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Reminder: Edges and Regions

Edges:  
• Boundary between bland image regions. 
Regions:  
• Homogenous areas between edges. 

 Edge/Region Duality.
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Region Segmentation

• Ideal region: Set of pixels with the same 
statistical properties and corresponding to the 
same object. 

• Purpose: Should help with recognition, tracking, 
image database retrieval, and image compression 
among other high-level vision tasks.
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Application: Automated Driving

Vu et al. , ArXiv’22
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Applications: Photoshop

https://www.photoshopessentials.com/basics/selections/magic-wand-tool/

Find the sky region. 

I find this blue sky too bland! 

Replace it. 

I prefer this one. 

https://www.photoshopessentials.com/basics/selections/magic-wand-tool/
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In Theory
Look for an  image partition such that: 

where H measures homogeneity.
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Complex Gray Level Variations

• Simple thresholding and other basic 
image  operations do not suffice. 

• The H predicate is difficult to define.  
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Context is Essential

Without the whole image it is 
hard to make sense of small 
image windows.
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There is not always a Single Answer

• Segmentations hand-drawn by 5 different people. 

• We cannot say that one is right and the others wrong.



10

Homogeneous or Not?

What is homogeneous in some 
parts of these images are the 
statistical properties, not the 
actual pixel values.
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Mitochondria
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From Simple to Complex Algorithms

• Region Growing. 
• Histogram Splitting. 
• K-Means. 
• Graph Theoretic Methods. 
• Convolutional Neural Nets.
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Region Growing

Interactive Segmentation of a Cell
Adams and Bischof, PAMI’94
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Region Growing

• Labeled pixels. 

• Unlabeled pixels. 

Given a set of regions A1, … , An, let 

, 

the set of unlabeled pixels that are neighbors of already labeled ones and d be a 
metric, such as 

 . 

Until all pixel are labeled: 
1. Represent T as a sorted list, the SSL, according to this metric. 
2. Label the first point in T. 
3. Add its the neighbors to the SSL.  

T = {x ∉ (∪n
i=1Ai), N(x) ∩ (∪n

i=1Ai) ≠ ∅}

δ(x) = |g(x) − meany∈Ai(x)[g(y)] |



15

Region Growing

While SSL is not empty do  
	 Remove first pixel y from SSL.  
	 If all already labeled neighbors of y, other than boundary        
	 pixels, have the same label 
	 then  

     		 Set y to this label.  
     		 Update running mean of corresponding region.  

     	 Add neighbors of y that are neither already set nor 	
already in the SSL to the SSL according to  their distance	
value.  

    	 else  
     		 Flag y as a boundary pixel.  
    	 fi 
od
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Interactive Region Grower

Medical Imaging Interaction Toolkit

https://www.mitk.org/wiki/
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Limitations

• The result depends on the order in which the 
pixels are taken into consideration.  

• The homogeneity measure is noise sensitive. 

Original image Result given 
two seeds.

Result given  
two different seeds.

Result given  
larger seeds.



18

Image Histogram

Number of pixels that have a given gray level. 
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Histogram Splitting

- Groups of similar pixels appear as bumps in the brightness histogram

- Split the histogram at local-minima

- Label pixels according to which bump they belong to

—> Cannot stop there, must go on. 
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Recursive Splitting 

• Compute image histogram.  
• Smooth histogram. 
• Look for peaks separated by deep valleys.  
• Group pixels into connected regions.  
• Smooth these regions. 
• Iterate.

Gray level g

p(g)

Threshold T

P1

P2
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Recursive Splitting 

• A first threshold is used to 
segment the dark pixels.  

• This yields two regions, the 
bottom half of the picture and 
the dark rectangle at the top. 

• The bottom half of the picture 
can now be more eas i ly 
segmented into two regions.

