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Reminder: Edges and Regions

Edges:

e Boundary between bland image regions.
Regions:

e Homogenous areas between edges.

- Edge/Region Duality.
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Region Segmentation

Ideal region: Set of pixels with the same
statistical properties and corresponding to the
same object.

Purpose: Should help with recognition, tracking,
image database retrieval, and image compression
among other high-level vision tasks.
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Application: Automated Driving

=Pr-L Vu et al. , ArXiv’22 A



Applications: Photoshop

Fihd the sky region. Replace it.

=PrL


https://www.photoshopessentials.com/basics/selections/magic-wand-tool/
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In Theory

Look for an image partition such that:
I=UsS,
§;MNS, =0,Vi=
H(S) =True,Vi
H(S,US )= False, 1t §; and §; are adjacent.

where H measures homogeneity.
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Complex Gray Level Variations

e Simple thresholding and other basic
image operations do not suffice.
e The H predicate is difficult to define.




Context is Essential

Without the whole image it is
hard to make sense of small
image windows.

=PrL



There is not always a Single Answer

e Segmentations hand-drawn by 5 different people.

e We cannot say that one is right and the others wrong.

=PrL A




Homogeneous or Not?

What is homogeneous in some
parts of these images are the
statistical properties, not the
actual pixel values.

=PrL



Mitochondria Inner Structure

Mitochondria
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From Simple to Complex Algorithms

e Region Growing.

e Histogram Splitting.

e K-Means.

e Graph Theoretic Methods.
e Convolutional Neural Nets.
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Region Growing

mentation of a Cell

Adams and Bischof, PAMI’94




Region Growing

 Labeled pixels.

 Unlabeled pixels.

Given a set of regions A1, ... , Aq, let
T = {x & (U A), N&) N (UL,A) # @),

the set of unlabeled pixels that are neighbors of already labeled ones and d be a
metric, such as

6(x) = | g(x) — meanyen, [N

Until all pixel are labeled:
1. Represent T as a sorted list, the SSL, according to this metric.
2. Label the first point in T.

L 3. Add 1ts the neighbors to the SSL. A




Region Growing

While SSL is not empty do
Remove first pixel y from SSL.
If all already labeled neighbors of y, other than boundary
pixels, have the same label
then_
Set y to this label.
Update running mean of corresponding region.
Add neighbors of y that are neither already set nor
already in the SSL to the SSL according to their distance
value.
else

Flag y as a boundary pixel.
fi
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Interactive Region Grower

[EE———— [ (= =]

Ix

0 0
0
1
ElE | [es &
Lower Threshold: |-1 000 Upper Threshold: ]«4[}0 start region growing |

Medical Imaging Interaction Toolkit

https://www.mitk.org/wiki/ A
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Limitations

Result given Result given Result given
two seeds. two different seeds. larger seeds.

Original image

e The result depends on the order in which the
pixels are taken into consideration.

e The homogeneity measure is noise sensitive.
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Image Histogram

T T T
Uz peopls Tuaima faces r3zoomitct

Number of pixels that have a given gray level.

PrL A
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Histogram Splitting
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- Groups of similar pixels appear as bumps in the brightness histogram
- Split the histogram at local-minima

- Label pixels according to which bump they belong to

—> Cannot stop there, must go on.
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Recursive Splitting

A P1
P>

p(g) /\

Threshold T

» Gray level g

Compute image histogram.

Smooth histogram.

Look for peaks separated by deep valleys.
Group pixels into connected regions.
Smooth these regions.

Iterate.

.
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Recursive Splitting

A first threshold is used to
segment the dark pixels.

This yields two regions, the
bottom half of the picture and
the dark rectangle at the top.

The bottom half of the picture
can now be more easily
segmented into two regions.

) -
40
60

20 40 60 80 100

0
0

100 200 300

-> Decisions can be deferred until enough information becomes

available.
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Medical Application

=PrL



Finding Thresholds is Hard

T I"*’“m‘ ™" | Probability
I3 ﬁ(\ distributions

, ' distribution of objects
" distribution of background

(b) ? tgsl%%lld optimal conven?tignal -
h comventionl lf"“"e““"“al [ Corresponding
threshold | ]
optimel histograms

—> Choosing optimal thresholds is a difficult
optimization problem.
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No Obvious Threshold

g000

6000

4000

2000

20 40 60 80 100 0 100 200 300

There are thresholds that would work but you can't find them
from the histogram only.

