Shape from X

e One image:
e Shading
o Texture

e Two images or more:
o Stereo
e Contours
e Motion

=PrL
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Edge-Based Stereo

Parceived
Object

Left Image Right Image

Left Eye Right Eye

Matching edges yields stereo information but
e Potential ambiguities
e Edge detection is unreliable
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Original segments

EARLY STEREO APPROACH

e Pro:

» Little computational power required.

e Con:
= Very ambiguous.
e Partial remedy:

» Use three or more images to disambiguate.

C&/Lob

Medioni & Nevatia, CVGIP’85 A




Modeling a Building

e The deformable model
encodes the endpoints of
the segments.

‘ e Once it has been adjusted,
@& e the 3D shape of the
sa@® building is known.
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Modellng a Rldge Llne in 3D
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Automated Dr

Detecting road markings.
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Different Types of Contours

e Depth discontinuity contours have well defined 3D locations.
e Occluding contours do not and depend on viewpoint.

EPFL @Lob




Occluding Contours

Right
Center of Projection

Left Image

. Left ,
Center of Projection

Silhouettes let us carve the space:
e 0N one side is the object,
e on the other empty space.

“PFL Qtab
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Line of Sight

»
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The line of sight is tangent to the surface. At one point at
least:

The distance to the line of sight is zero

The surface normal is perpendicular to it.

L (ab




Combining Stereo and Silhouettes

Images with extracted silhouettes Recovered shape with interest points Recovered shape with silhouettes and intr. pts

e Using stereo only, the sides of the face are not accurately
reconstructed.
e This can be improved by using the silhouettes.
PEL b llicetal., CVPR'05 4
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Combining Stereo and Silhouettes

Original Image Shaded no silh.  Textured no silh.  Shaded silh. Textured silh.
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—> Accurate 3D reconstruction even from very low resolution
noisy images.
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Augmented Reality

Original Textured Side View

e Track feature points on page

e Fit page boundary

e Detect and use silhouettes when they appear.
e Replace original texture.
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Robustnhess to Occlusions

Original Side View

e Because we use several sources of information
simultaneously, the algorithm is robust to occlusions.

e This is a general principle. In a practical algorithm,
you want redundancy.

EPFL Giad P -
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Baseball and Bat

Ngo et, al. PAMI’16 A
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Modeling from many Photographs

L @I Hernandez et al., CVIU’04 ‘E




Ml

Image Acquisition




Visual Hull from One Image

e Silhouettes let us carve the space, on one side is
the object and on the other empty space.

e A closed image contour defines a cone inside which
the object must be.

e Everything else can be safely removed.

“PFL Qtab ‘ﬁ




Visual Hull from Two Images

The object must be within the intersection of the two cones
defined by each individual silhouette.

“PFL Qtab



Visual Hull from Many Images
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Levels of Detalil

Bounding box Convex Hull

Visual Hull

Real Object

=PrL
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Visual Hull in 2D

A7

e
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Concavities are lost
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Visual Hulls in Real Time

EPEL Grod M. Niskanen et al. BMVC'05 g2




Visual hull

Background Subtraction
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Using Silhouettes

Shapes inside the visual hull and such
that the VH surface is tangent along
viewing edges.

Better approximation of the observed
object shape.

C&/Lob

E. Boyer & J.S. Franco CVPR’03 A




Visual Shapes

=PrL



Texture Mapping

... makes it look a lot better!

CVLob



Combining Stereo and Silhouettes

Real Surface Visual Hull Refinement

EPFL Ciab




Reconstruction Pipeline

Image Camera Visual Shape Texture
Acquisition |Calibration Hull Refinement  Mapping

=PrL (ab



Circular Camera Motion Calibration

Parameters to be estimated:

—-Rotation axis Rotation axis .
—-Translation
-Rotation angles

-Focal distance

-Principal point

“PFL Qtab



Influence of Calibration

Correct Calibration Decalibrating

When the cameras are ill calibrated:
e the cones become inconsistent,

e the visual hull becomes smaller.
“PFL Qtab




Visual Hull Reprojection

In theory:

Silhouettes of Q Original
Visual Hull Silhouettes

In practice:

Silhouettes of (_  Original
Visual Hull Silhouettes

- Calibration heuristic:

Maximize overlap of the re-projected visual hulls
and the silhouettes

P:: L C&/Lob
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Maximizing the Overlap

Vo @

image 00

image 09 image 18

When the cameras are well calibrated the overlap of the

reprojected visual hull and the original silhouettes is largest.
=PrL (ab




Overlap as a Function of The Rotation Axis

silhouette coherence criterion
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Rotating Sequence




Visual Hull

EPFL Ciab



Second Rotating Sequence




Combining Two Sequences

e Estimate rigid motion + scaling.
e Intersect the two visual hulls.

“PFL Qtab



Reconstruction Pipeline

Image Camera Visual
Acquisition Calibration Hull

Shape Texture
Refinement| Mapping

=PrL (ab



3-D Deformable Model

1. Use the visual hull to initialize the model.
2. Maximize

e color consistency,

e silhouette consistency,

e smoothness.

“PFL Qtab



Color Consistency

e Define a 3D grid that encloses the object.

e Each voxel in this grid that lies on the image should project to
image points that have the same color.

e This makes it possible to assign to each voxel a “color consistency”
score.

=PFL Qtab A




Silhouette Consistency

N
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The line of sight is tangent to the surface. At one point at
least:

The distance to the line of sight is zero

The surface normal is perpendicular to it.
P::L C&/Lob
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Smoothness Measures

Laplacian Biharmonic

C&/Lob AE
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Gradient Descent

vt = 0F + At(VEjer (VF) + BV E i (vF) + YV Epeg (vF))

VE, : Derivative of corresponding energy term x.
I5; . Silhouette coefficient.
ol .  Regularization coeflicient.