-> Decisions can be  deferred until enough information becomes 
available.
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Medical Application

It has its applications but …..
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Finding Thresholds is Hard

Probability 
distributions

Corresponding 
histograms

—> Choosing optimal thresholds is a difficult 
optimization problem. 
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No Obvious Threshold

There are thresholds that would work but you can’t find them 
from the histogram only. 
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No Valid Threshold at All

In this image, no threshold can generates meaningful results.
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No Global Threshold

Because of the complex illumination:  

• The top of the page is much lighter than the bottom. 

• No global threshold can be found. 

• Local thresholds can account for this.
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Use Local Histograms

• Compute a histogram in each red square. 

• Find a local threshold.

Global Local
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Use Local Histograms

• Compute local histograms on a coarse grid. 
• Use them instead of a global one.



29

Limitations of Global Histograms

• Histograms do not account for neighborhood 
relationships.   

• Thresholds are hard to find. 

• Some boundaries will not be found because 
the gray levels on both side belong to the 
same histogram peak. 
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Using Color

RGB R

GB



r
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Color Space

• Value 

• Hue 

• Saturation

V = R + G + B

r =
R
V

g =
G
V

b =
B
V
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RGB Chromaticity Diagram

The Maxwell triangle involves projecting the colors in 
RGB space onto R+G+B=1 plane.  
 Chromaticity becomes independent from luminance.
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HSV Space

H = arccos(
0.5(2r − g − b)

(r − g)2 + (r − g)(g − b)
) if b < g

S = max(r, g, b) − min(r, g, b)
V = R + G + B

Hue / Saturation / Value
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HSV Images

RGB Value

HueSaturation
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Saturation Histogram

• This histogram is a lot easier to split! 
• It makes it easy to segment the head from the background. 

Low saturation background pixels.
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CIE LAB Color Space

• Another way to represent color in terms of three coordinates, one for “brightness” 
and the other two for chromaticity.  

• Designed so that the same amount of numerical change in these values corresponds 
to roughly the same amount of visually perceived change. 

CS-413 Computational photography


https://moodle.epfl.ch/course/view.php?id=15036
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Using Multiple Histograms

• Compute multiple histograms for each segment.  
• Use one of them to split each segment.  
• Repeat on the resulting smaller segments. 
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Recursive Algorithm



39

Early Color Segmentation

Ohlander & Price, CGIP’78
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More Recent Color Segmentation

https://www.photoshopessentials.com/basics/selections/magic-wand-tool/

Manual intervention was still required to find the whole sky region the sky region! 

I find this blue sky too bland! Replace it. 

https://www.photoshopessentials.com/basics/selections/magic-wand-tool/
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Segmentation as Clustering

• Each pixel has 2 spatial coordinates and 1 gray level or 3 
color components.  

• Segmentation can be understood as clustering in  
• 1D space (G); 
• 3D space (x,y,G), (H,S,V), (L,a,b); 
• 5D space (x,y,L,a,b).  

• Ideally each cluster should be as compact as possible.

L

ba
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K-Means Clustering

Given a set of input samples: 
•Group the samples into K clusters. 
•K is assumed to be known/given. 
•In the example above, each sample is a point in 2D.  
•In images, samples can be points in 1D, 3D, or 5D.

xi xj
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K-Means Clusters

• Cluster k is formed by the points . 

•  is the center of gravity of cluster k.
{xik

1
, …, xik

nk
}

μkμ1 μ2

μ3
µ4
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The mean of points  is 

 , 

{x1, …, xN}, xi ∈ ℝD

μ =
1
N

N

∑
i=1

xi μ ∈ ℝDxj

xi

In 2D

μ
• If the xi were physical points of equal 

mass, m would be their center of gravity. 
• This applies in any dimension.  



• Cluster k is formed by the points . 

•  is the center of gravity of cluster k.
{xik

1
, …, xik

nk
}

μk
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Formalization

• The distances between the points within a cluster should be small. 
• The distances across clusters should be large. 
• This can be encoded via the distance to cluster centers : 

—> Minimize  

where  are the  samples that belong to cluster k. 

