115282 triangles

Textured Reconstruction
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Textured Reconstruction

47159 vertices, 94322 triangles
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Texture Energy

The computation uses an octree to save memory. 



52

Generalization to Articulated Objects

Alldieck et al, CVPR’18
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Challenge

• The person is moving. 
• The visual hull algorithm expects static 

and silhouettes accurate silhouettes.   

—> Transfer to a canonic pose and use 
a deep net to find the silhouettes.
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Optional: Registering Visual Cones

Inverse Articulated Motion RayRay in Canonical Frame
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Optional: Objective Function

Prior Terms: 
- Symmetry 
- Prior on Shape 
- Surface 

Smoothness
Sum of point to line distances
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Optional: Reconstruction
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3D Surface Representations

High frequency details?

Arbitrary topology?

++

-+

-- +

+

Voxels Explicit surface mesh Point sets

Regularity? ++ -

++

++

Continuous implicit fields

++

There are many applications at which explicit representations excel: 
•  High-quality rendering in computer graphics. 
•  Precise modeling of biological structures from biomedical data. 
•  Computational fluid dynamics in computer assisted design. 

But: 
• Their topology is fixed. 
• They are not particularly deep learning friendly. 

—> Implicit Surface Representations
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Signed Distance Fields (SDF)

• Represent a 3D surface S by the zero crossings of a signed distance function 

 

• Such surfaces can easily change topology, which is harder to do with explicit 
surface representations.  

• SDFs  have long been appealing  in theory but hard to use in practice because 
it it was necessary to store the 3D values of f in a cube like structure until …. 

f: ℝ3 → ℝ
∀x ∈ ℝ3, f(x) is the signed distance to the surface. 
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Deep SDF

s = fθ(x)x = (x, y, z)

Single Shape DeepSDF

[Park et al., CVPR’19] 

s = fθ(x |C)

x

C

Coded Shape DeepSDF

C1 C2

C5C4

C3

C7C6
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Learning a Latent Representation

Train an auto-decoder using ShapeNet cars. 

FCs

 Marching
cubes

Shape 
Derivative

fθ( ⋅ , C) S(C)

Chamfer loss

C
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Non Differentiability of Marching Cubes

• Unfortunately, it is not differentiable and often slow.  
• This could be a problem for integration in a deep-learning pipeline.

If an explicit surface representation is required, one has to run a 
marching-cube style algorithm: 
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Deep SDF Pipeline

Forward pass: 𝒱, ℱ = mc(S), with fθ(vi |C) = 0, ∀vi ∈ 𝒮 .

∂L
∂C

= ∑
i

∂L
∂vi

∂vi

∂s
∂s
∂CBackward pass:

Loss function: L(𝒱, ℱ)

Vertices Facets

• A priori  cannot be computed because mc is not differentiable. 

• But,   is always a zero of s! 
• The implicit function theorem can be used to prove that   

- its derivative with respect to s exists; 

-  . 

∂vi

∂s
vi

∂v
∂s

= −
∇s(v)

∥∇s(v)∥2

[Guillard et al., PAMI’24] 



63[Remelli et al., NeurIPS’20] 

1.  Start with a Deep SDF code. 
2. Use marching cube to compute 
vertices and facets. 

3. Use them for the forward pass 
and for backpropagation. 

4. Update the SDF code and iterate.   

End-to-End Differentiable Pipeline

—> We can turn a genus 0 cow into a genus 1 duck by minimizing  a 
differentiable objection function. 



64

From Silhouettes to 3D Shapes

3D Model from Image

Editable 3D Model from Sketch
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Interactive Design
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Tight-Fitting Clothing

Compute deformation away from the body. 

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

Input SMPLicit ClothWild DIGOurs (raw) Ours (post ref.)

De Luigi, CVPR’23
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Clothed People from Images

•Model the clothes in terms of a distance  away from  implicit 
sewing patterns. 

•Add a deformation model to allow the garment to move away 
from the body. 

Li et al., CVPR’24
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Strengths and Limitations

Strengths: 
• Practical method for recovering shape. 
• Produces high quality texture maps. 

Limitations: 
• Silhouettes must be precisely extractable.  
• Requires many views or strong priors.