“PFL Qtab



Reconstruction

83241 vertices, 166482 triangles

C&Lob



Reconstruction




Laser Scanner vs Images

Minolta
Laser
Scanner
385355 vertices 233262 vertices
770209 triangles 466520 triangles
EPFL Gt P



Reconstruction Pipeline

Image Camera Visual Shape Texture
Acquisition Calibration Hull Refinement |Mapping

EPFL Gt P




Texture Map
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Particl Color
Norm
Surfac
Colo

e The texture map is obtained by projecting individual surface
points into the images and averaging their colors.

e The reconstruction process ensures that these colors are
consistent across images.

E P :: L CVLob




Textured Reconstruction

R o A A
e AVAYAY:
fﬂg ETANATA
o

57639 vertices, 115282 triangles
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Textured Reconstruction

47159 vertices, 94322 triangles

=PrL (ab
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Texture Energy

Octree levels GVF
0.00
0.05
0.11
0.16

- 021

0.26

0.32

0.37

0.42

0.47

0.53

0.58

063

068

0.74

0.79

0w 0 N O B W N =2 O

The computation uses an octree to save memory.
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Generalization to Articulated Objects

Alldieck et al, CVPR’18



Challenge

e The person is moving.

e The visual hull algorithm expects static
and silhouettes accurate silhouettes.

—> Transfer to a canonic pose and use
a deep net to find the silhouettes.

C@/Lob
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Optional: Registering Visual Cones

K =1
r = (Z wi.i G (0, Jﬁ)) r' — bpi().

/ k=1
\ J \
Y

Ray in Canonical Frame Inverse Articulated Motion Ray

EPFL Gt P




Optional: Objective Function
arg min Feons(8,d)

G,d
Prior Terms:
Edata — Z p(V X Tp — I'm) - Symmetry
(vir}EM - Prior on Shape
Sum of point to line distances - Surface
Smoothness

C&/Lob
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Optional: Reconstruction
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3D Surface Representations

Voxels Explicit surface mesh Point sets Continuous implicit fields

High frequency details? - ++ + ++
Arbitrary topology? + - + ++
Regularity? + + ++

There are many applications at which explicit representations excel:
e High-quality rendering in computer graphics.

e Precise modeling of biological structures from biomedical data.

e Computational fluid dynamics in computer assisted design.

But:
 Their topology is fixed.
e They are not particularly deep learning friendly.

—> Implicit Surface Representations
L C&/Lob



* Represent a 3D surface S by the zero crossings of a signed distance function
FR >R
Vx € R?, f(x) is the signed distance to the surface.

* Such surfaces can easily change topology, which 1s harder to do with explicit
surface representations.

* SDFs have long been appealing in theory but hard to use in practice because
it it was necessary to store the 3D values of f1n a cube like structure until ....

E P :: L CVLob



Deep SDF

C, C, C;
R ==
c, C. C,

7

C7
_ C
X =(x,y,2) s = fo(X) s = f(x| C)
X
Single Shape DeepSDF Coded Shape DeepSDF

E P F L Ci/Lob [Park et al., CVPR’19] A




Learning a Latent Representation
C

Marching

FCs Jo(+,C) ?Ubes S(C) \

Derivative

!

ﬁ@w 000

tlty

ff’&’”’ <~

tlty

@’O@ﬁ@

coupe . car utility sedan convertible

Train an auto-decoder using ShapeNet cars.

E P :: L Ci/Lob
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Non Differentiability of Marching Cubes

If an explicit surface representation is required, one has to run a
marching-cube style algorithm:

e N @ P

\

| h\

 Unfortunately, it is not differentiable and often slow.

* This could be a problem for integration in a deep-learning pipeline.




Deep SDF Pipeline

‘ Vertices ‘ ‘ Facets ‘
\‘

Loss function: L(7', %)

Forward pass: V,F = mc(S), with f(v.|C) =0,Vv, € §.

oL Z oL aVi os
oV

aC aViW oC
l

Backward pass: 3
. A priori rn cannot be computed because mc 1s not differentiable.
S
« But, v;is always a zero of s!

 The implicit function theorem can be used to prove that

- 1ts der1vative with respect to s exists;
ov Vs(v)

" o5 |[Vs(W|2

Ml
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End-to-End Differentiable Pipeline

1. Start with a Deep SDF code.

2. Use marching cube to compute
vertices and facets.

3. Use them for the forward pass

and for backpropagation.
4. Update the SDF code and iterate.

—> We can turn a genus 0 cow into a genus 1 duck by minimizing a
differentiable objection function.

rpr- -‘
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From Silhouettes to 3D Shapes

EIEdEd Ed * %

3D Model from Image

LT

& P o =

Editable 3D Model from Sketch
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Interactive Design
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Tight-Fitting Clothing

’W

Input Ours (raw) Ours (post ref.)

Compute deformation away from the body.

=PrL Crab De Luigi, CVPR’23




Clothed People from Images

eModel the clothes in terms of a distance away from implicit
sewing patterns.

eAdd a deformation model to allow the garment to move away
from the body.

=Pr-L GiLab Li et al., CVPR’24 ‘i




Strengths and Limitations

Strengths:
e Practical method for recovering shape.
e Produces high quality texture maps.

Limitations:
e Silhouettes must be precisely extractable.
e Requires many views or strong priors.
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