{μ1, …, μK}
K

∑
k=1

nk

∑
j=1

(xik
j
− μk)2

{xik
1
, …, xik

nk
} nk

μ1 μ2

μ3
µ4
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small

large



45

Difficult Minimization Problem

Minimize 

  

but: 
• We don’t know what points belong to what cluster.  
• We don’t know the center of gravity of the clusters. 

K

∑
k=1

nk

∑
j=1

(xik
j
− μk)2
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Simple Solution to the Problem

1. Initialize , randomly if need be. 
2. Until convergence 

2.1. Assign each point  to the nearest center  

2.2. Update each center  given the points assigned to it

{μ1, …, μK}

xi μk

μk
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Alternating Optimization

• Initialize 
• Associate point to centers 
• Recompute centers

Demo

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
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Three Classes
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Initial Conditions Matter

Initially, the points are assigned to 
the clusters at random —> Success. 

Initially, the points are assigned to 
the closest cluster —> Failure. 

—> In practice try several different random 
initialization and keep the one that yields the best 
result in term of the sum of square distances.
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GRAY-LEVEL ONLY (1D)

K=3 K=4

K=2
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Color Only (3D)

8 iterations for k=5
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Color Only (3D)

K=3 K=5 K=8 K=15

Different Initializations for k=5

• Different results for different initializations. 
• For k well chosen, the results are good for this image 

because it features bright and distinctive colors. 

Different values of k



53

XY + Color (5D)

Run K-Means algorithm with regularly spaced seeds on a 
grid and using a distance that is a weighted sum of 
distances in image space and in gray level/color space. 

—> Superpixels Achanta et al. PAMI’12

E(C1, . . . , Ck, c1, . . . , ck) =
X

j

X

i2Cj

d(xi, cj)
2

x =

2

66664

u
v
L
a
b

3

77775
or

2

66664

u
v
I
0
0

3

77775

d(x, c)2 =
(x[0]� c[0])2 + (x[1]� c[1])2

h2
s

+
(x[2]� c[2])2 + (x[3]� c[3])2 + (x[4]� c[4])2

h2
r
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SLIC Superpixels

• Superpixel segmentations with centers on a 
64x64, 256x256, and 1024x1024 grid. 

• Can be used to describe the image in terms of 
a set of small regions.

64x64

256x2561024x1024

256x256
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Color or Black and White

It works in both cases.
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Electron Microscopy
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Mitochondria Segmentation
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Assigning Probabilities

• Compute image statistics for each superpixel.   
• Train a classifier to assign a probability to be 

within a mitochondria. 
• Can be used to produce segmentations using the 

graph-based techniques we will describe next.
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SVM Classification

• The features incorporate the filter responses among other 
things.  
• The probability of a superpixel belonging to a mitochondria is 
estimated from the SVM output.  

But how we can turn this into a segmentation? 
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Images as Graphs
An image I(x,y) is equivalent to a graph G(V,E)

Original image I(x,y)

- E is a set of edges linking neighboring nodes together. The weight  or strength of 
  the edge is proportional to the similarity between the vertices it joins together.

- V is a set of vertices or nodes that represent individual pixels.
Graph G(V,E)
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Graph-Cut

A

B A cut through a graph is defined as 
the total weight of the links that 
must be removed to divide it into 
two separate components.
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Min-Cut
• Find the cut through the graph 
that has the overall minimum 
weight, which can be done 
effectively. 

• It should be the subset of edges 
of least weight that can be 
removed to partition the graph.

• Since weight encodes similarity, 
this should be equivalent to 
partitioning the graph along the 
boundary of least similarity.

10 10 10

10

10

10

10 10 10

10

10

10

10
10

10

10

.1 .1

.1

.1

.1.1

.1
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Trivial Cut

10 10 10

10

10

10

10 10 10

10

10

10

10
10

10

10

5 5

5

5
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5

5

• Has a preference for shortcuts, 
which may sometime result in 
trivial solutions. 

