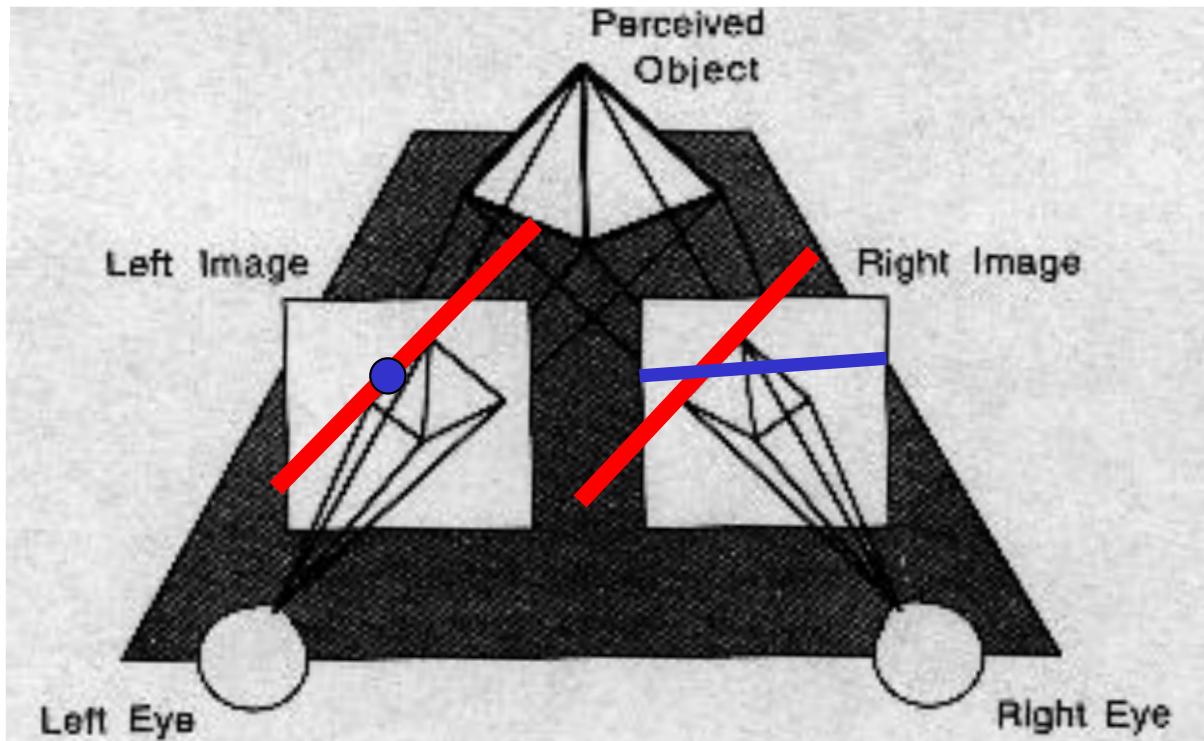


# Shape from X

- One image:
  - Shading
  - Texture
- Two images or more:
  - Stereo
  - **Contours**
  - Motion



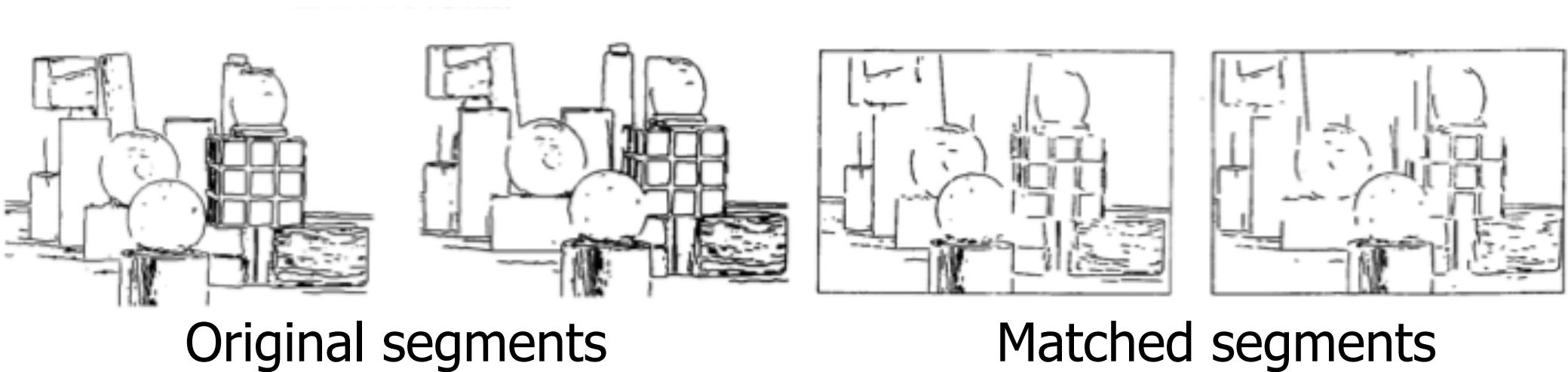
# Edge-Based Stereo



Matching edges yields stereo information but

- Potential ambiguities
- Edge detection is unreliable

# EARLY STEREO APPROACH



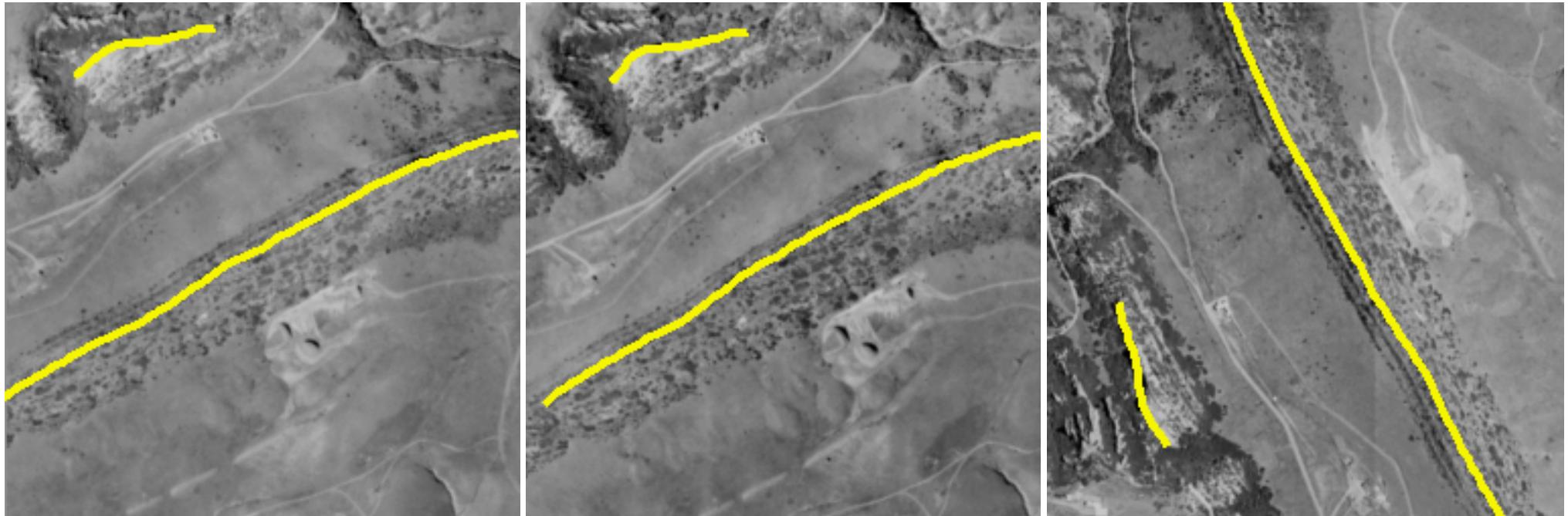
- Pro:
  - Little computational power required.
- Con:
  - Very ambiguous.
- Partial remedy:
  - Use three or more images to disambiguate.

# Modeling a Building

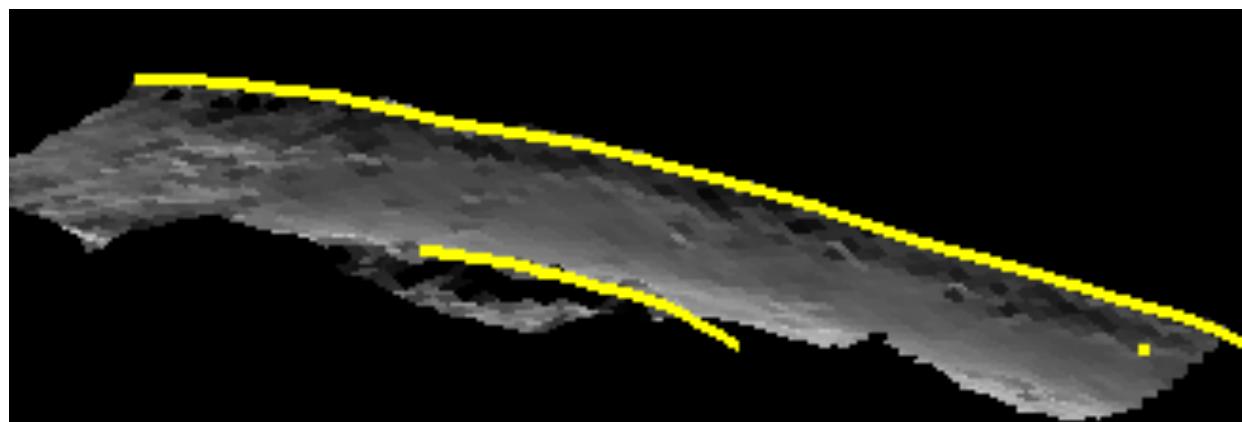


- The deformable model encodes the endpoints of the segments.
- Once it has been adjusted, the 3D shape of the building is known.

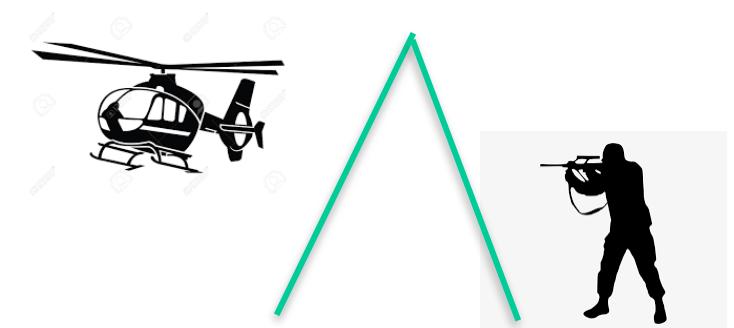
# Modeling a Ridge Line in 3D



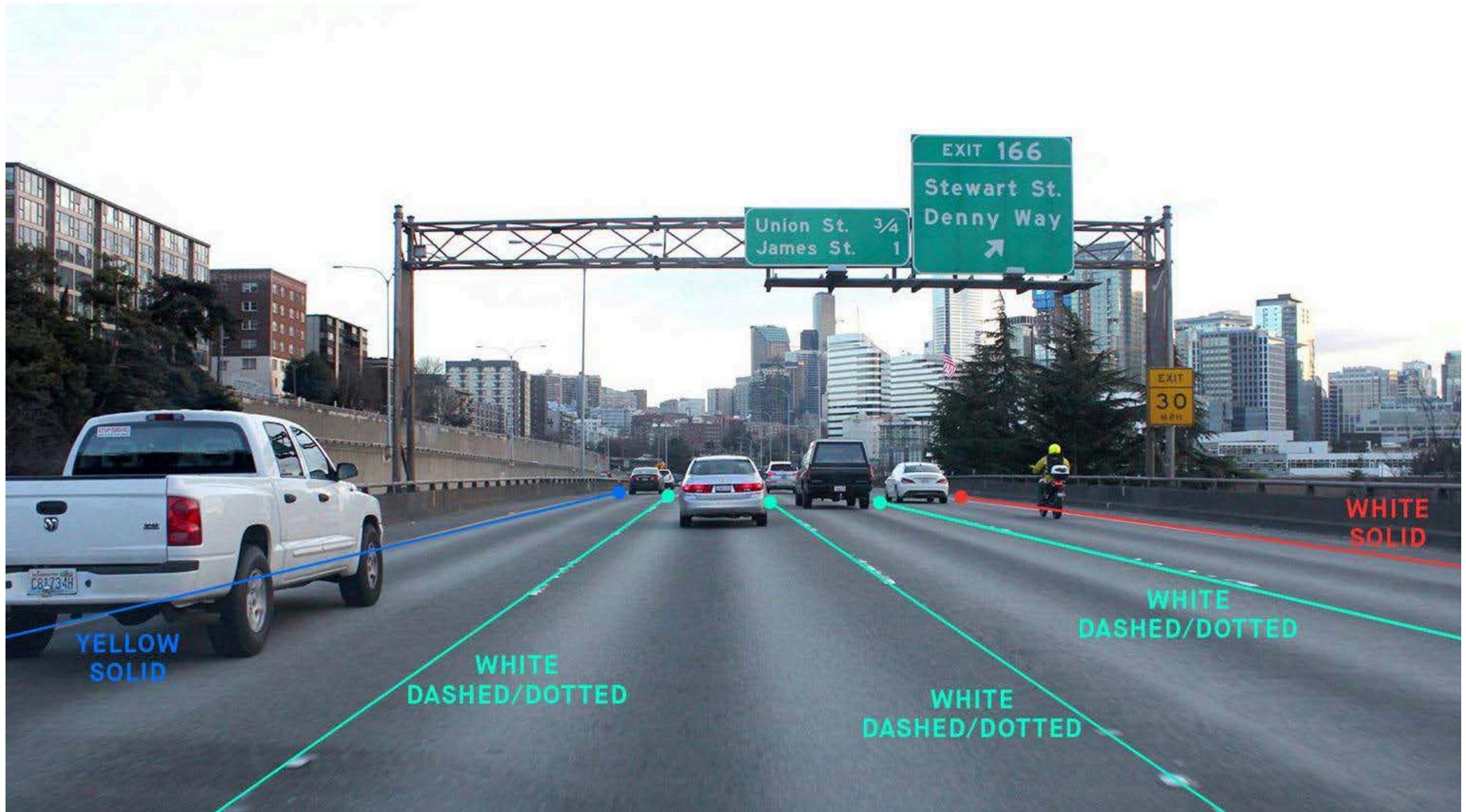
Three different views



Synthetic side view.



# Automated Driving



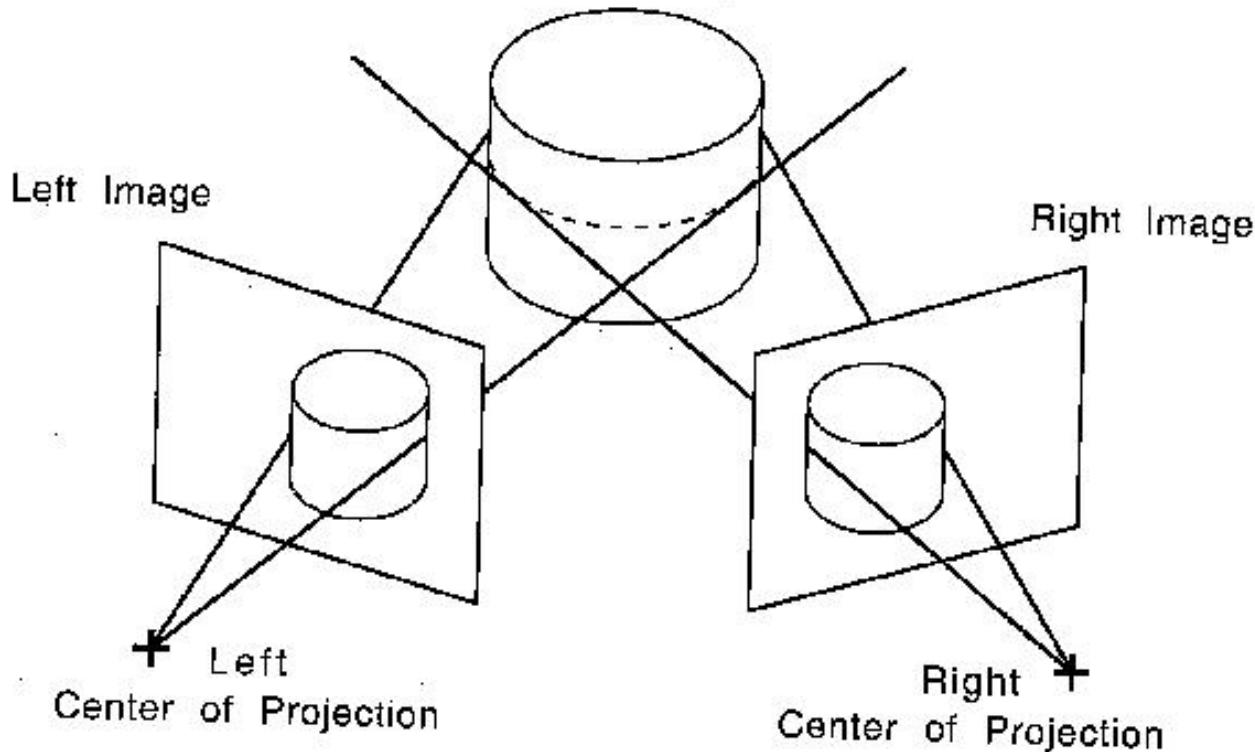
Detecting road markings.

# Different Types of Contours



- Depth discontinuity contours have well defined 3D locations.
- Occluding contours do not and depend on viewpoint.

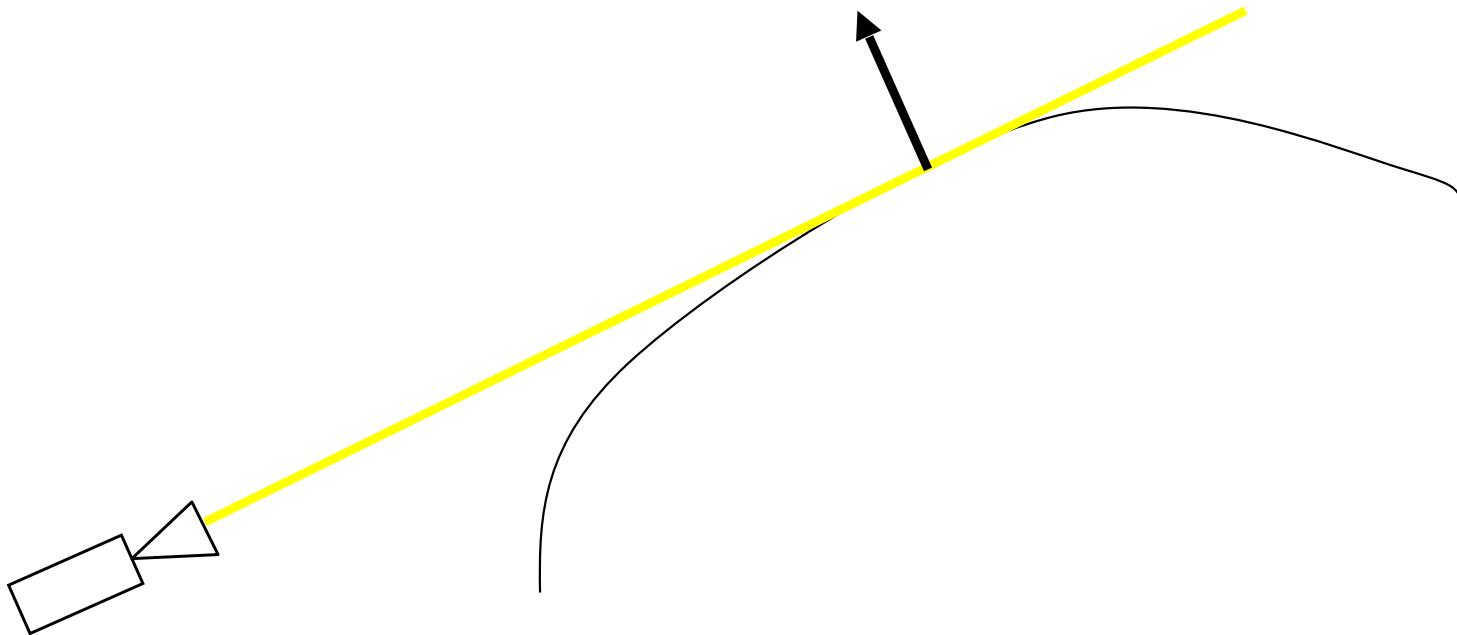
# Occluding Contours



Silhouettes let us carve the space:

- on one side is the object,
- on the other empty space.

# Line of Sight

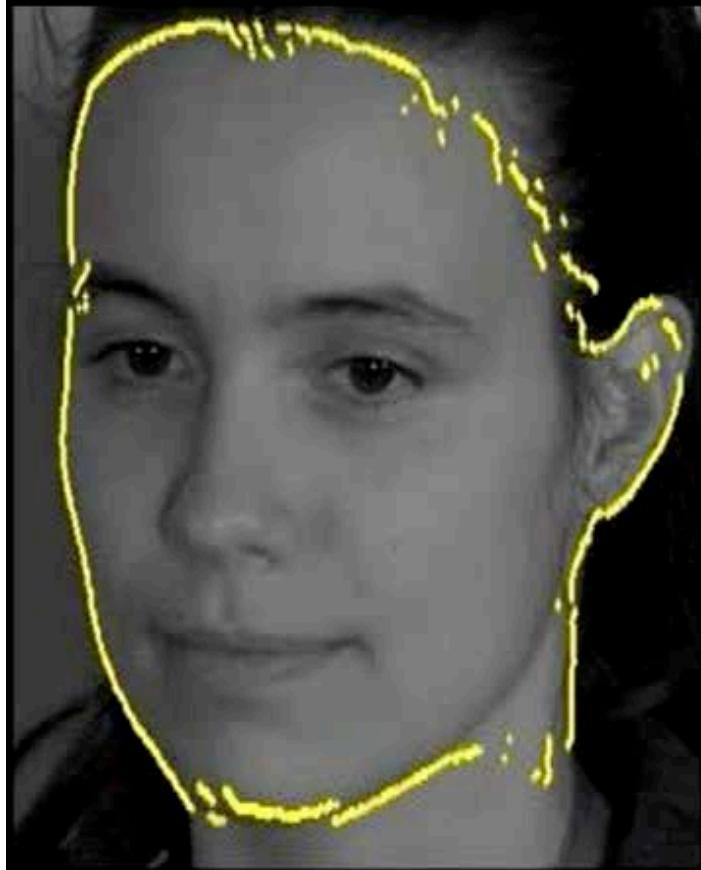


The line of sight is tangent to the surface. At one point at least:

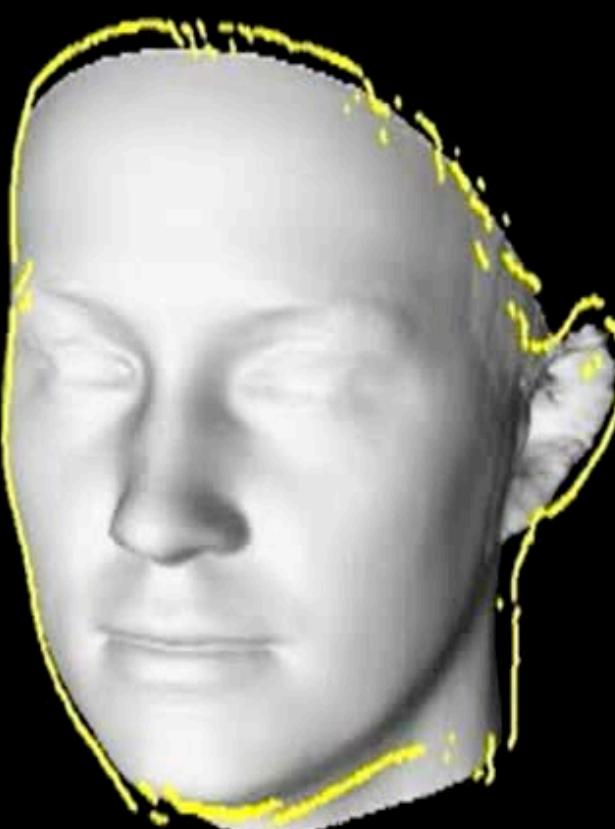
- The distance to the line of sight is zero
- The surface normal is perpendicular to it.

# Combining Stereo and Silhouettes

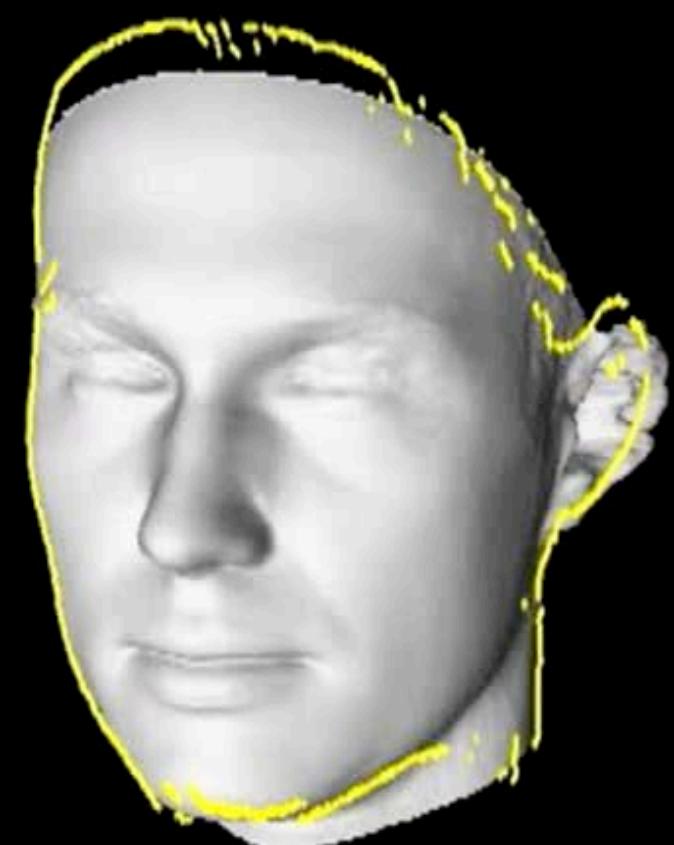
Images with extracted silhouettes



Recovered shape with interest points

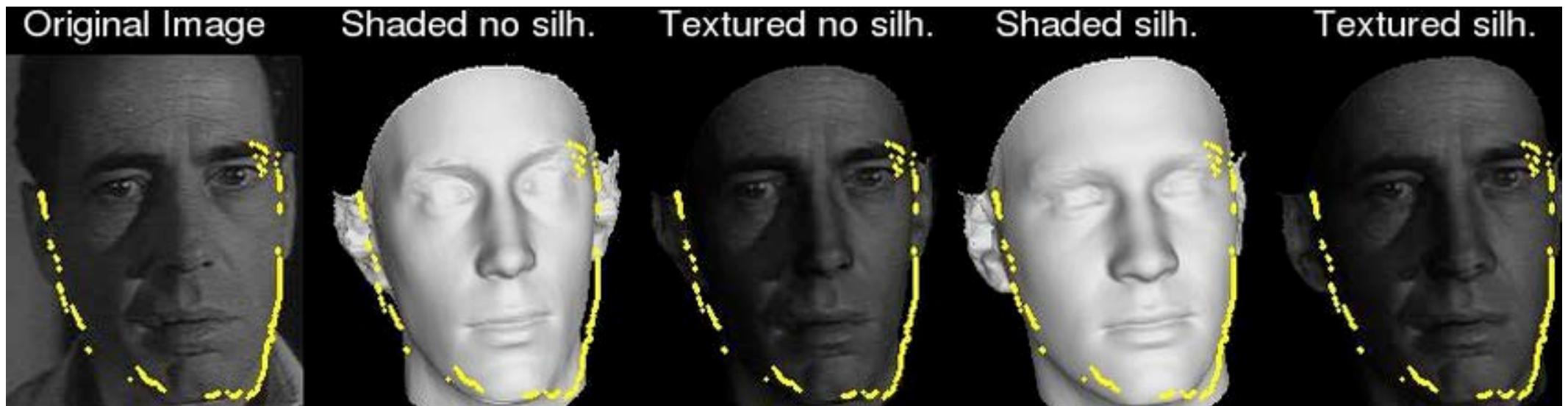


Recovered shape with silhouettes and intr. pts



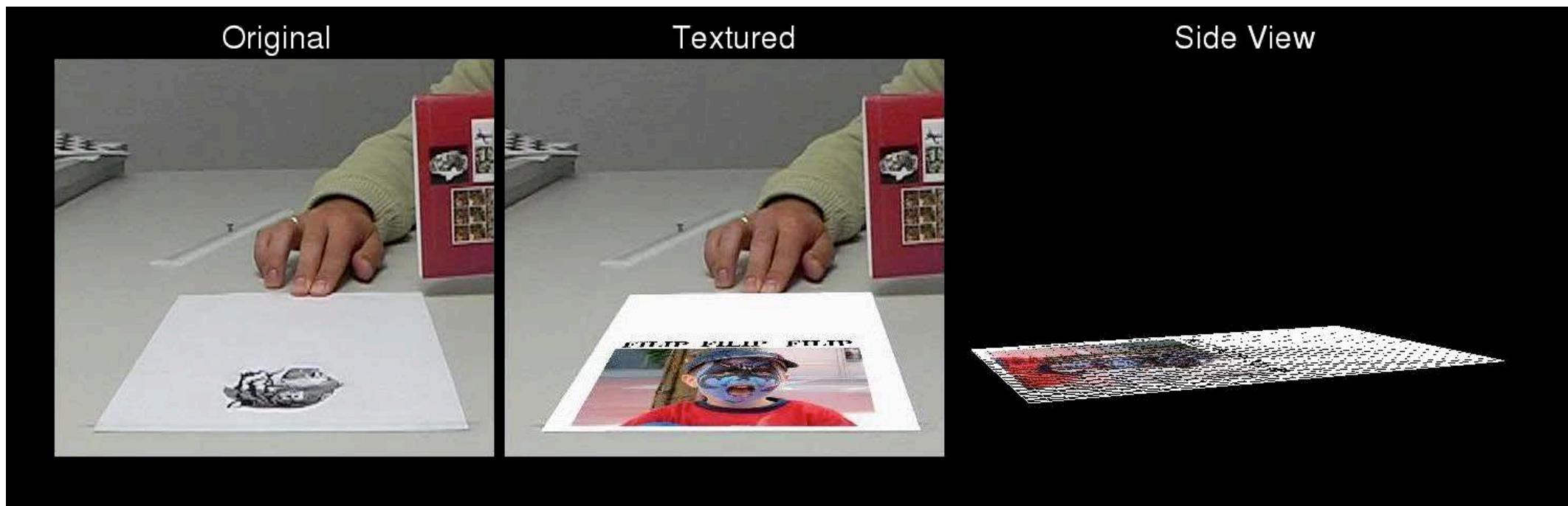
- Using stereo only, the sides of the face are not accurately reconstructed.
- This can be improved by using the silhouettes.

# Combining Stereo and Silhouettes



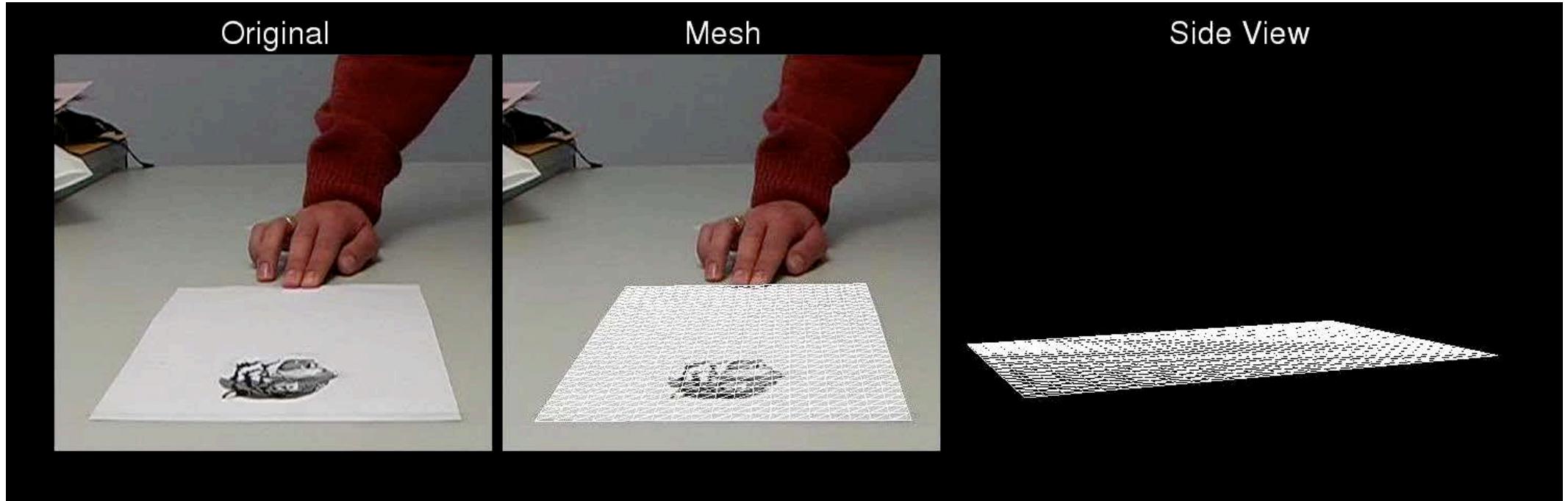
→ Accurate 3D reconstruction even from very low resolution noisy images.

# Augmented Reality



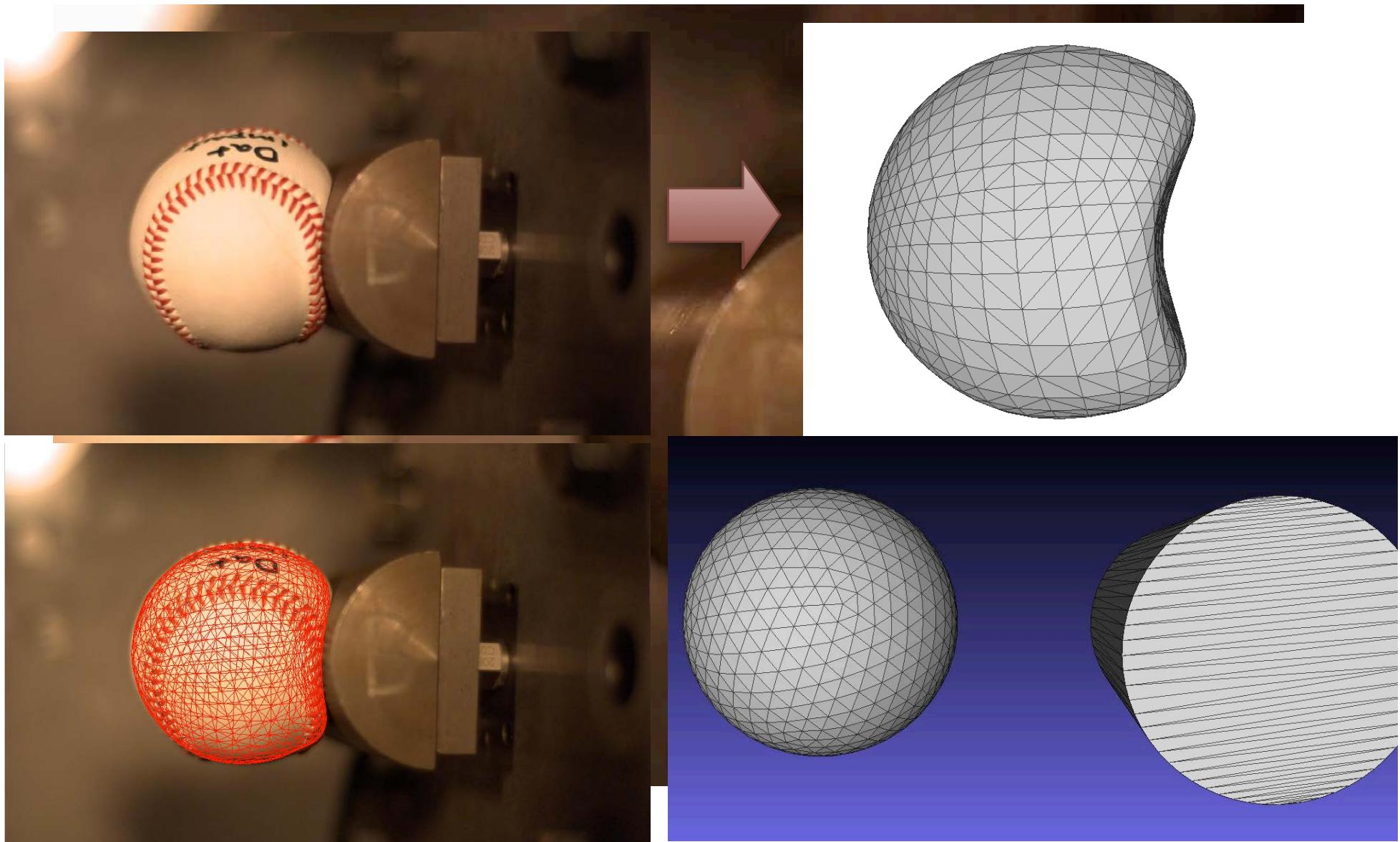
- Track feature points on page
- Fit page boundary
- Detect and use silhouettes when they appear.
- Replace original texture.

# Robustness to Occlusions

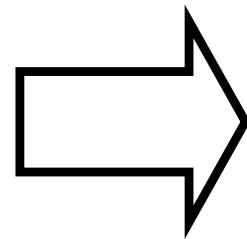
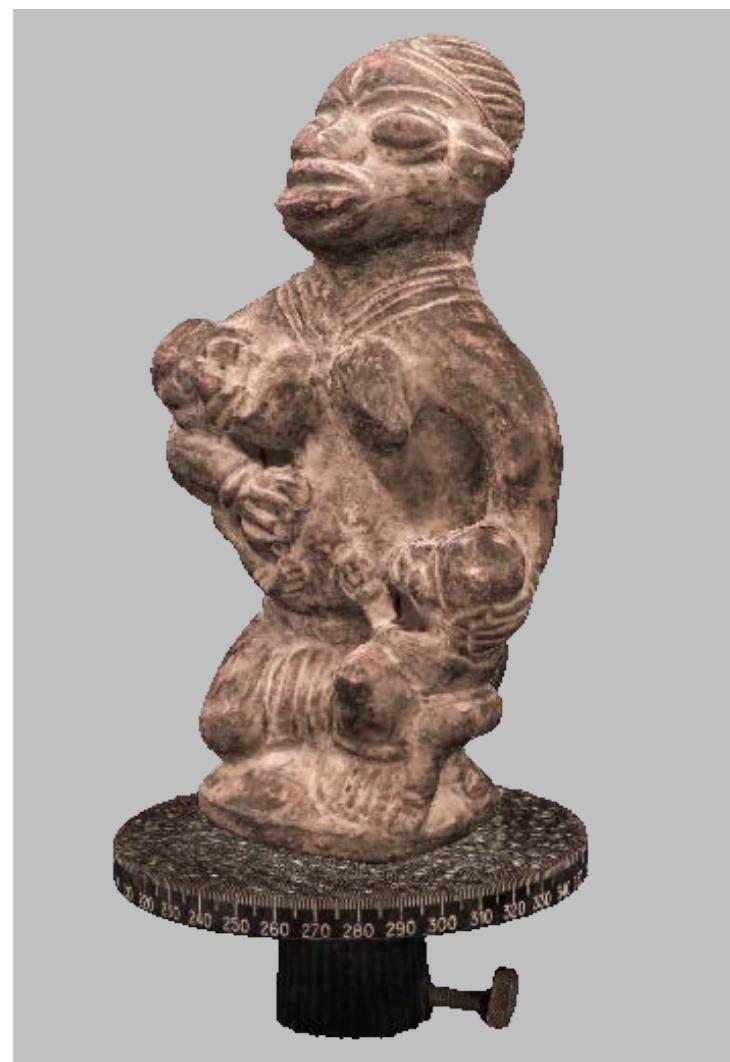


- Because we use several sources of information simultaneously, the algorithm is robust to occlusions.
- This is a general principle. In a practical algorithm, you want redundancy.