• Must be constrained to avoid 
them.
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ST Min-Cut

T

S - Introduce two special nodes called 
source (S) and sink (T)

- S and T are linked to some image 
nodes by links of very large weight 
that will never be selected in a cut.

- Find the minimum cut separating 
the source from the sink.

--> The problem becomes deciding how to connect S and T to the 
image nodes.
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Interactive ST Min-Cut

User-selected pixels connected to S (red) 
    and pixels connected to T (cyan)

Minimum S-T cut

--> If we have a good initial ‘guess’ to tell us how to link the source and sink to 
the image, we will get an optimal segmentation.
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Back To Mitochondria

• A high probability of being a mitochondria can 
be represented by a strong edge connecting a 
supervoxel to the source and a weak one to 
the sink.  

• And conversely for a low probability. 
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Another classifier can be trained to assign a 
high-weight to edges connecting supervoxels 
belonging to the same class and a low one to 
others. 

Back To Mitochondria
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Minimizing a Loss Function

In probabilistic terms, this amounts to minimizing

with respect to the set of labels y = [y1,…,yn] given the set of 
supervoxels [x1,…,xn], where E is negative log-likelihood of 
the labels being correct. 
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3D Mitochondria

Lucchi et al. TMI’11
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Modeling Membranes

Lucchi et al. MICCAI’14

Here we use three classes instead of two:  
• Inside 
• Membrane 
• Everything else 

—>Because the inside is fully enclosed by the membranes, we 
can still find a global optimum. 
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Speeding up the Analysis Process
3.21 µm × 3.21 µm × 1.08 µm: 53 mitochondria

• By hand: 6 hours.  
• Semi-automatically: 1.5 hours  
—> Substantial time saving for the neuroscientists. 

Automated result Interactively cleaned-up result
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Graph-Cut on Ordinary Images

Galun et al., ICCV’03
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Interactive Foreground Extraction

Foreground & 
Background

Background

Foreground

BackgroundG

R

G

RIterated 
graph cut

• K-means to learn  color distributions 

• Graph cuts to infer the segmentation 

GrabCut Rother & al. SIGGRAPH 04
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  Relatively Easy Examples

GrabCut Rother & al. SIGGRAPH 04
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More Difficult Examples

Camouflage &  
Low Contrast No telepathyFine structure

Initial 
Rectangle

Initial 
Result

GrabCut Rother & al. SIGGRAPH 04
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Convolutional Neural Nets

• Connect input layer to output one made of segmentation labels. 
• Need layers that both downscale and upscale. 
• Connect the lower layers directly to the upper ones.
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Reminder: U-Net for Delineation
Image Tubularity Map

Downsampling Upsampling

—> Train a U-Net to output a tubularity map. 

Skip connection

Skip connection
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U-Net for Segmentation

• Same architecture (in more details).  
• Train it to produce a segmentation mask instead of 

a delineation mask. 
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Potential Interpretation

• A key role of the ConvNet is 
to generate for every 
output pixel a feature 
vec to r conta in ing the 
o u t p u t o f a l l t h e 
intermediate layers. 

• A classifier then assigns a 
label to the individual 
pixels.
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In the Street
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Recursive Segmentation

(b) CNN + RNN

(a) Rec. CNN no hidden state

(c) U-Net

CNN

s0

CNN

CNN

Recurrent 
Unit

CNN

Recurrent 
Unit

s2

 
 Conv

 
 Up

 
 Conv

 
 Up

ht�1
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(d) Our Rec. U-Net

U-Net Rec. U-Net

Image Ground TruthT = 1 T = 2 T = 3

As for delineation, feeding the output back into the network is an 
effective way to take context into account.  