# Baseball and Bat



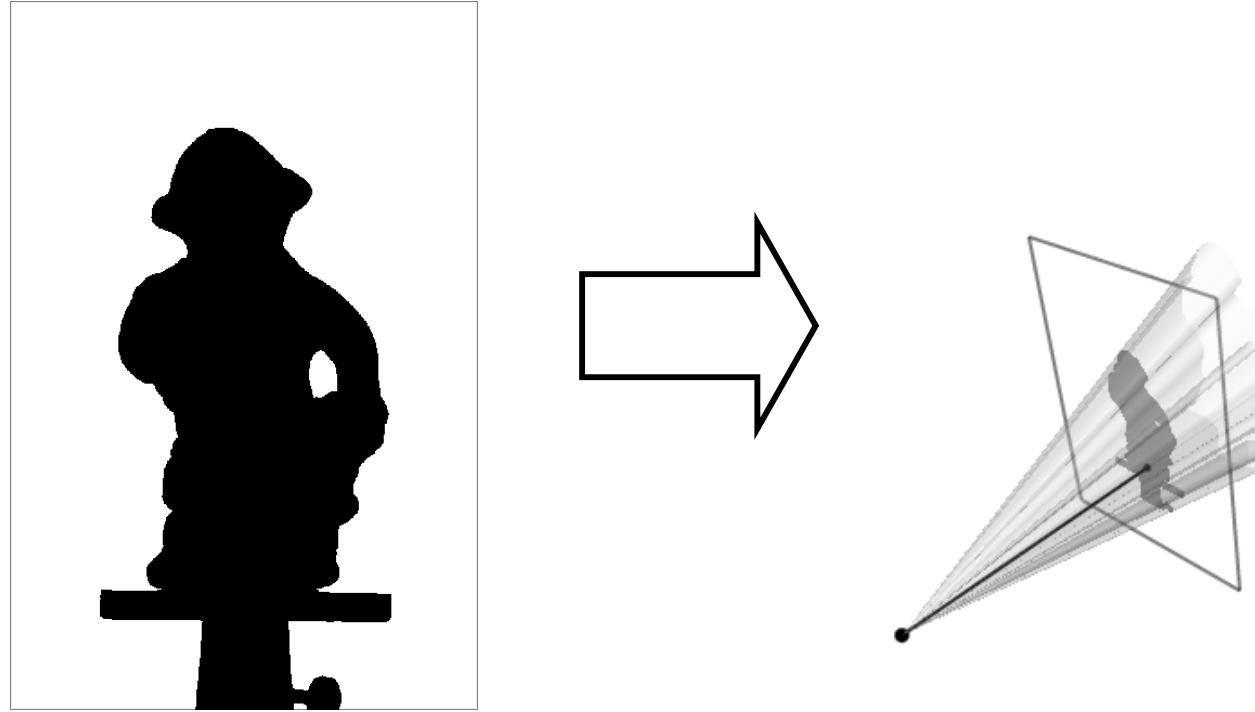
# Modeling from many Photographs



# Image Acquisition

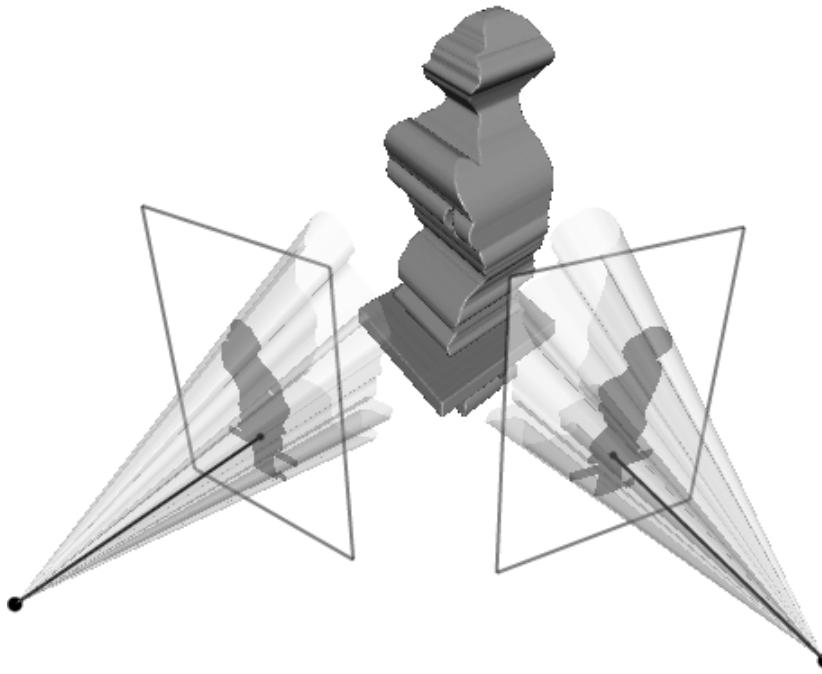


# Visual Hull from One Image



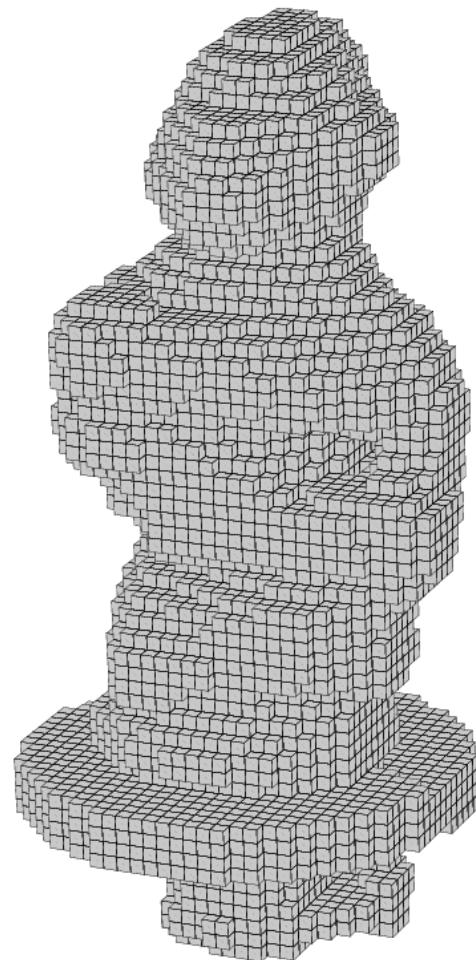
- Silhouettes let us carve the space, on one side is the object and on the other empty space.
- A closed image contour defines a cone inside which the object must be.
- Everything else can be safely removed.

# Visual Hull from Two Images

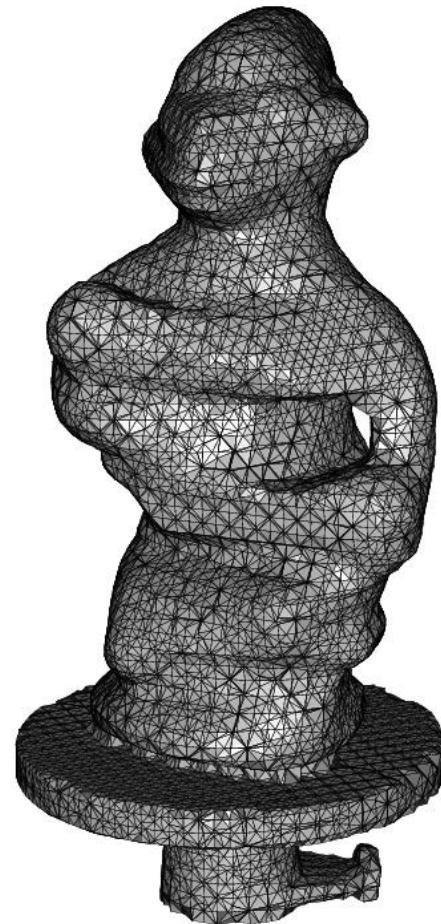


The object must be within the intersection of the two cones defined by each individual silhouette.

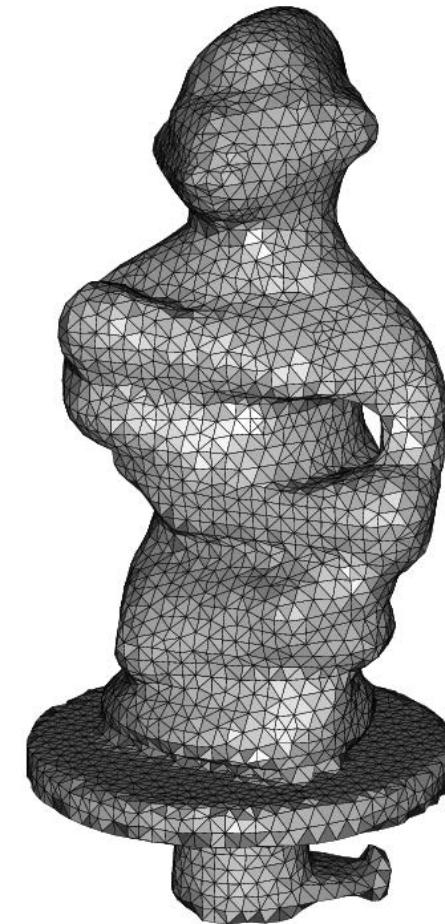
# Visual Hull from Many Images



Octree volume



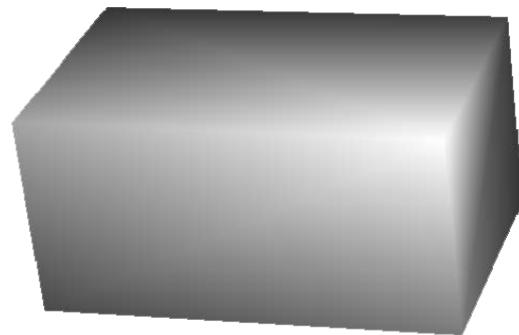
Mesh



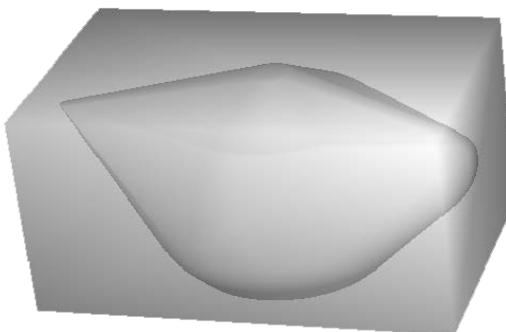
Simplified mesh

# Levels of Detail

Bounding box



Convex Hull



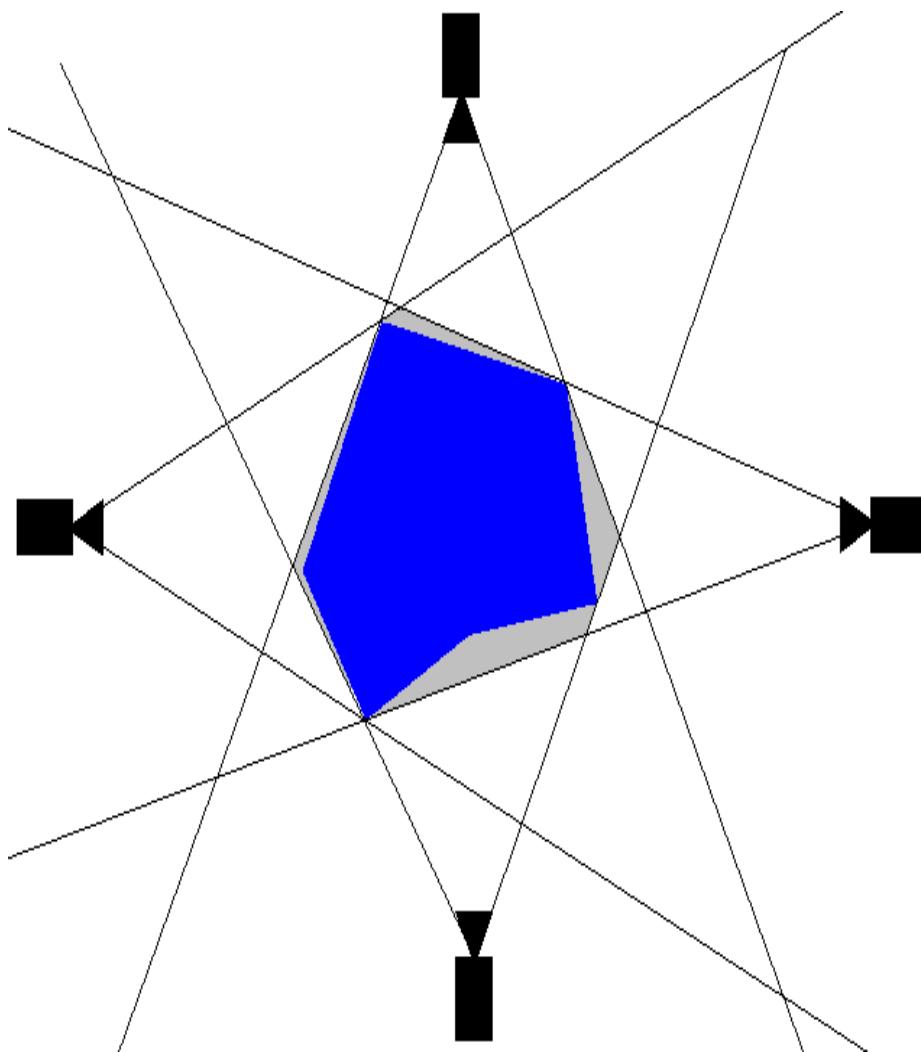
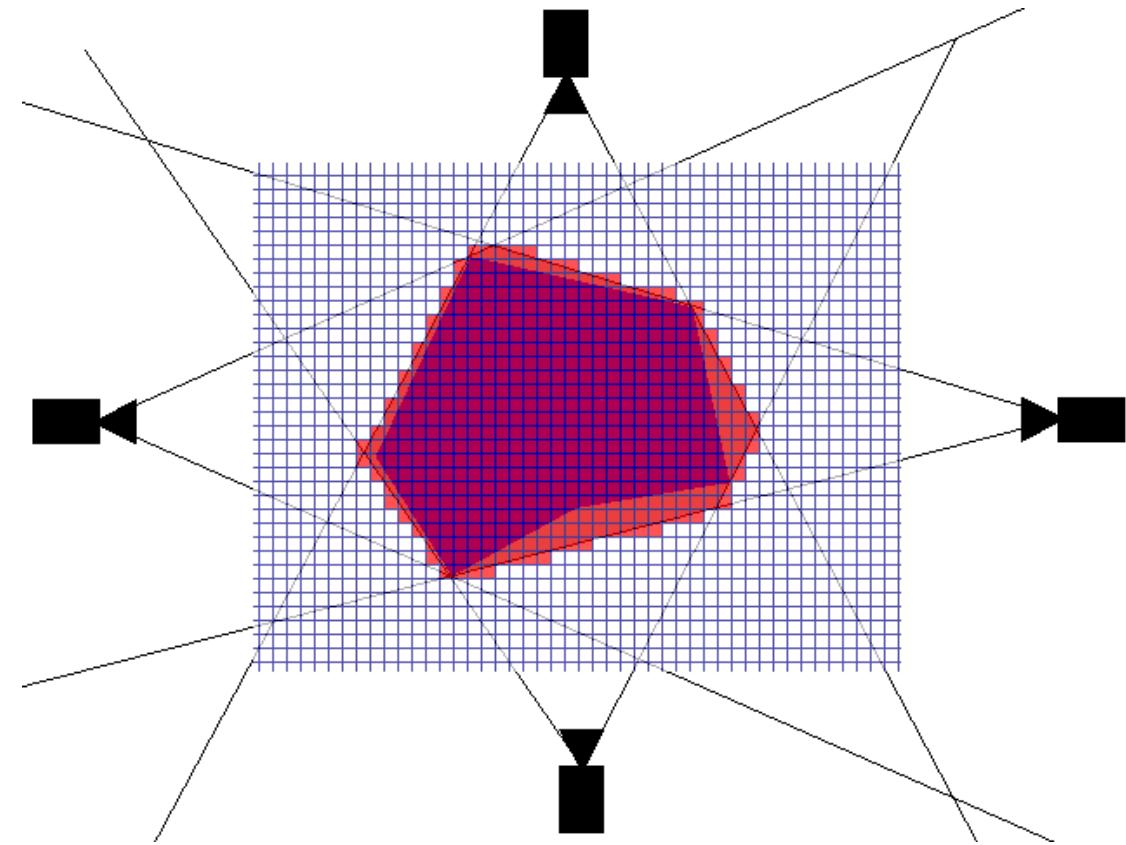
Visual Hull



Real Object

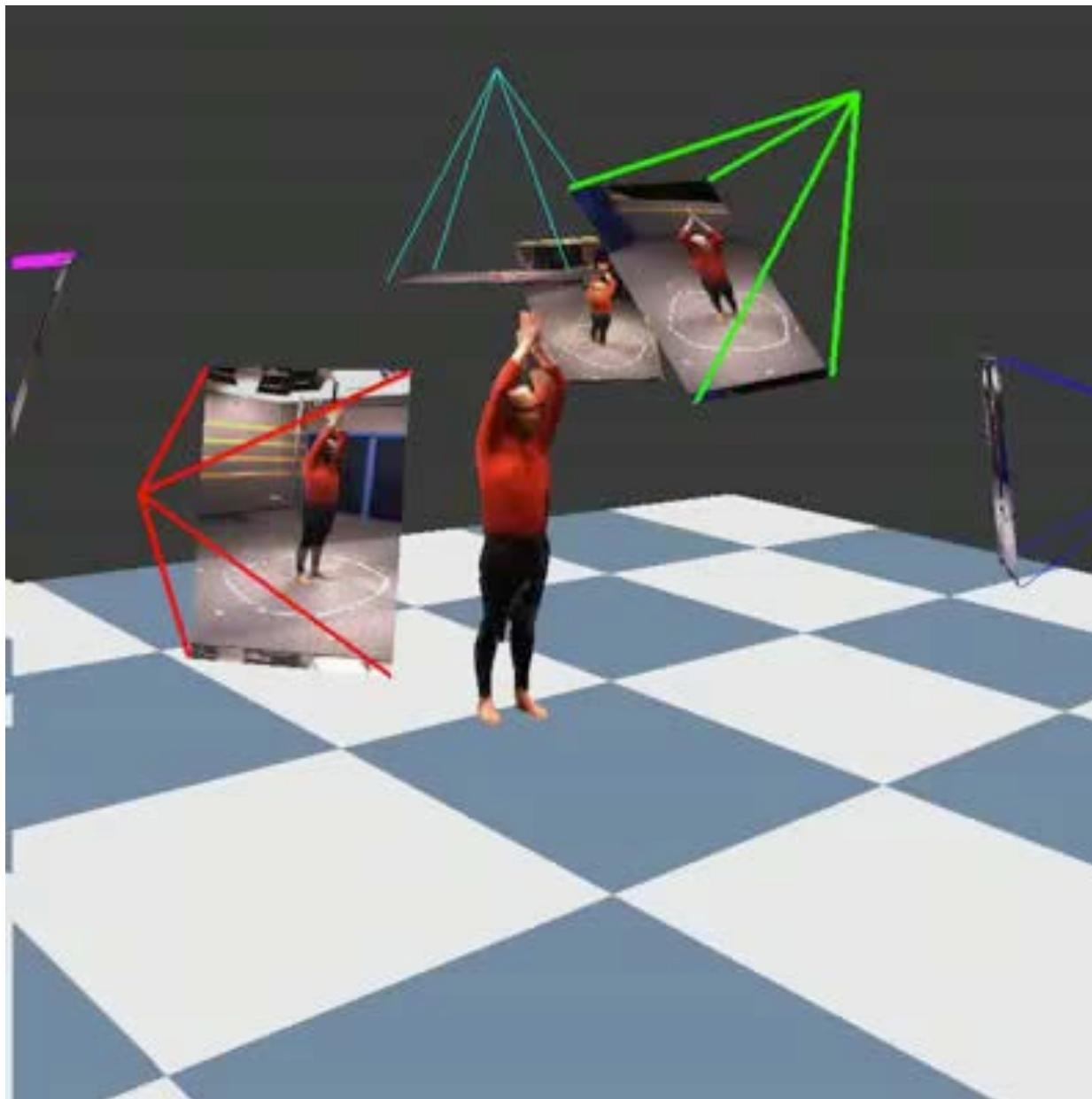


# Visual Hull in 2D

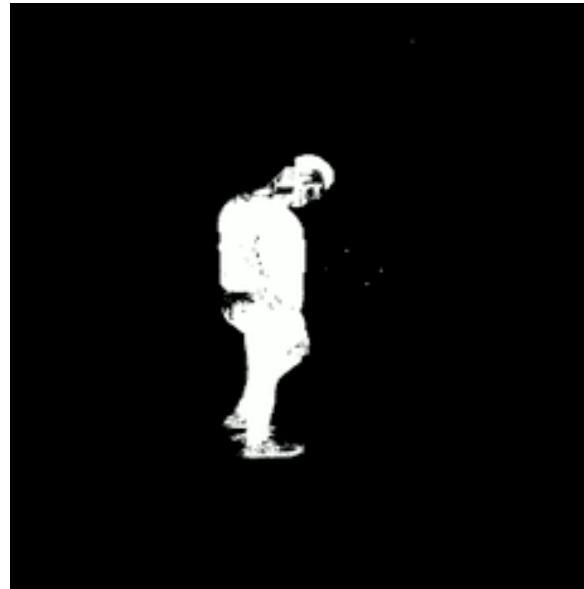
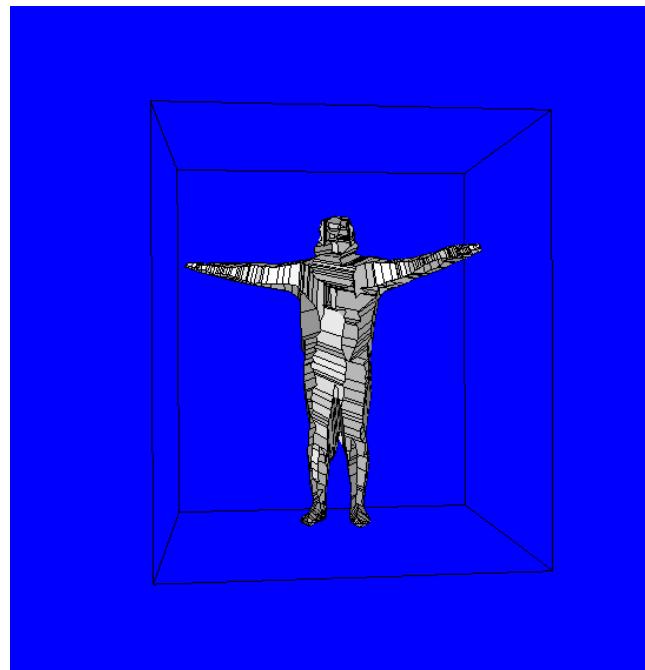


Concavities are lost

# Visual Hulls in Real Time



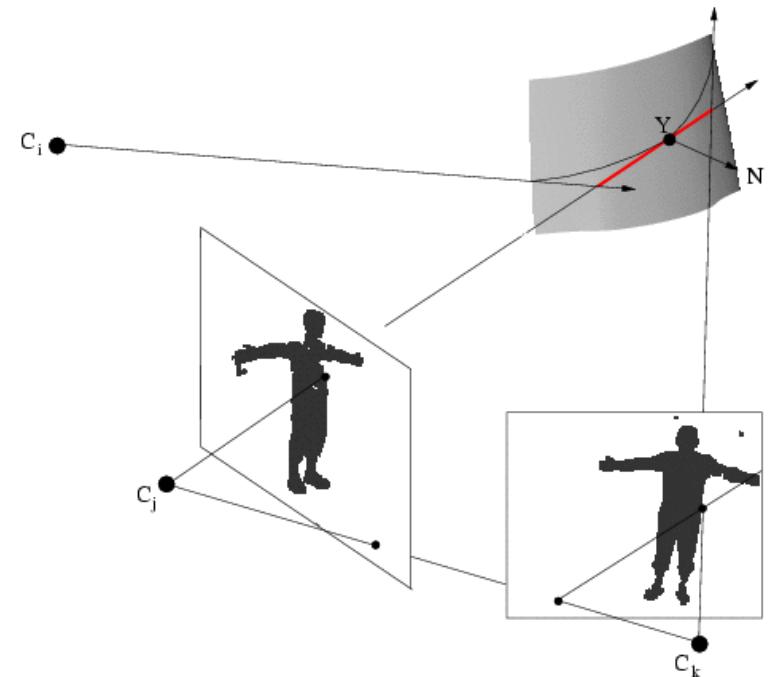
# Background Subtraction



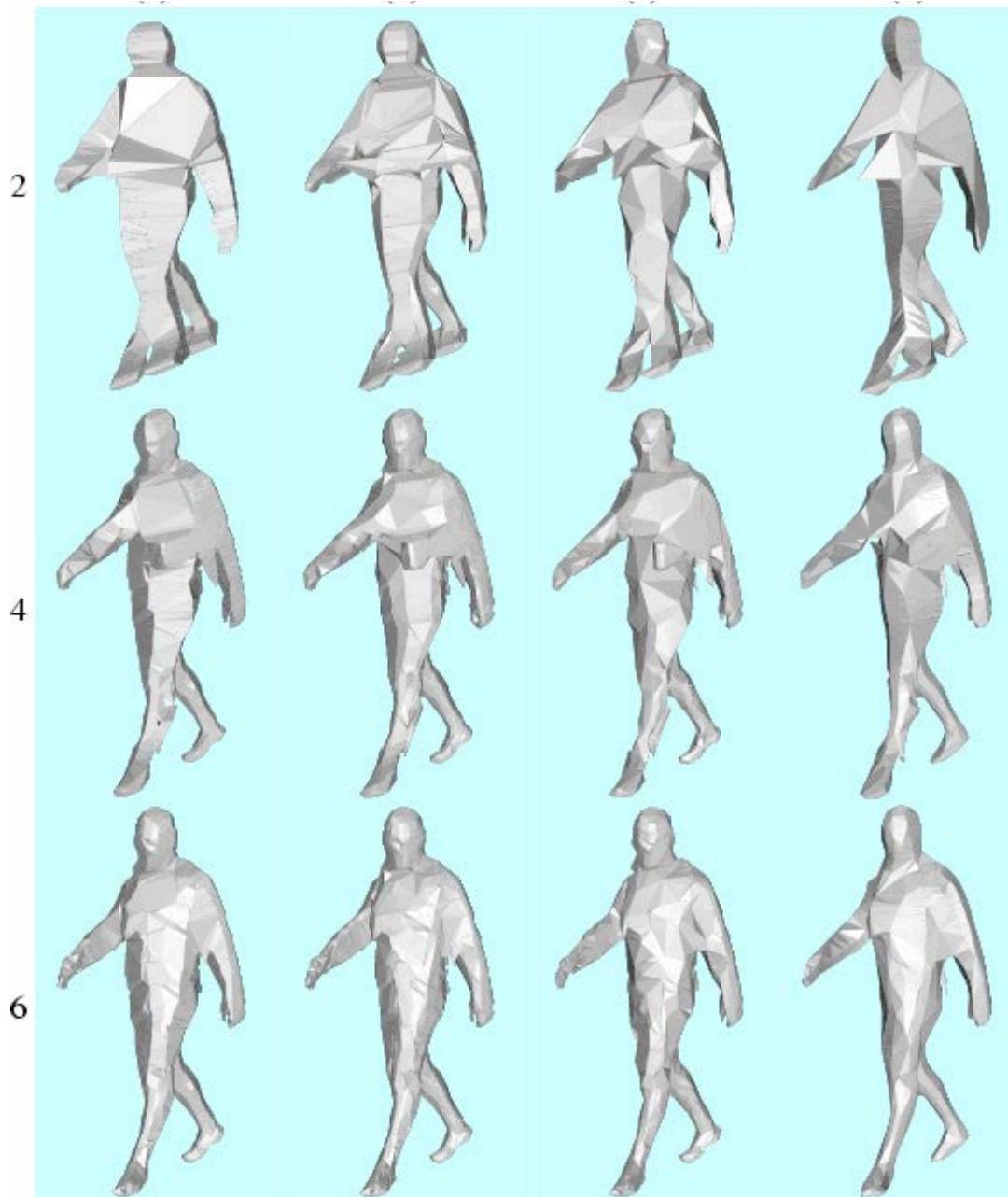
Visual hull

# Using Silhouettes

- Shapes inside the visual hull and such that the VH surface is tangent along viewing edges.
- Better approximation of the observed object shape.



# Visual Shapes



# Texture Mapping



... makes it look a lot better!

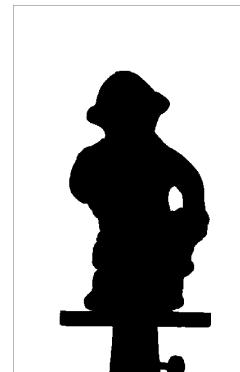
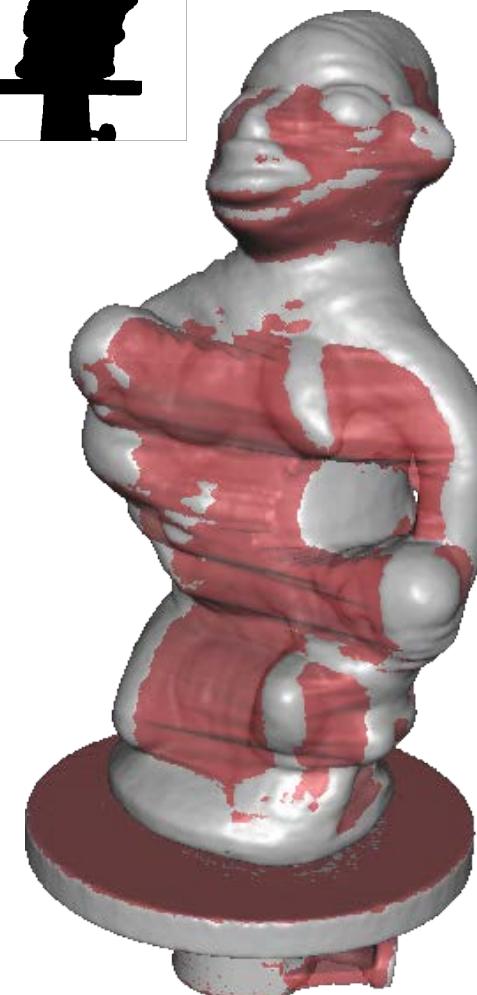
# Combining Stereo and Silhouettes



Real Surface



Visual Hull



Refinement



# Reconstruction Pipeline

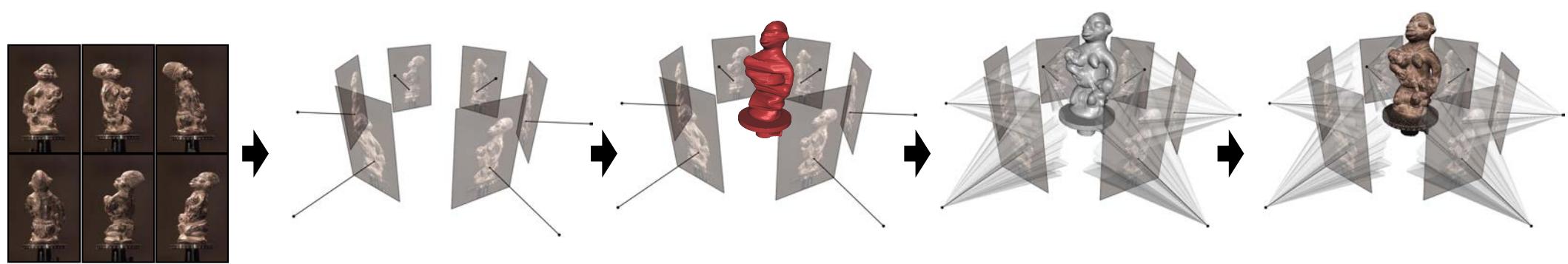


Image  
Acquisition

Camera  
Calibration

Visual  
Hull

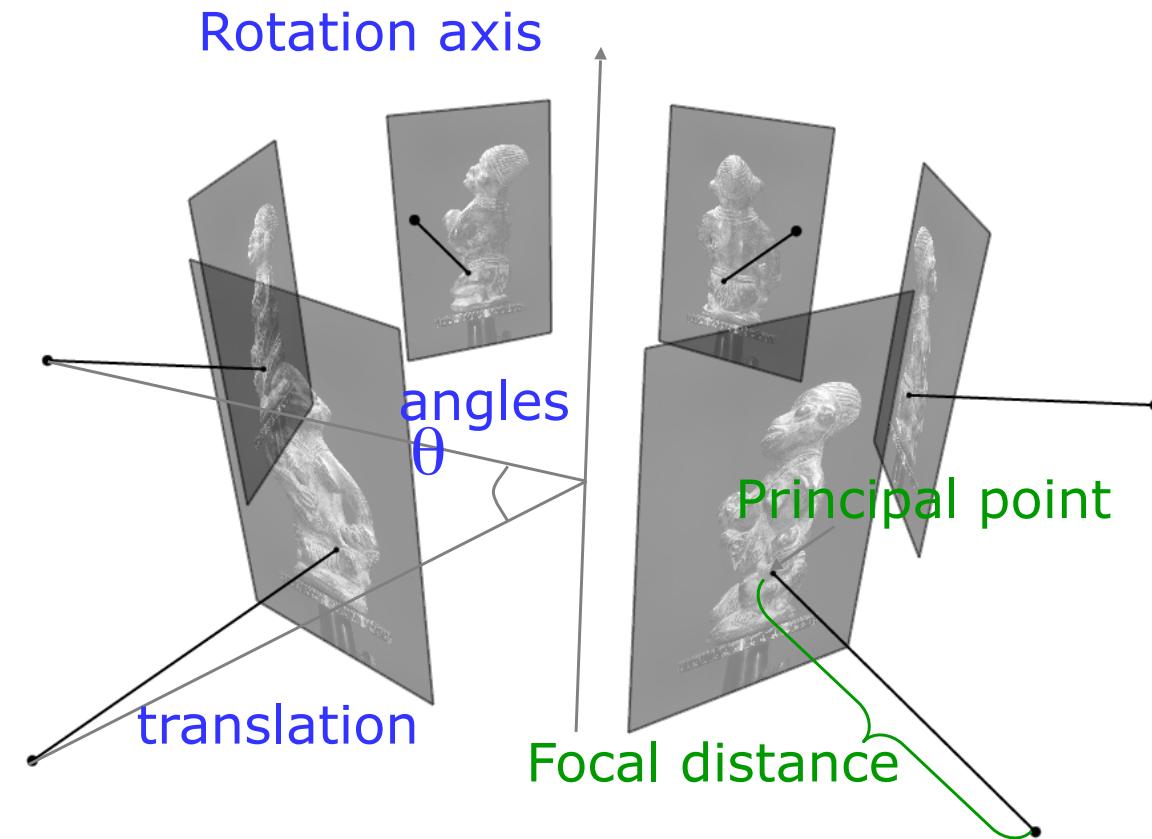
Shape  
Refinement

Texture  
Mapping

# Circular Camera Motion Calibration

Parameters to be estimated:

- Rotation axis
- Translation
- Rotation angles
- Focal distance
- Principal point



# Influence of Calibration



Correct Calibration

Decalibrating

When the cameras are ill calibrated:

- the cones become inconsistent,
- the visual hull becomes smaller.

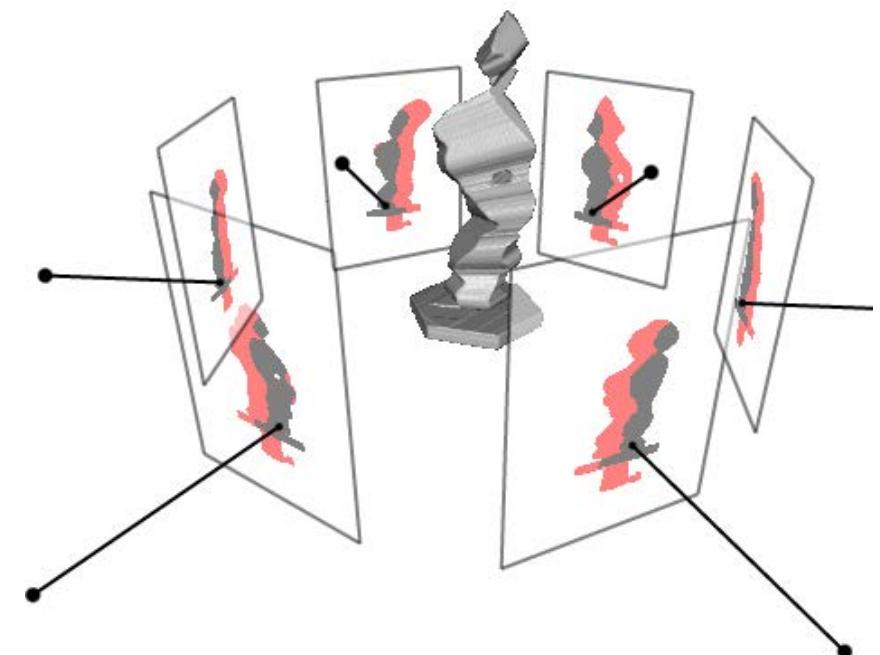
# Visual Hull Reprojection

**In theory:**

$$\text{Silhouettes of Visual Hull} \subseteq \text{Original Silhouettes}$$

**In practice:**

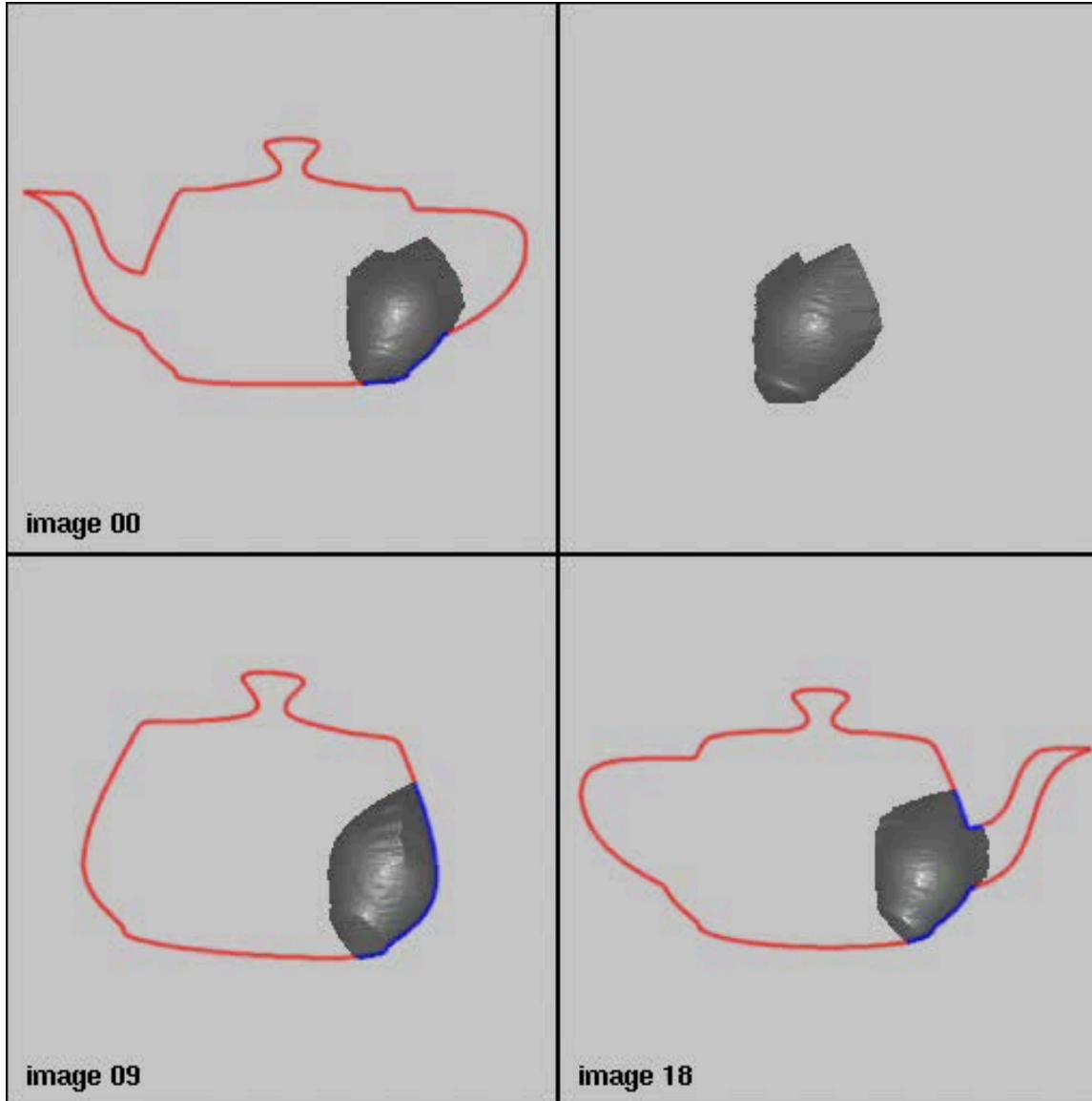
$$\text{Silhouettes of Visual Hull} \subset \text{Original Silhouettes}$$