Wang et al., ICCV’19
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Recursive Hand Segmentation

Image U-Net-G Rec-Middle Rec-Last Rec-Simple Ours Ground Truth
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Wang et al., ICCV’19
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Context Features + CRF U-Net 3D

Method Jaccard Index

Context F. + CRF 84.6%

U-Net 2D 82.4%

U-Net 3D 86.1%

Striatum Mitochondria

Mitochondria

—> Using a ConvNet  boosts performance but there is still work to do!
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Synapses
Context Features 3D CRF U-Net 3D

84

Jaccard 
Index

Method

66.8% Context Features 2D

85.2% Context Features 3D

73.5% U-Net 2D

77.0% U-Net 3D

?
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Context-Based Features

Synapse:

Non-Synapse:

Pre-synaptic region 
• Axon terminal 
• Many vesicles

 

 

Post-synaptic region 
• Dendrite 
• No vesicles

Becker et al. TMI’13

• The old style context-based features explicitly model orientation.  
• How can we do that in a deep-learning framework? 



86

Probabilistic Atlases

Synapse in canonical 
orientation

Probability of being  
a post-synaptic voxel

Probability of being  
a pre-synaptic voxel

Probability of being  
a cleft voxel
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U-Net + Atlases

T (A1)
<latexit sha1_base64="lFXws4XXqIU8jYN0IyHiZFjvUUg=">AAAHInicfdVNb9MwGMBxb7AyylsHRy4RFdJAaGoHEhw3SrU3bQytXTs1VeU4Tmo1TiLHaddF+SYcgQ/DDXFC4pNwwumK4OkzFqmV5d8/bl6UxokDkeha7cfS8o2bK6Vbq7fLd+7eu/+gsvbwNIlSxXibRUGkug5NeCBC3tZCB7wbK06lE/COM2oU3hlzlYgobOlpzPuS+qHwBKPaTA0qFVtSPWQ0yFr5+vag/mxQqdY2arPNwoP6fFAl8+14sLbyy3YjlkoeahbQJOnVa7HuZ1RpwQKel+004TFlI+rznhmGVPKkn80OPbeemhnX8iJlPqG2ZrP/7pFRmSRT6ZiyONBk0YrJq6yXau9NPxNhnGoesssf8tLA0pFVXAfLFYozHUzNgDIlzLFabEgVZdpcrbL9jptzUfzQrPs+5orqSD3PbKp8Sc9zc26+/aIYXReK8E9oRv8LE+GbbPZ9TSJnibw6yexmns1uo+NkzTwvl+2QT1gkJQ3dzHa2816tPw+8bNsE0JvAm8h3gO8g3wW+i3wP+B7yA+AHyPeB7yNvAW8hbwNvI+8A7yDvAu8iPwN+VtyAhYKCgqIVHOAOcgacIXddELgo8DwQeCjwgfvIh8CHyIUAgUDBCPgIuQQukUfAI+QauEaeAk+Rj4GPkU+AT5CfAz9HPgU+RX4B/AI9xbLxNyj+rRuLK8gjGByh4BAGhyg4gcEJClowMI+aeVvUF98NeHC6uVF/ubH54VV16+38vbFKHpMnZJ3UyWuyRXbJMWkTRsbkI/lMvpQ+lb6WvpW+X6bLS/N9HhGwlX7+BrJOnGI=</latexit>