→ **Calibration heuristic:**

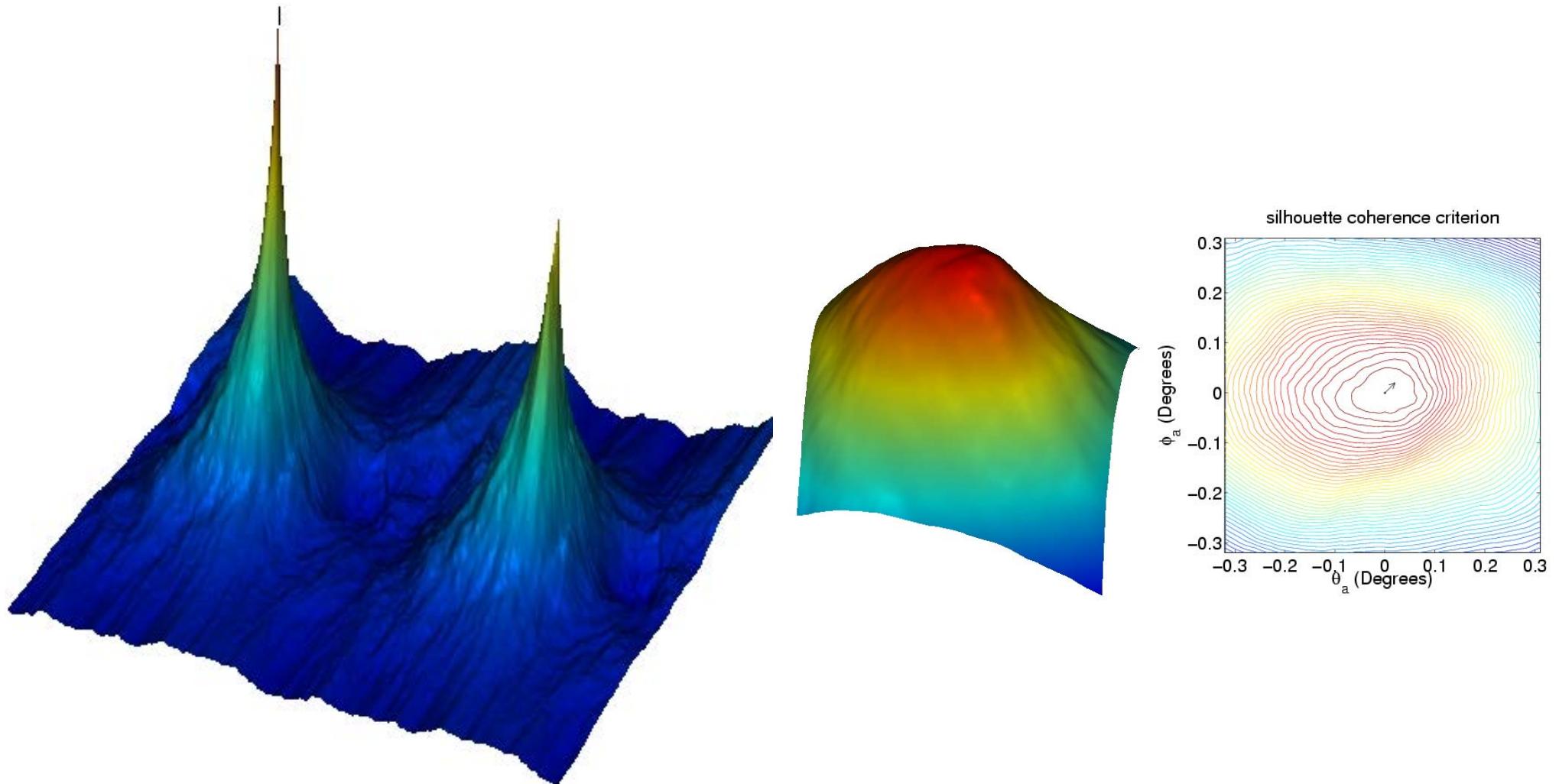
Maximize overlap of the re-projected visual hulls and the silhouettes

# Maximizing the Overlap

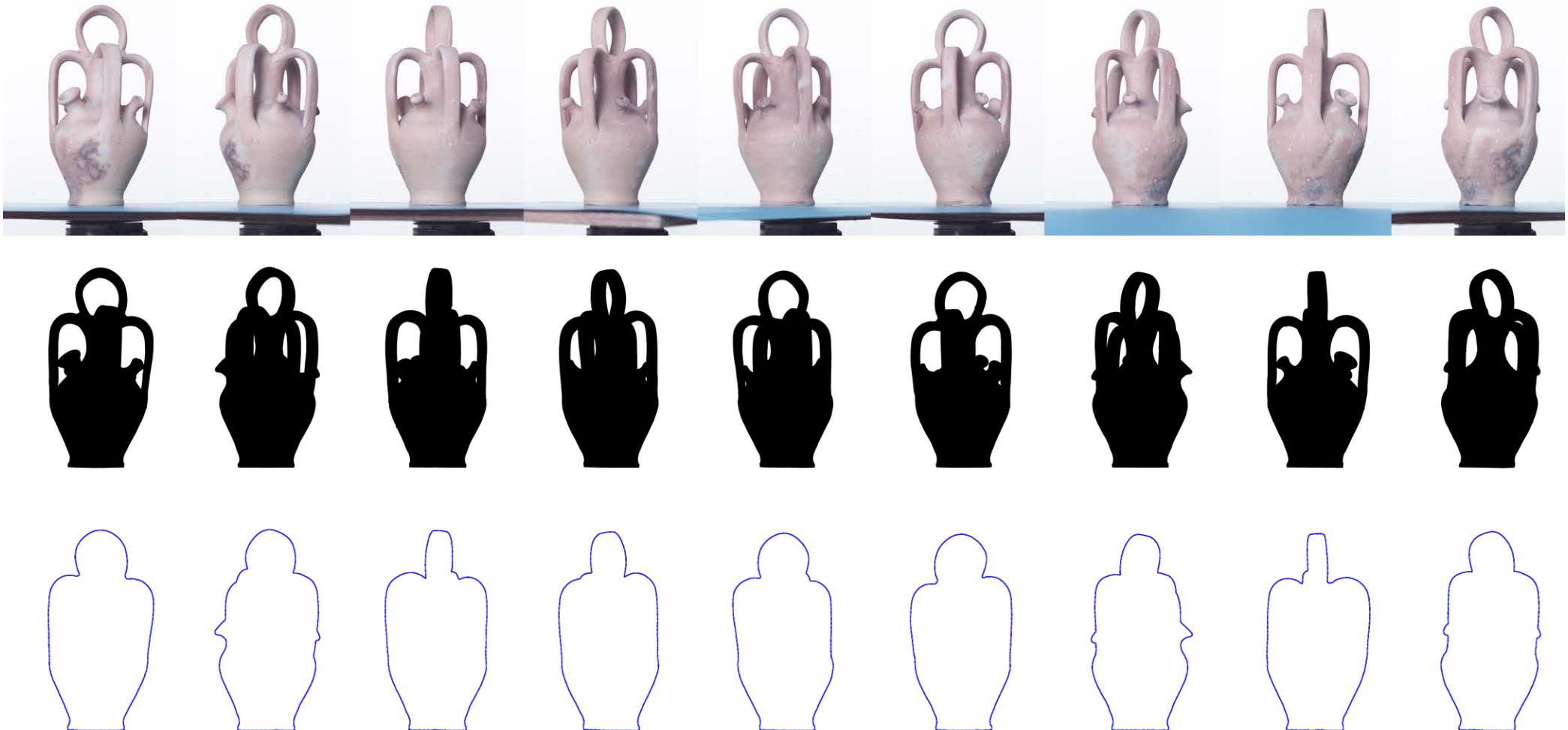


When the cameras are well calibrated the overlap of the reprojected visual hull and the original silhouettes is largest.

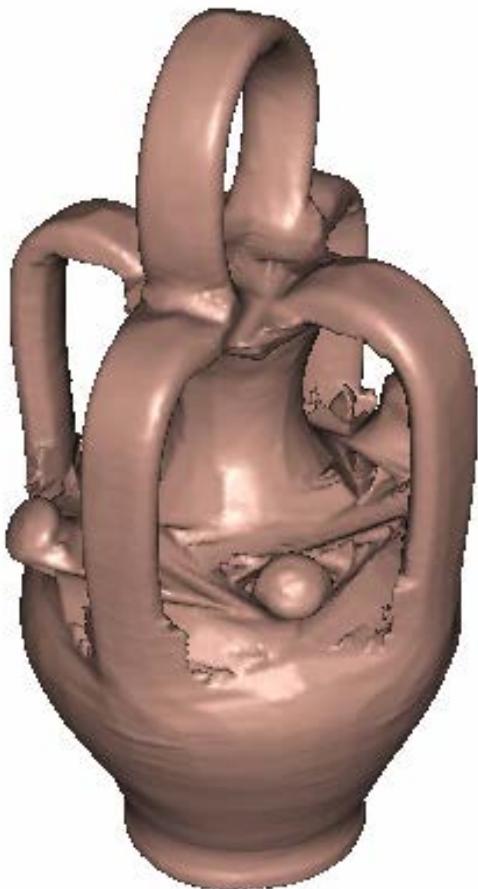
# Overlap as a Function of The Rotation Axis



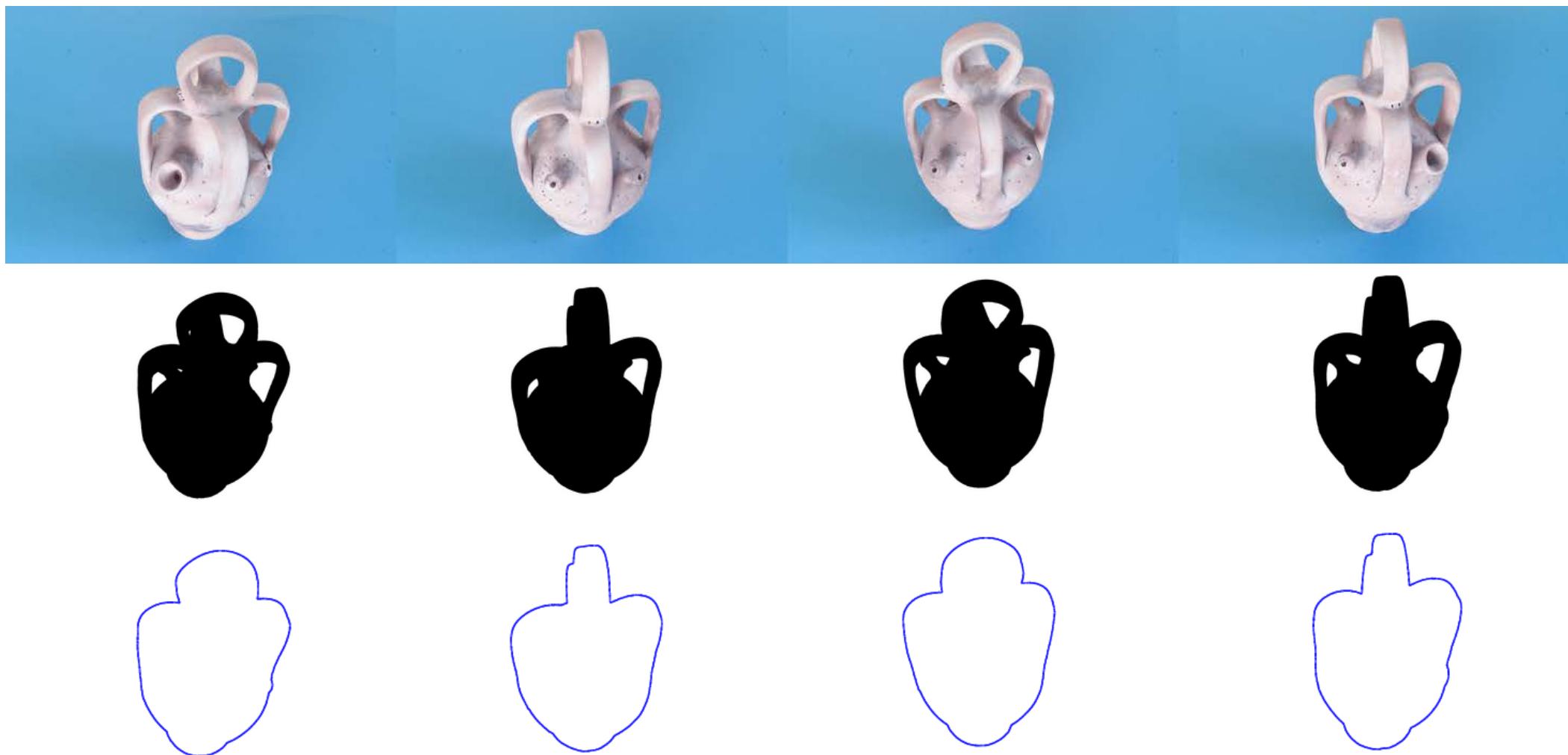
# Rotating Sequence



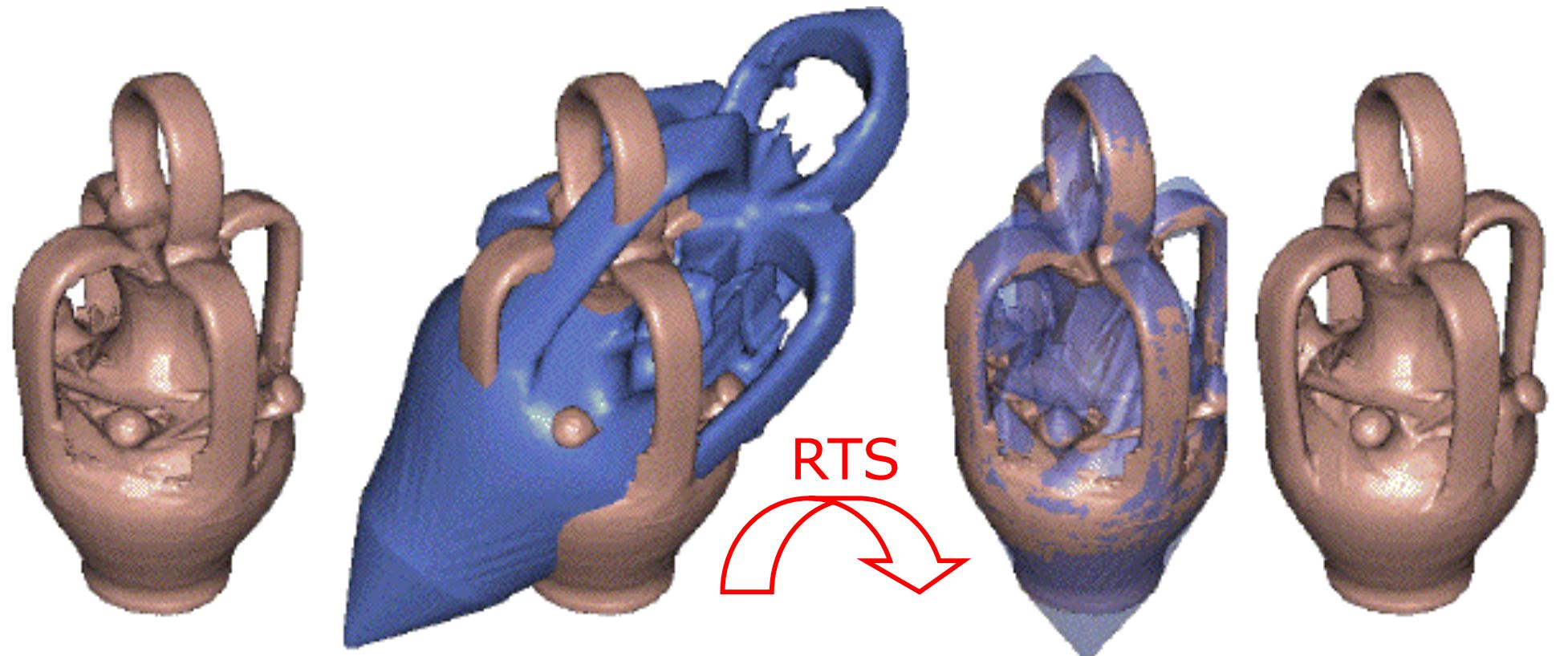
# Visual Hull



# Second Rotating Sequence

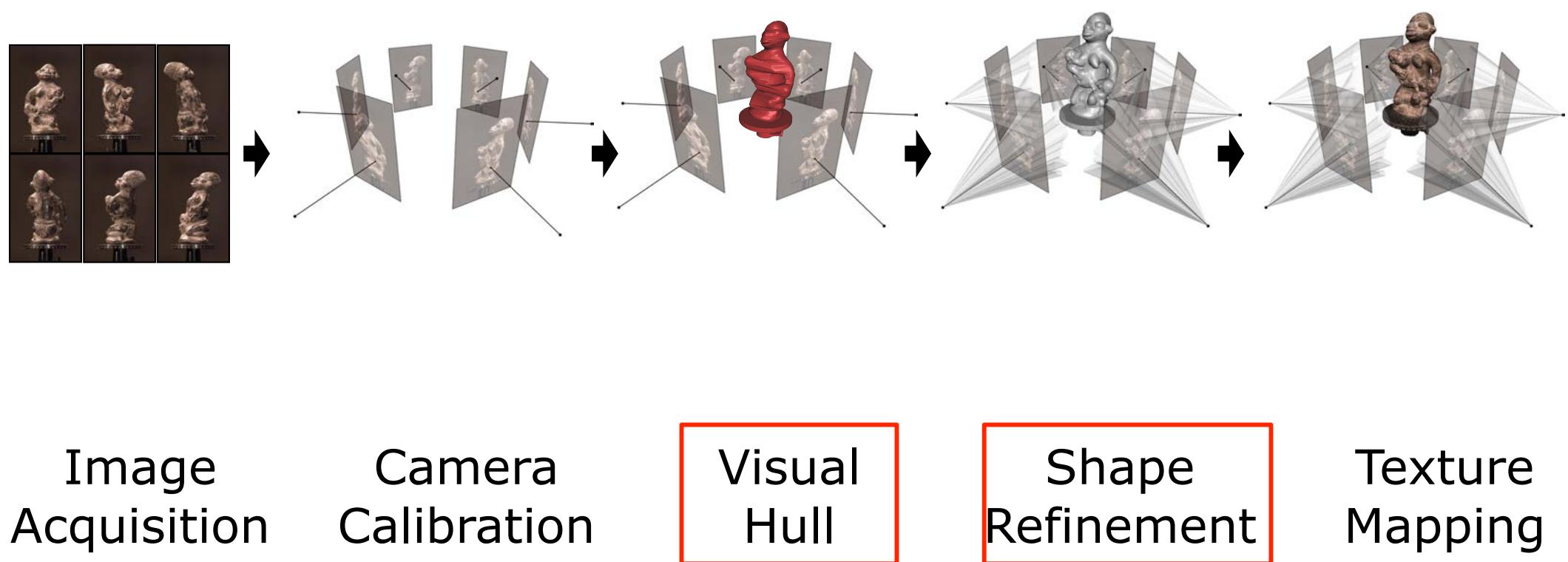


# Combining Two Sequences



- Estimate rigid motion + scaling.
- Intersect the two visual hulls.

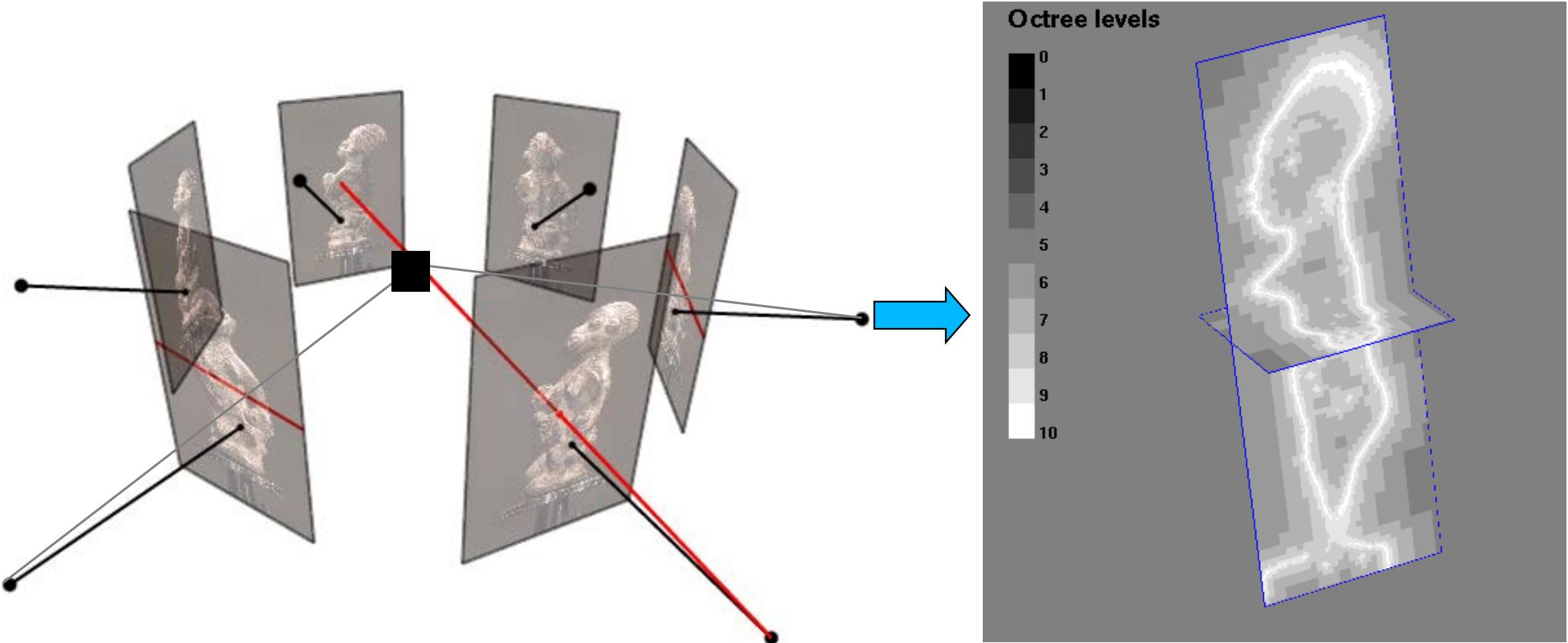
# Reconstruction Pipeline



# 3-D Deformable Model

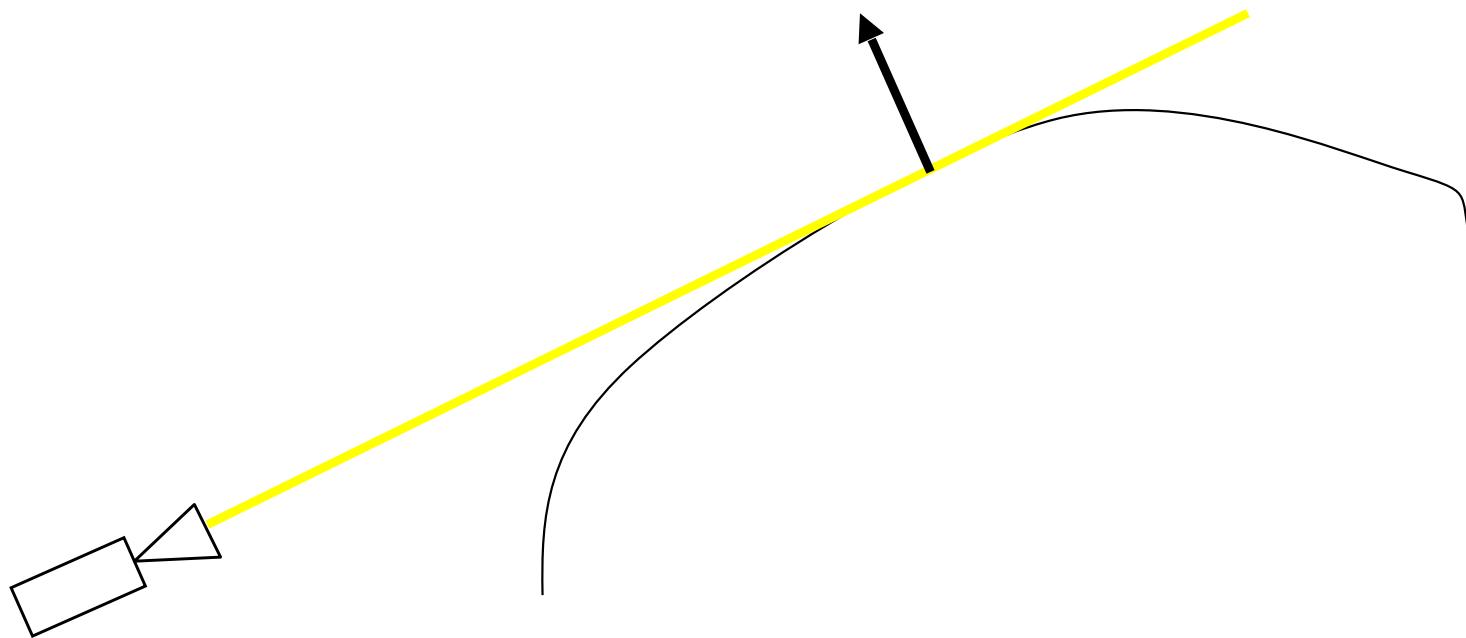
1. Use the visual hull to initialize the model.
2. Maximize
  - color consistency,
  - silhouette consistency,
  - smoothness.

# Color Consistency



- Define a 3D grid that encloses the object.
- Each voxel in this grid that lies on the image should project to image points that have the same color.
- This makes it possible to assign to each voxel a “color consistency” score.

# Silhouette Consistency



The line of sight is tangent to the surface. At one point at least:

- The distance to the line of sight is zero
- The surface normal is perpendicular to it.

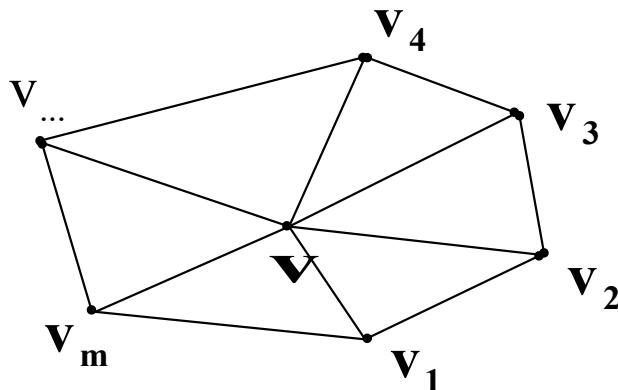
# Smoothness Measures

Laplacian

$$\Delta v = \sum_{i=1}^m \frac{v_i}{m} - v$$

Biharmonic

$$\Delta^2 v = \frac{1}{1 + \sum_{i=1}^m \frac{1}{mm_i}} \Delta(\Delta v)$$



# Gradient Descent

$$v_i^{k+1} = v_i^k + \Delta t(\nabla E_{tex}(v_i^k) + \beta \nabla E_{sil}(v_i^k) + \gamma \nabla E_{reg}(v_i^k))$$

$\nabla E_x$  : Derivative of corresponding energy term  $x$ .

$\beta$  : Silhouette coefficient.

$\gamma$  : Regularization coefficient.

# Reconstruction



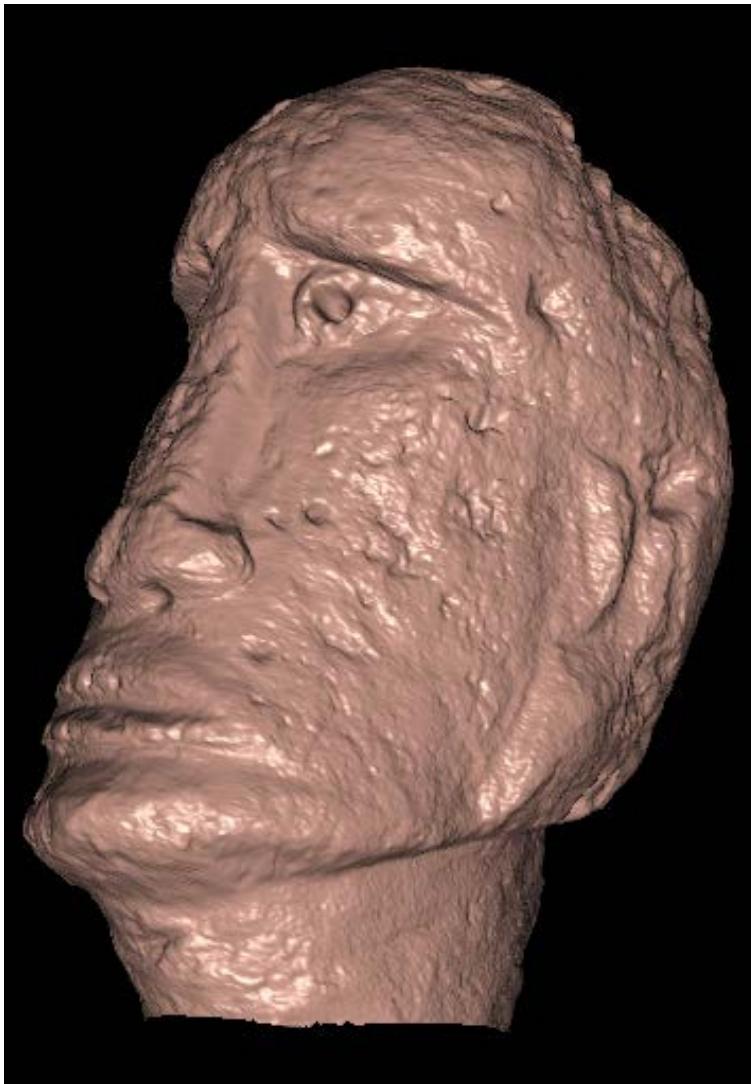
83241 vertices, 166482 triangles

# Reconstruction



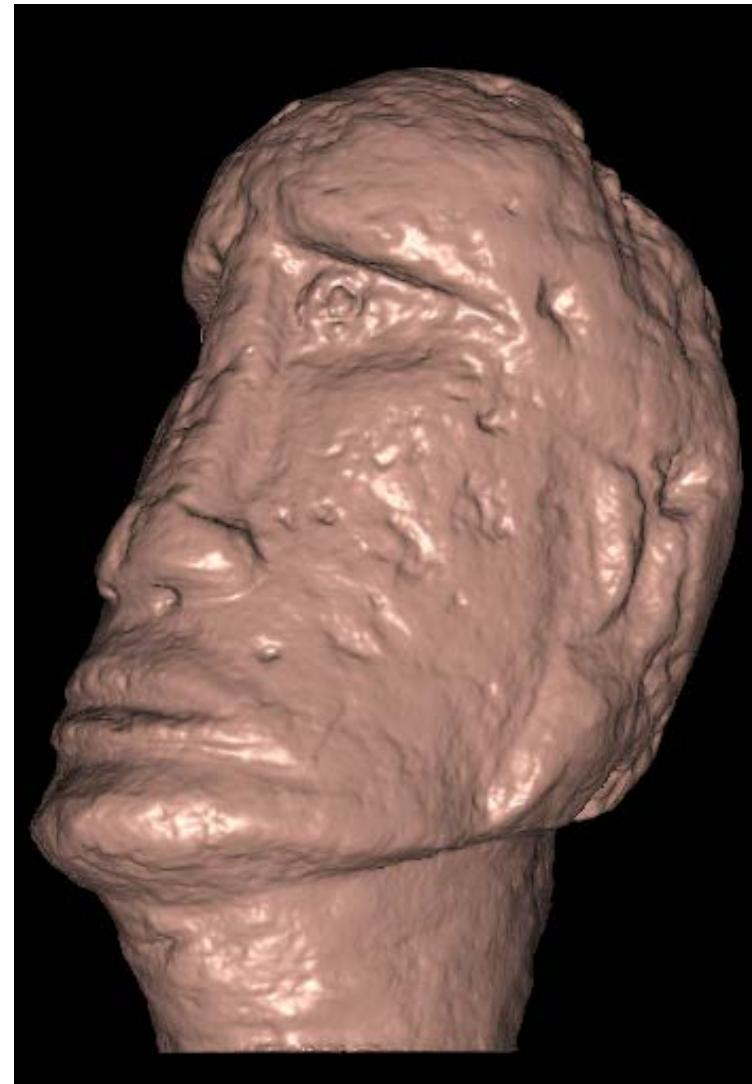
# Laser Scanner vs Images

Minolta  
Laser  
Scanner



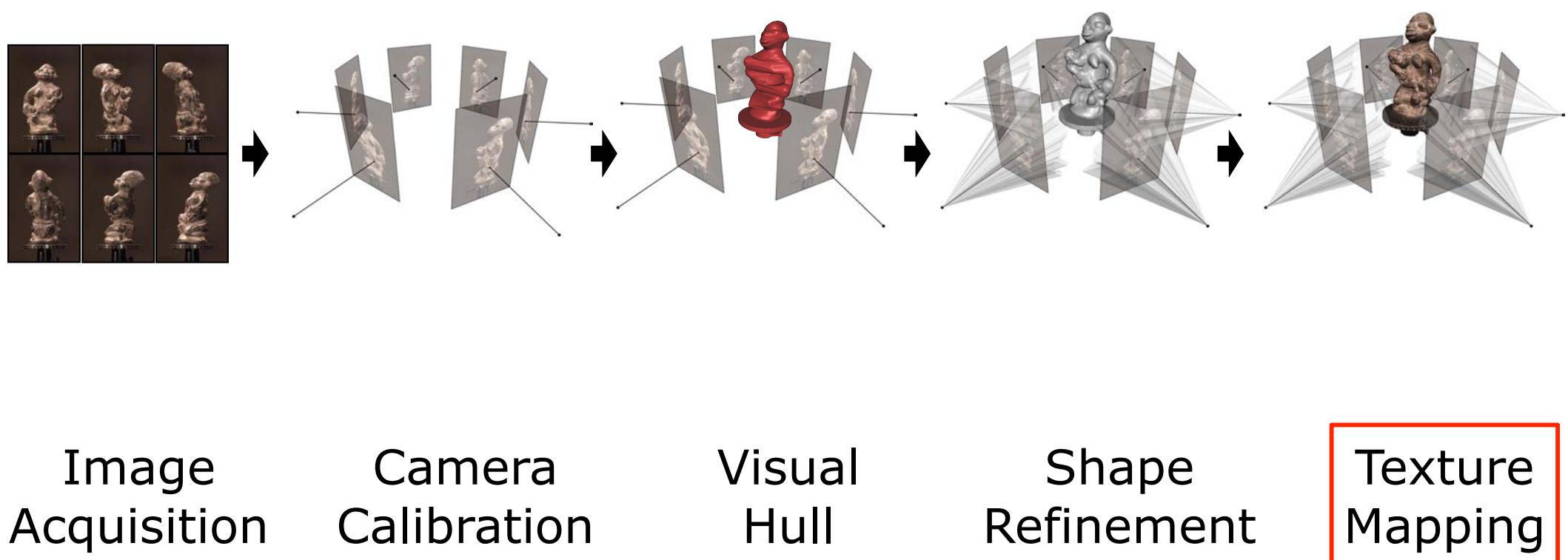
385355 vertices  
770209 triangles

Silhouettes

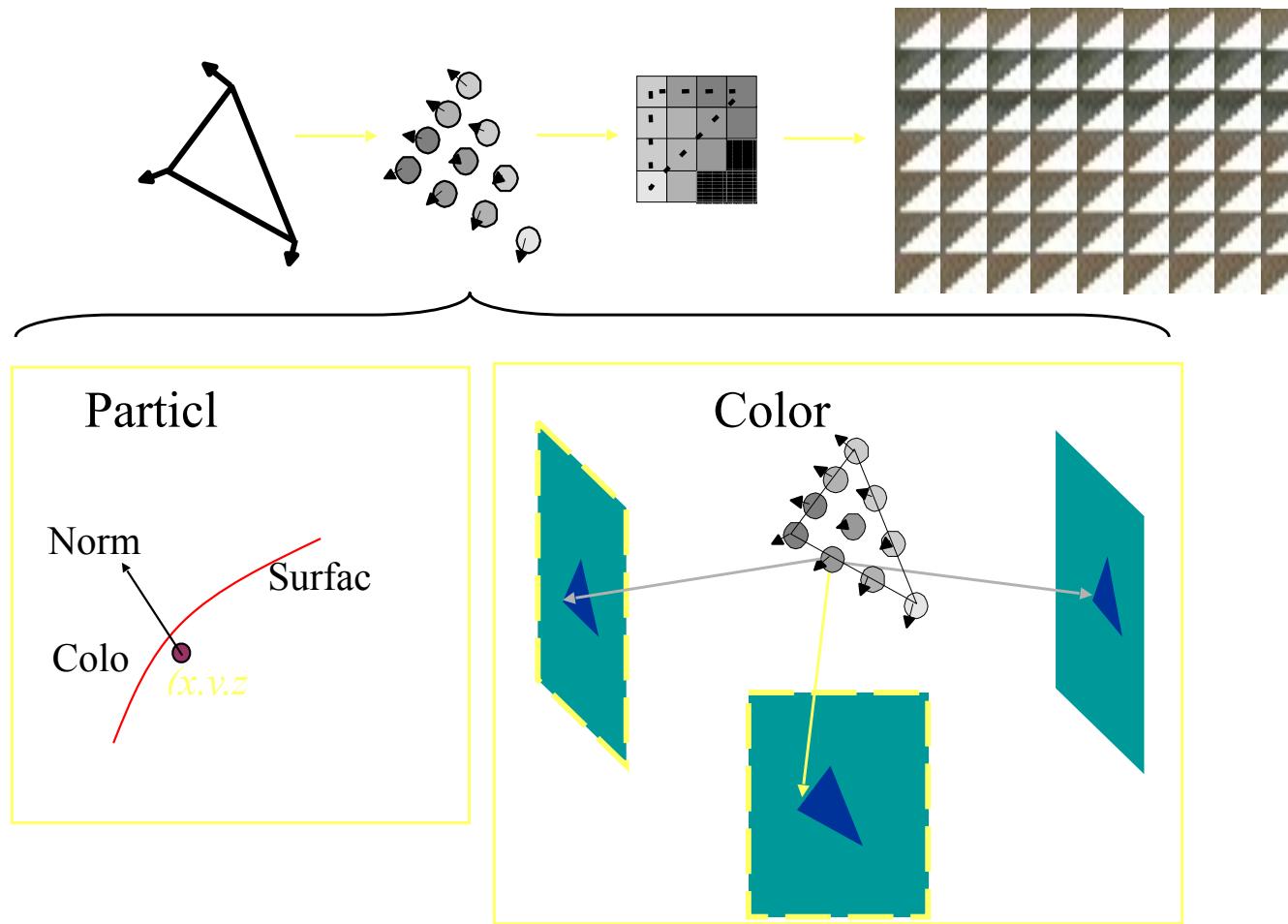


233262 vertices  
466520 triangles

# Reconstruction Pipeline



# Texture Map



- The texture map is obtained by projecting individual surface points into the images and averaging their colors.
- The reconstruction process ensures that these colors are consistent across images.