T (A2)
<latexit sha1_base64="4KJeUmZnwg209GDTDKjzRpdMQk4=">AAAHInicfdVNb9MwGMBxb7AyylsHRy4RE9JAaGoLEhxXSrU3bQytXTs1VeU4Tmo1TiLH6dZF+SYcgQ/DDXFC4pNwwumK4OkzFqmV5d8/bl6UxokDkehq9cfS8o2bK6Vbq7fLd+7eu/+gsvbwJIlSxXiHRUGkeg5NeCBC3tFCB7wXK06lE/CuM24W3p1wlYgobOtpzAeS+qHwBKPaTA0rFVtSPWI0yNr5RmNYfzasrFc3q7PNwoPafLBO5tvRcG3ll+1GLJU81CygSdKvVWM9yKjSggU8L9tpwmPKxtTnfTMMqeTJIJsdem49NTOu5UXKfEJtzWb/3SOjMkmm0jFlcaDJohWTV1k/1d6bQSbCONU8ZJc/5KWBpSOruA6WKxRnOpiaAWVKmGO12IgqyrS5WmX7HTfnoviBWfd9zBXVkXqe2VT5kp7n5tx8+0Uxui4U4Z/QjP4XJsI32ez7mkTOEnl1ktmtPJvdRsfJWnleLtshP2ORlDR0M9tp5P3qYB54WcME0FvAW8i3gW8j3wG+g3wX+C7yfeD7yPeA7yFvA28j7wDvIO8C7yLvAe8hPwV+WtyAhYKCgqIVHOAOcgacIXddELgo8DwQeCjwgfvIR8BHyIUAgUDBGPgYuQQukUfAI+QauEaeAk+RT4BPkJ8BP0N+Dvwc+RT4FPkF8Av0FMvm36D4t24uriAPYXCIggMYHKDgGAbHKGjDwDxq5m1RW3w34MFJfbP2crP+4dX61tv5e2OVPCZPyAapkddki+yQI9IhjEzIR/KZfCl9Kn0tfSt9v0yXl+b7PCJgK/38Dbj8nGM=</latexit>

T (A3)
<latexit sha1_base64="1wNeVpPJSAkBHMRwQq44f8DeMXI="></latexit>

A1
<latexit sha1_base64="/RMbnGfb2keBM4yei2Du8yyYEhk="></latexit>

A2
<latexit sha1_base64="ckdo275O50khW9XZgPVlYlU/HAc="></latexit>

A3
<latexit sha1_base64="bJZGB+uPr1KFApoa9aLmsacwWVE="></latexit>

Affine transform: Accounts for orientation and scaling. 
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3D Synapses
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Atlases for Optic Disk Segmentation

Ground truth U-Net PA-Net

Optic disk Optic nerve

Probabilistic Atlases
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Moral of the Story

• Deep Networks are powerful tools, especially 
when there is a lot of training data.  

• However, modeling your problem properly is 
still needed to achieve the highest possible 
level of performance.  

• The old techniques often inform our design 
choices. 

—> Yet another reason why I am still talking 
about them.
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Reminder: Vision Transformers

Tolstikhin et al. , ArXiv’21

• Break up the images into square patches. 
• Transform each patch into a feature vector. 
• Feed to a transformer architecture.
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Vision Transformers for Segmentation

• Replace the “recognition” machinery by a “mask transformer”.  
• Pros: Good at modeling long range relationships.  
• Cons: Flattening the patches looses some amount of information. 

Strudel et al., ICCV’21
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Segment Anything

• Based on a Vision Transformer 
• Encoder/Decoder architecture 
• Traditional prompt for segmentation 
• Class agnostic segmentation

Kirilov, ArXiv'23
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Segment Anything

• The secret is in the data

• SA-1B dataset: 
• 11 million images - 1.1 billion masks 

• Interactive and automated annotation
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U-NET + Transformers

• A CNN produces a low-resolution feature vector.  
• A transformer operates on that feature vector.  
• The upsampling is similar to that of U-Net 

—> Best of both worlds? 
Chen et al., TETCI’23
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In Short

• Local methods can provide valuable information but are inherently 
limited.  

• Domain knowledge, user interaction, and training data can be used 
to turn this data into usable results: 

• Given enough training data, deep nets deliver the best 
performance today.  

• It can be further enhanced by introducing domain knowledge.  
• Given smaller amounts of training data, K-Means and graphical 

models still have their uses.  

• Same philosophy as for delineation.   



97

What About the Dog? 

Most current algorithms won’t “see” it!