# Textured Reconstruction



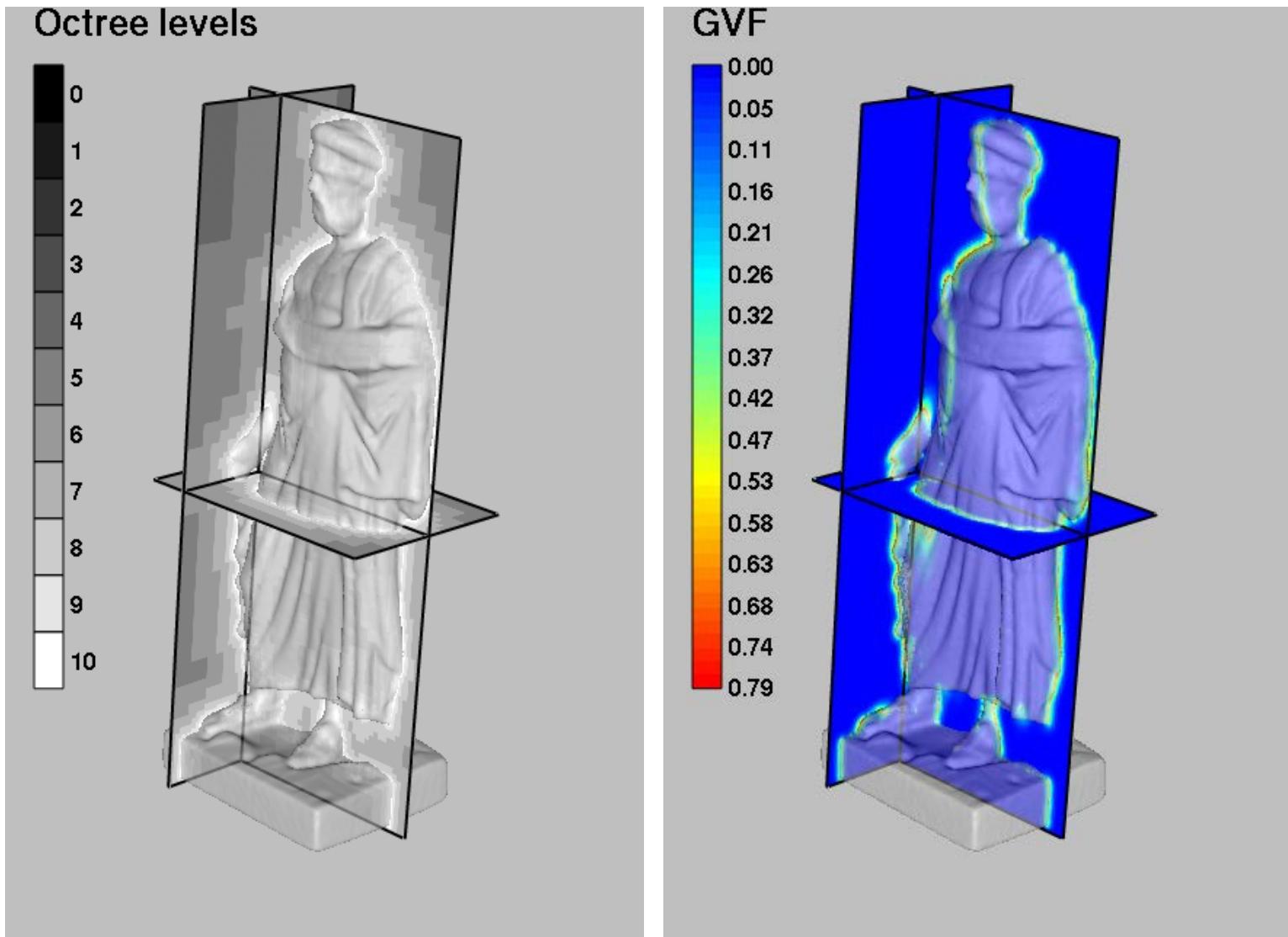
57639 vertices, 115282 triangles

# Textured Reconstruction



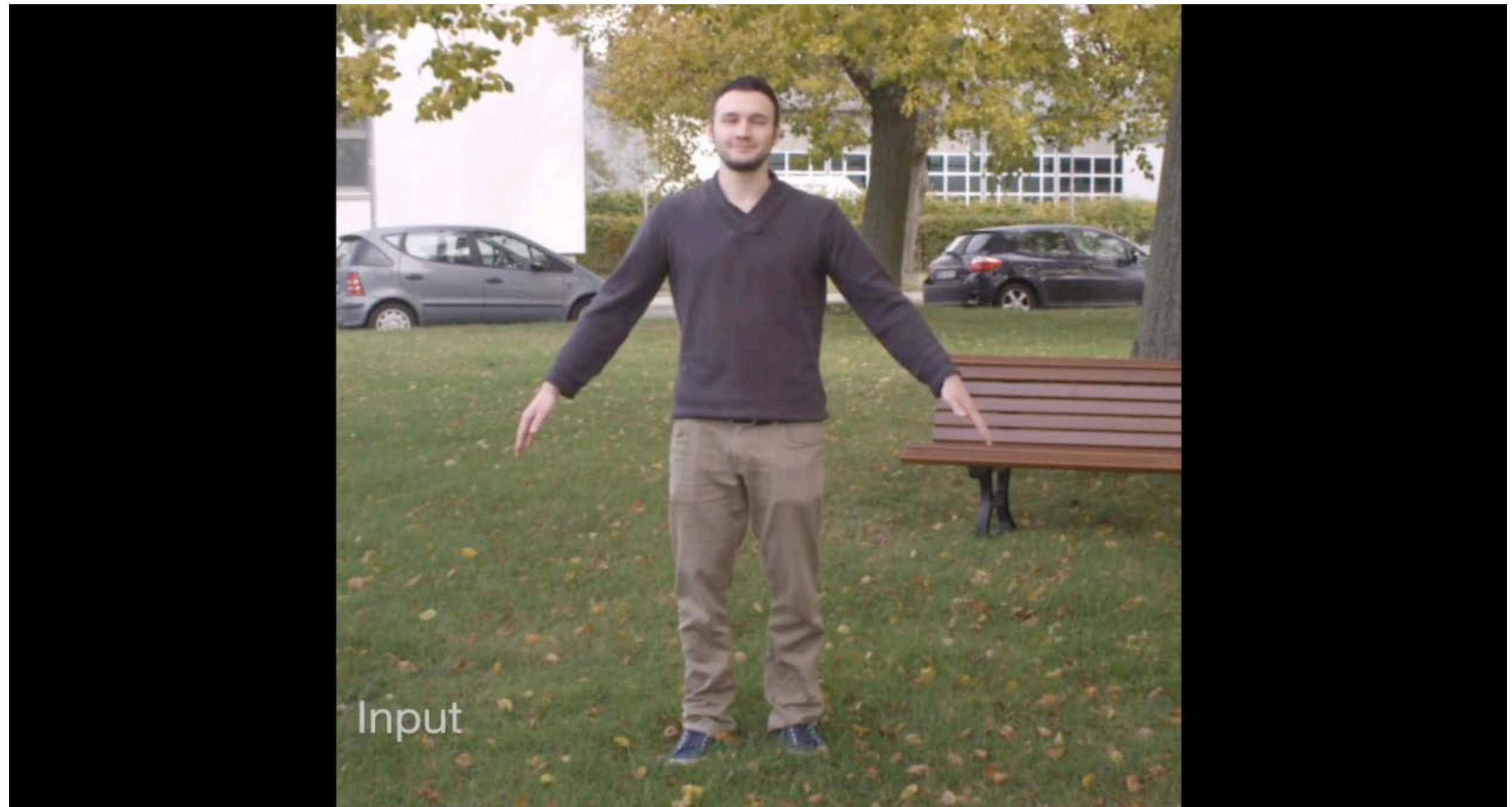
47159 vertices, 94322 triangles

# Texture Energy



The computation uses an octree to save memory.

# Generalization to Articulated Objects



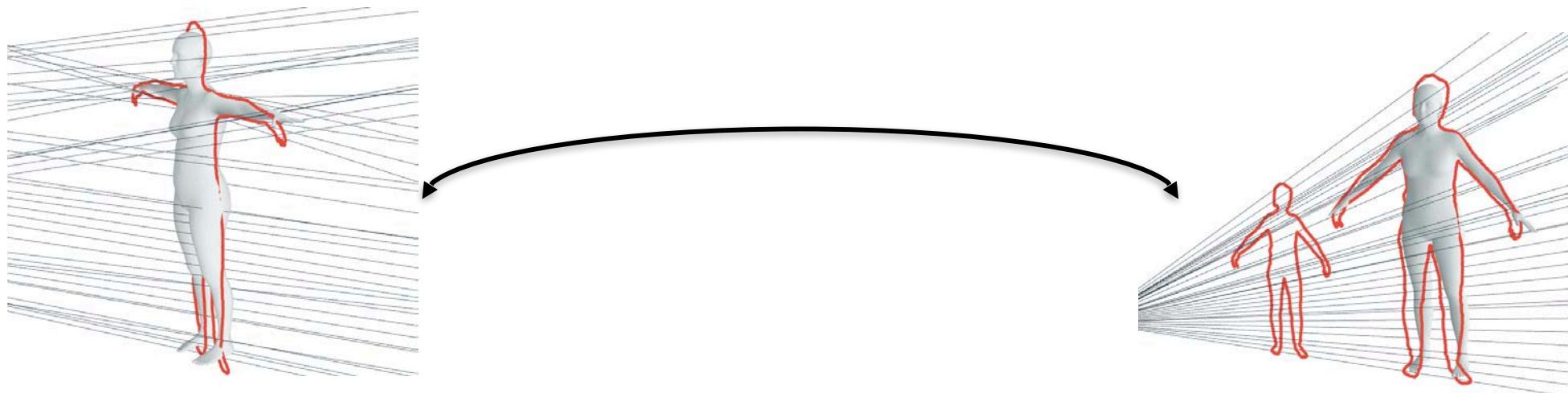
# Challenge



- The person is moving.
- The visual hull algorithm expects static and silhouettes accurate silhouettes.

→ Transfer to a canonic pose and use a deep net to find the silhouettes.

# Optional: Registering Visual Cones



$$\mathbf{r} = \left( \sum_{k=1}^K w_{k,i} G_k(\boldsymbol{\theta}, \mathbf{J}_{\beta}) \right)^{-1} \mathbf{r}' - \mathbf{b}_{P,i}(\boldsymbol{\theta}).$$

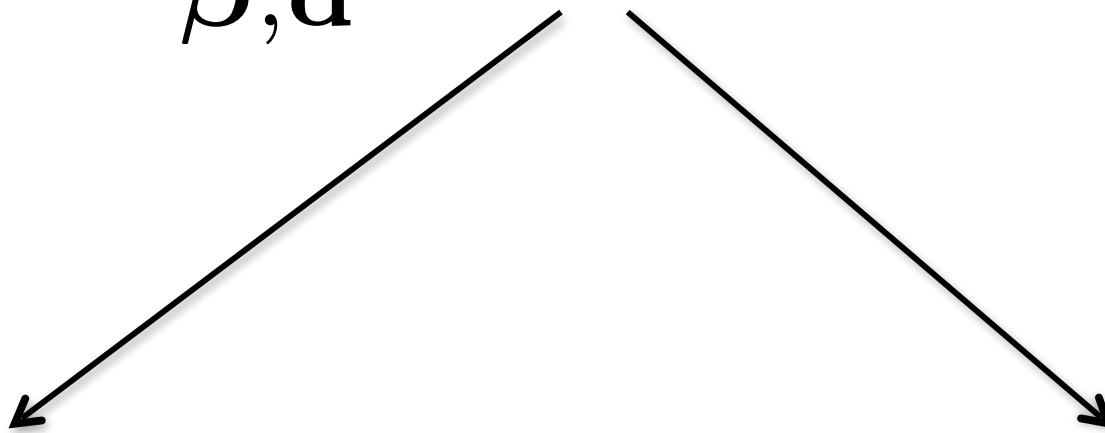
Ray in Canonical Frame

Inverse Articulated Motion

Ray

# Optional: Objective Function

$$\arg \min_{\beta, \mathbf{d}} E_{\text{cons}}(\beta, \mathbf{d})$$



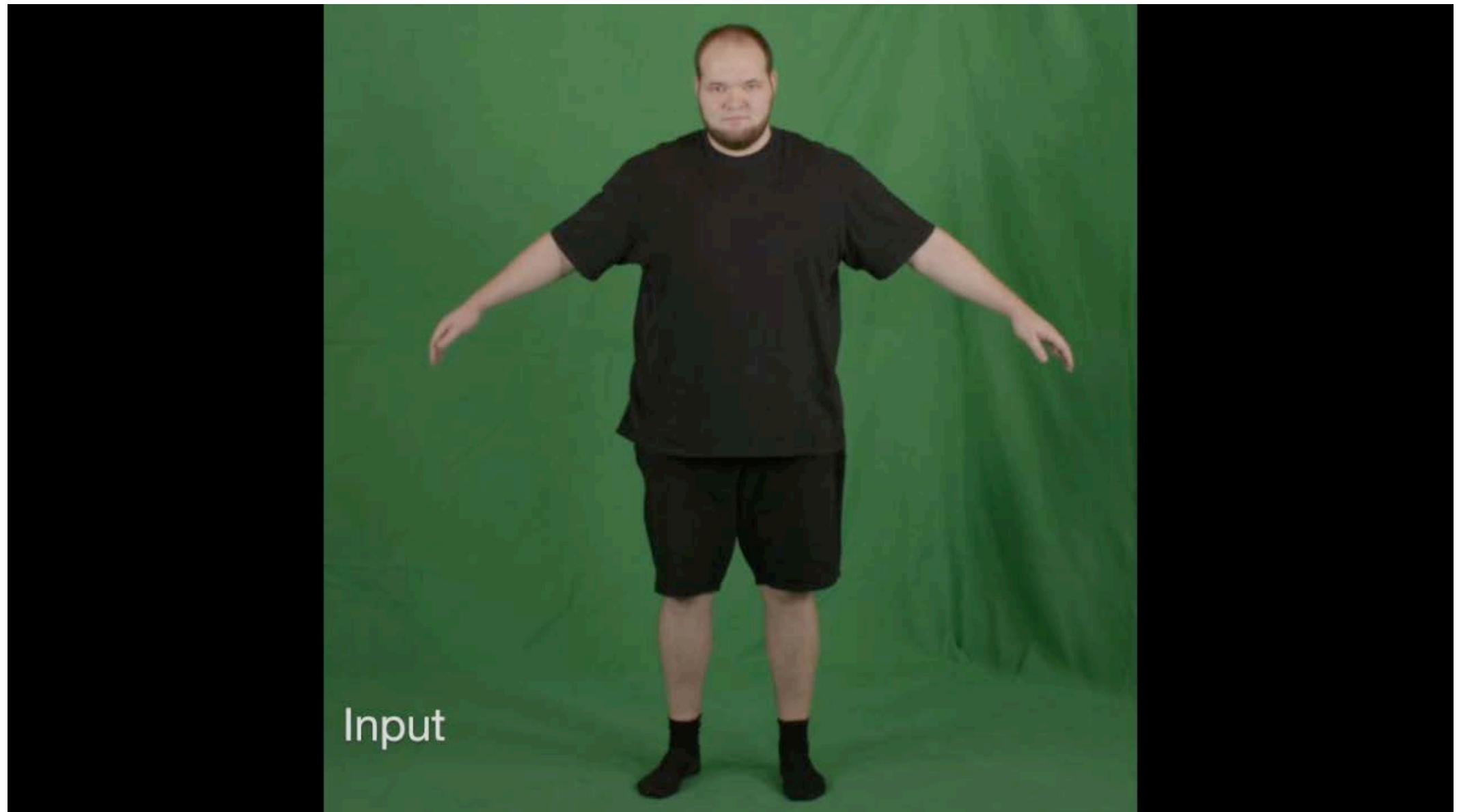
$$E_{\text{data}} = \sum_{(\mathbf{v}, \mathbf{r}) \in \mathcal{M}} \rho(\mathbf{v} \times \mathbf{r}_n - \mathbf{r}_m)$$

Sum of point to line distances

Prior Terms:

- Symmetry
- Prior on Shape
- Surface Smoothness

# Optional: Reconstruction



# 3D Surface Representations

|                         | Voxels | Explicit surface mesh | Point sets | Continuous implicit fields |
|-------------------------|--------|-----------------------|------------|----------------------------|
| High frequency details? | --     | ++                    | +          | ++                         |
| Arbitrary topology?     | +      | -                     | +          | ++                         |
| Regularity?             | +      | +                     | -          | ++                         |

There are many applications at which explicit representations excel:

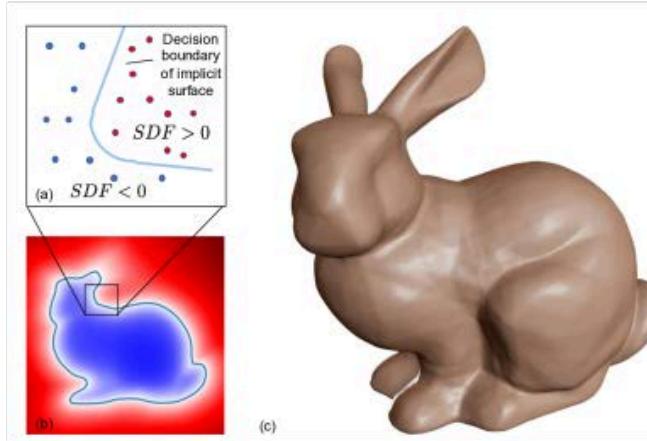
- High-quality rendering in computer graphics.
- Precise modeling of biological structures from biomedical data.
- Computational fluid dynamics in computer assisted design.

But:

- Their topology is fixed.
- They are not particularly deep learning friendly.

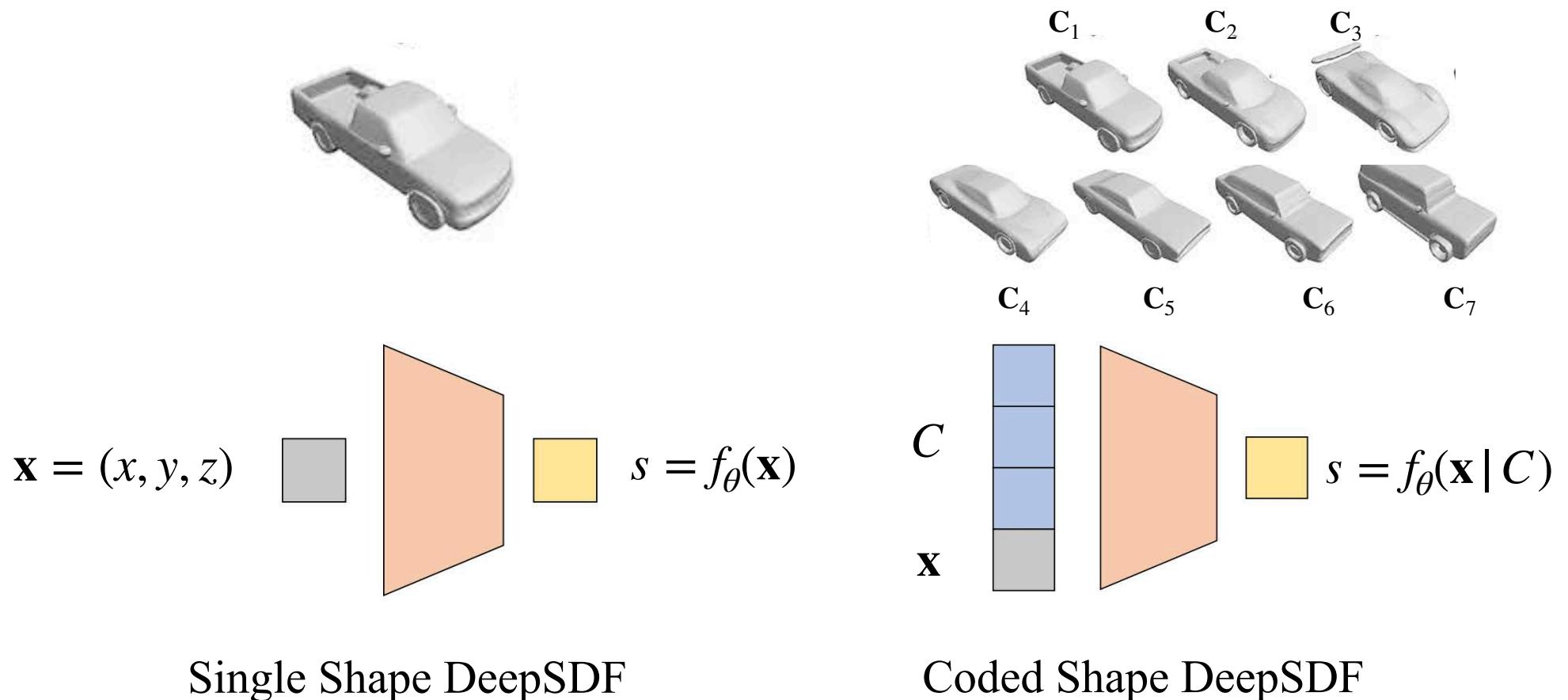
→ Implicit Surface Representations

# Signed Distance Fields (SDF)

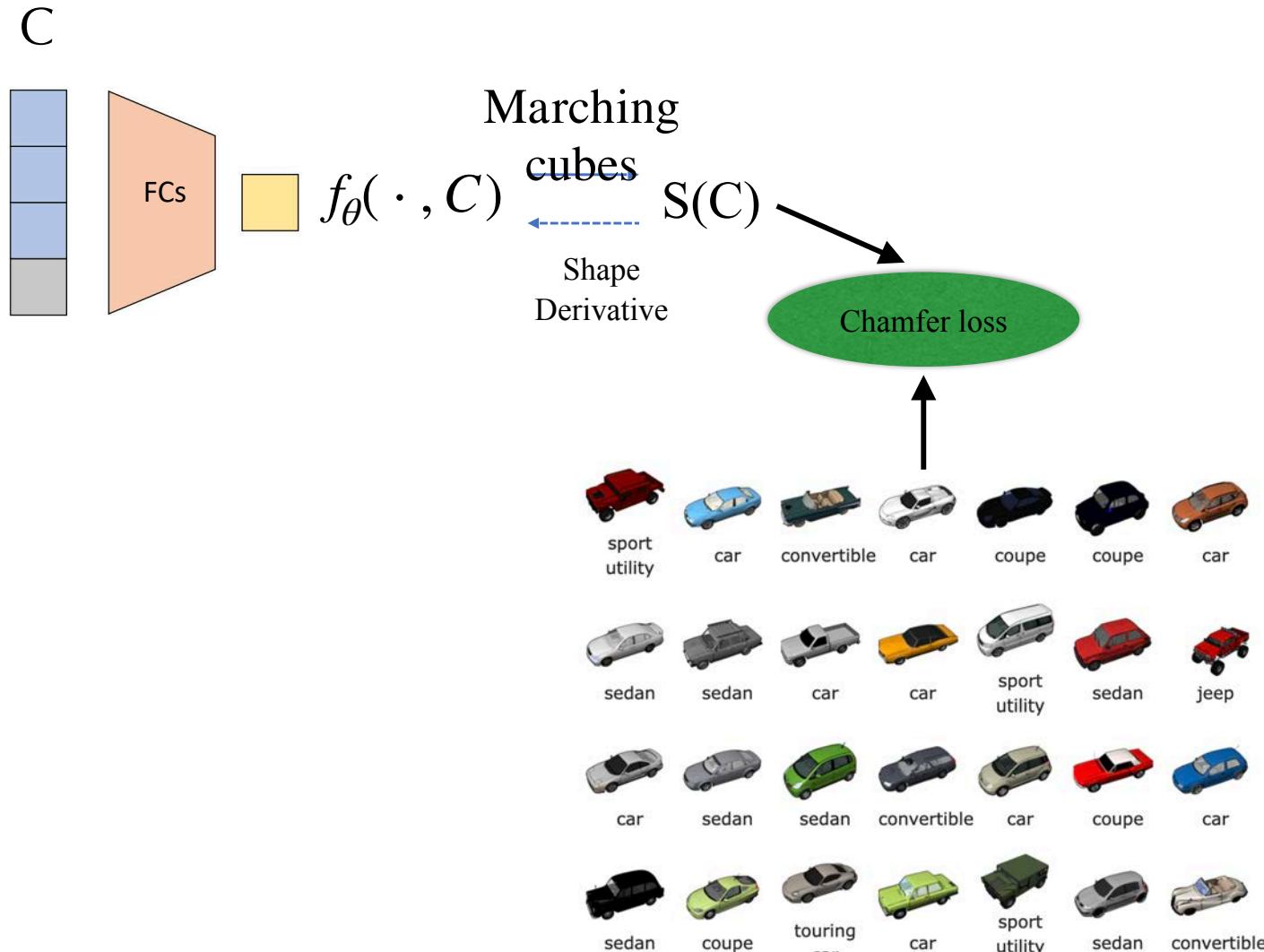


- Represent a 3D surface  $S$  by the zero crossings of a signed distance function  $f: \mathbb{R}^3 \rightarrow \mathbb{R}$   
 $\forall \mathbf{x} \in \mathbb{R}^3, f(\mathbf{x})$  is the signed distance to the surface.
- Such surfaces can easily change topology, which is harder to do with explicit surface representations.
- SDFs have long been appealing in theory but hard to use in practice because it was necessary to store the 3D values of  $f$  in a cube like structure until ....

# Deep SDF



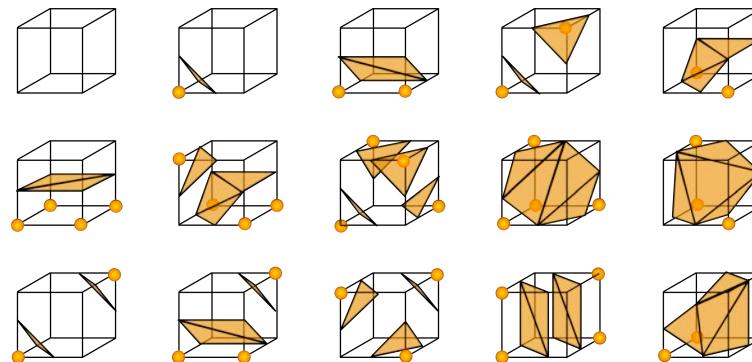
# Learning a Latent Representation



Train an auto-decoder using ShapeNet cars.

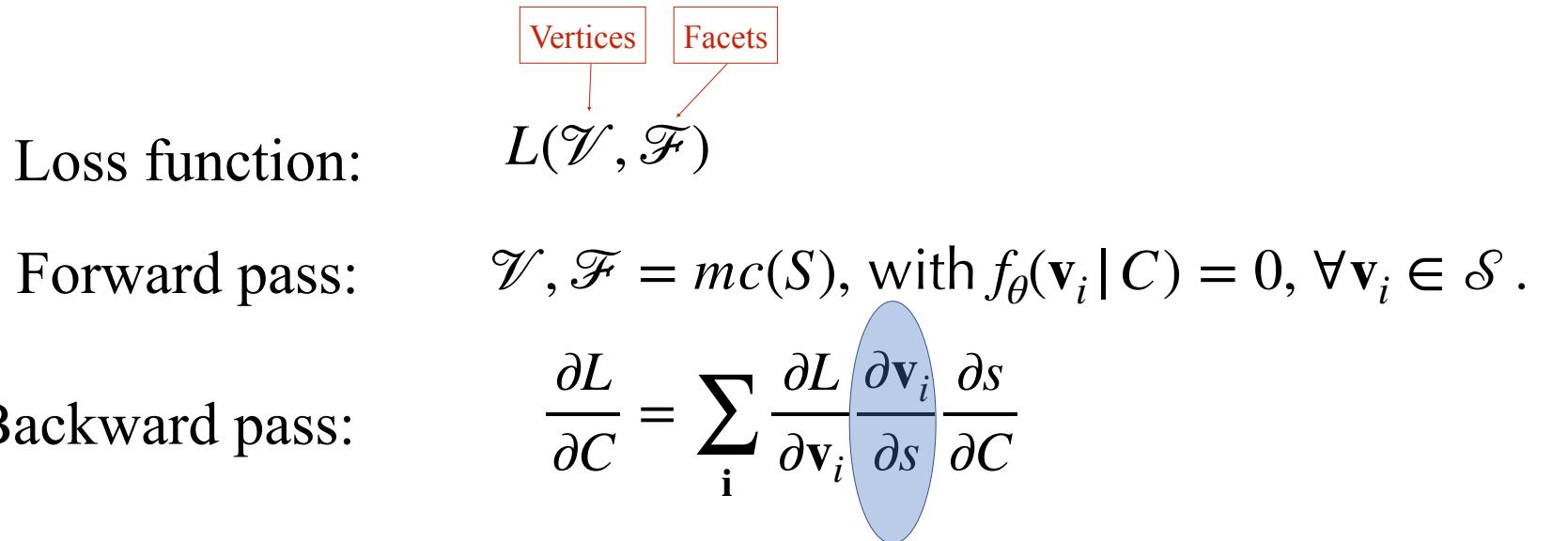
# Non Differentiability of Marching Cubes

If an explicit surface representation is required, one has to run a marching-cube style algorithm:



- Unfortunately, it is **not differentiable** and often **slow**.
- This could be a problem for integration in a deep-learning pipeline.

# Deep SDF Pipeline



- A priori  $\frac{\partial \mathbf{v}_i}{\partial s}$  cannot be computed because  $mc$  is not differentiable.
- But,  $\mathbf{v}_i$  is always a zero of  $s$ !
- The implicit function theorem can be used to prove that
  - its derivative with respect to  $s$  exists;
  - $\frac{\partial \mathbf{v}}{\partial s} = -\frac{\nabla s(\mathbf{v})}{\|\nabla s(\mathbf{v})\|^2}$ .

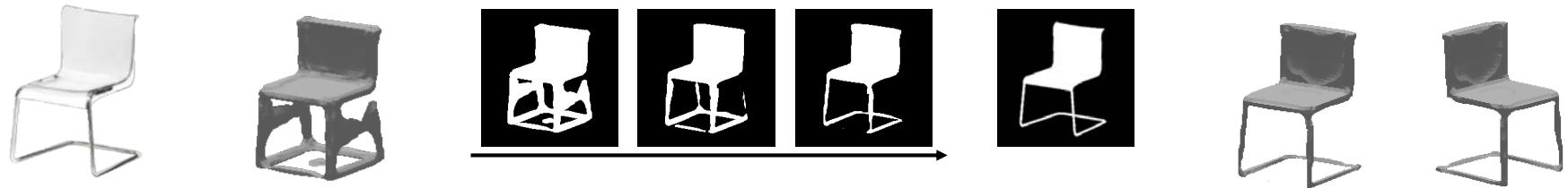
# End-to-End Differentiable Pipeline



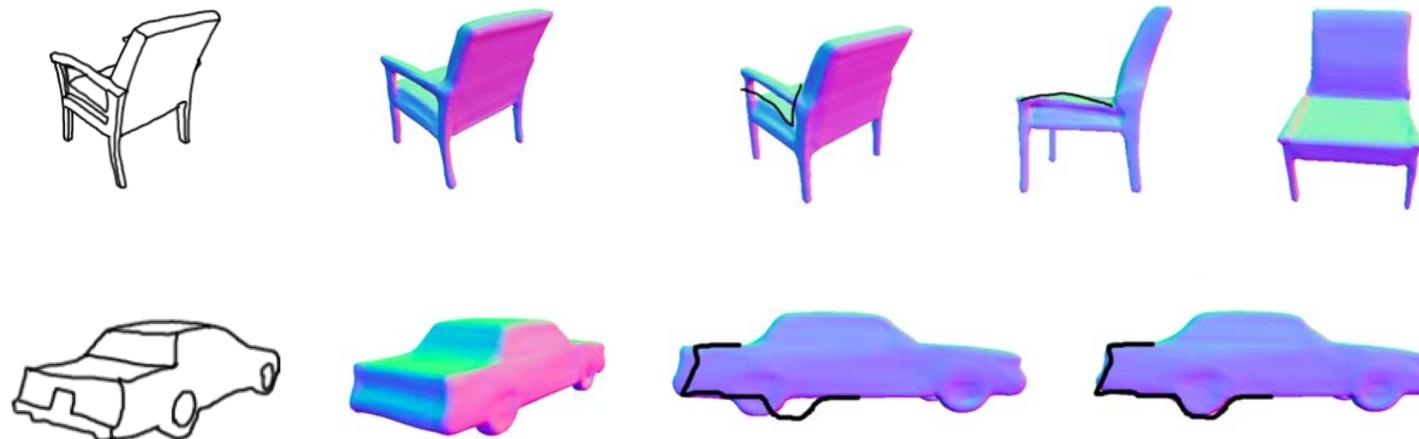
1. Start with a Deep SDF code.
2. Use marching cube to compute vertices and facets.
3. Use them for the forward pass and **for backpropagation**.
4. Update the SDF code and iterate.

→ We can turn a genus 0 cow into a genus 1 duck by minimizing a differentiable objection function.

# From Silhouettes to 3D Shapes

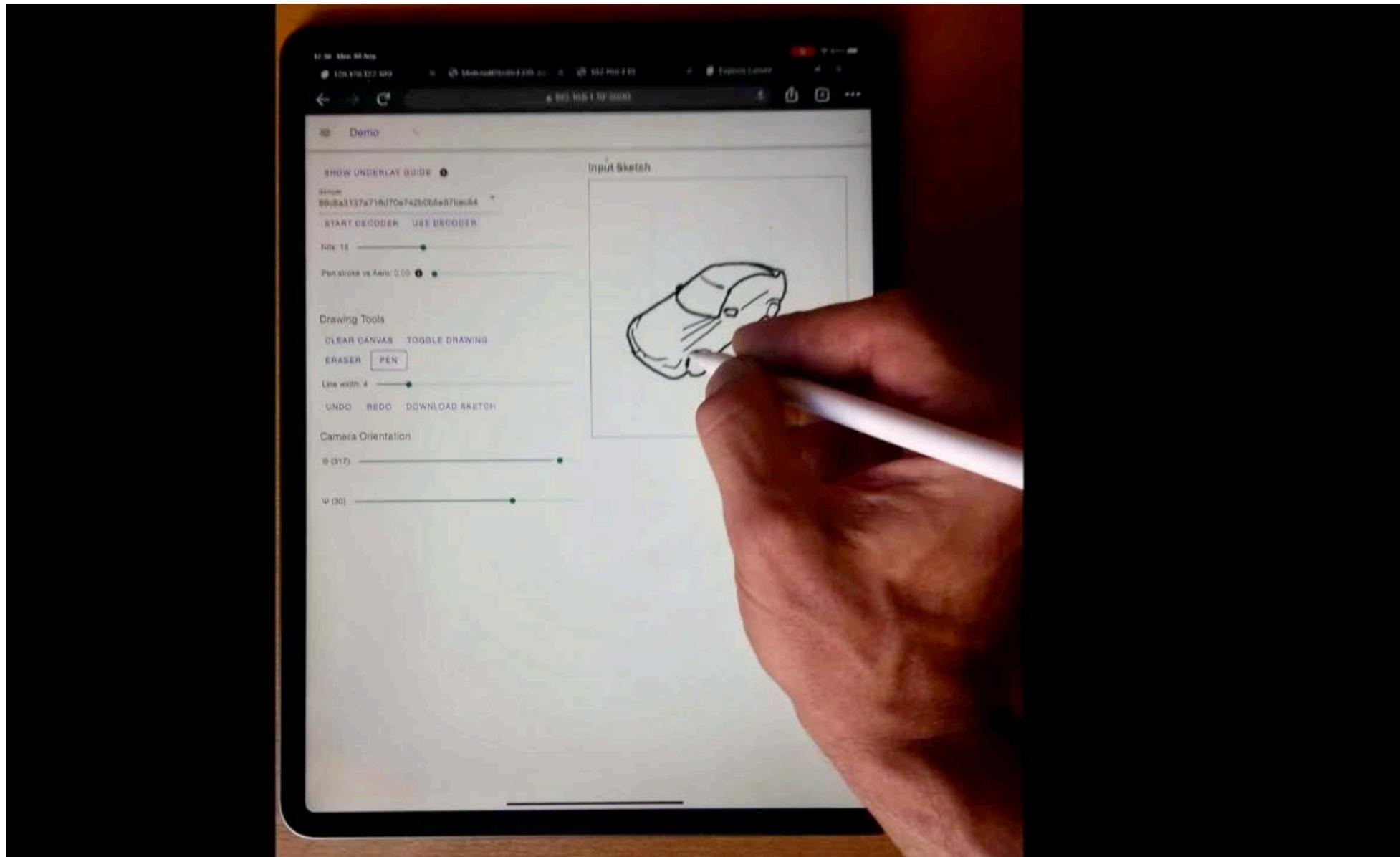


3D Model from Image

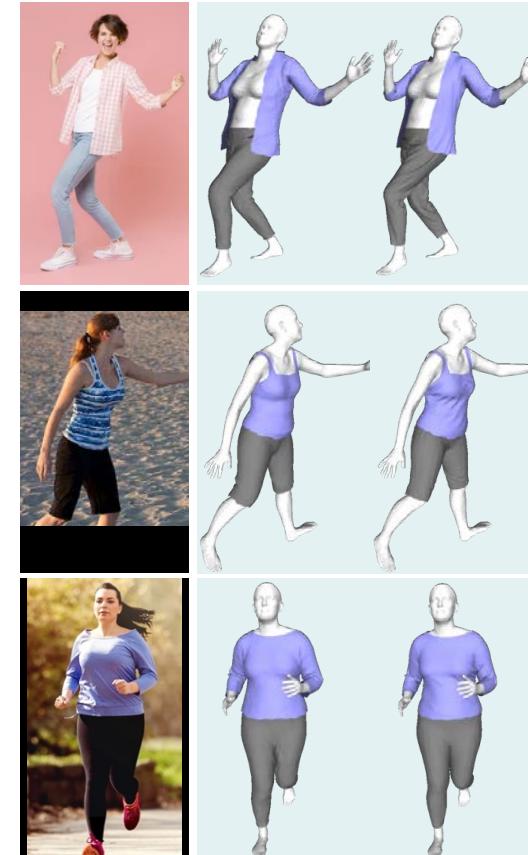


Editable 3D Model from Sketch

# Interactive Design



# Tight-Fitting Clothing



Compute deformation away from the body.

# Clothed People from Images



- Model the clothes in terms of a distance away from implicit sewing patterns.
- Add a deformation model to allow the garment to move away from the body.

# Strengths and Limitations

## Strengths:

- Practical method for recovering shape.
- Produces high quality texture maps.

## Limitations:

- Silhouettes must be precisely extractable.
- Requires many views or strong priors.