EPFL A




No Valid Threshold at All

In this image, no threshold can generates meaningful results.
=PrL
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No Global Threshold

Sonnet for LLena

Because of the complex illumination:

e The top of the page is much lighter than the bottom.

eNog
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nreshold can be found.

nolds can account for this.
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Use Local Histograms

Sounct ler o«
Sonnet Lena Sonnel for Lena
Qdear 1 X
e band -0 e O dear Lena, yuur beauty in o vast

E thought the o0 e 11 is bard someimey to describe it fast,

o only vont port a1 1 thought the entire world T would hinpreas
First when | onloon . oy If only your portralt 1 could compres,

that yuur chehs Dreloonnn, v v v v Alas! First \"Ill'li I triedl to nse \'Q

hair contains n (hotsitl s 1 fonnd thnt yuur checks belong to only yon,
with suma of discrete cosues Your silky hait vontalng n thonand lines
pomsual and tactunl 1tard to mmatch with swins of discrete cosines.
And for your lips, sensual and {nctunl
Thittren Crays found not the proper {ractnd,
And while these acthaeks nre all gnite severe
1 might have fixeld them with hneks here or there
Bt when Gllers took sparkle from youg exey
I aaid, ‘Do ol this. 108 just digitize.*

entire world [ woul@ unpr
prerait | could comfross
on | tried to use V

i Thoviaw Culthurast

Global Local

e Compute a histogram in each red square.

e Find a local threshold.
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Use Local Hlstograms

- GLGBJ"'«L NQRMIEF{TI - = [GLOBAL HISTOGRAM =]« --‘GL(}BAL JEGMEHTIE _-_‘J

= [LOGAL-HISTOGRAMM = [+ =1
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e Compute local histograms on a coarse grid.
e Use them instead of a global one. A
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Limitations of Global Histograms

e Histograms do not account for neighborhood
relationships.

e Thresholds are hard to find.

e Some boundaries will not be found because
the gray levels on both side belong to the
same histogram peak.

_d

Ml
v
"N
r




Using Color

RGB

=PrL



Color Space

V=R+G+B
ol R
r r A r = V
/\ ;
§=7;
b g V
b Espace RGB g Espace HSV b . B
V
e Value
* Hue i .

o Saturation T g

=PrL




RGB Chromaticity Diagram

The Maxwell triangle involves projecting the colors in
RGB space onto R+G+B=1 plane.

- Chromaticity becomes independent from luminance.

PrL A
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HSV Space

anjep

Hue / Saturation / Value

0.5Q2r—g—0> .
H = arccos( Cr-g-b yifb<g

V(r— g2+ (r—g)(g—b)
S = max(r, g,b) — min(r, g, b)

V=R+G+B A




HSV Images

RGB Value

Saturation Hue

=PrL



e This histogram is a lot easier to split!
o It makes it easy to segment the head from the backgro

=PrL

1000 +

Saturation Histogram

Low saturation background pixels.
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CIE LAB Color Space
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e Another way to represent color in terms of three coordinates, one for “brightness”

and the other two for chromaticity.

e Designed so that the same amount of humerical change in these values corresponds

to roughly the same amount of visually perceived change.

=PrL

g



https://moodle.epfl.ch/course/view.php?id=15036

Using Multiple Histograms

.. e .
argnare 3 R Tt 1

e Compute multiple histograms for each segment.
e Use one of them to split each segment.

e Repeat on the resulting smaller segments.
EPEL P J J A




Recursive Algorithm

Region
finished

None

>
ki

Get next region to
segment

N

Compute set of
histograms

N

Select best peak

N

Apply Threshold

h

Selected Connected
Recions

N
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Add these regions to the
list of regions to be
processed




Early Color Segmentation

=PrL Ohlander & Price, CGIP’78 A




More Recent Color Segmentation

.o .
X
v T L

bt s s a s e seans s s
X

I find this blue sky too bland! Replace it.

Manual intervention was still required to find the whole sky region the sky region!

=PrL A



https://www.photoshopessentials.com/basics/selections/magic-wand-tool/

Segmentation as Clustering

‘ oo g

Each pixel has 2 spatial coordinates and 1 gray level or 3
color components.

Segmentation can be understood as clustering in

1D s
3D s
5D s

=PrL

pace (G);
pace (x,y,G), (H,S,V), (L,a,b);

Ideally each cluster should be as compact as possible. ﬂ

pace (x,y,L,a,b).
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K-Means Clustering

. . . .
.............
.......

Given a set of input samples:

e Group the samples into K clusters.

oK is assumed to be known/given.

eIn the example above, each sample is a point in 2D.
eIn images, samples can be points in 1D, 3D, or 5D.

PrL A




K-Means Clusters

A
i
» Cluster k is formed by the points {X, ..., X }.
i S * i, 1s the center of gravity of cluster k.
The mean of points {X;, ..., Xy}, X; € R is
1 N
X — D
..']. ﬂ—_le,ﬂER
° ) N :
o oM, ° i=1
Xi. o’ : o < If the x;i were physical points of equal
mass, M would be their center of gravity.
In 2D  This applies in any dimension.
EPEL .-




Formalization

» Cluster k is formed by the points {X, ..., Xy }.

ok
* i, 1s the center of gravity of cluster k.

el
...0 . "
0.. P
N
ey
DR

 The distances between the points within a cluster should be small.

* The distances across clusters should be large.

» This can be encoded via the distance to cluster centers {j, ..., Ug}:

K mn
.« e . 2
—> Minimize Z Z (X — Hy)
J
k=1 j=1

- I:)vhere Xt oo Xikk} are the n* samples that belong to cluster k. ﬂ
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Difficult Minimization Problem

Minimize
K m
2
> ¥ -
k=1 j=1
but:

* We don’t know what points belong to what cluster.

* We don’t know the center of gravity of the clusters.

HOUSTON

N

WEHAVEA PROBLEM..




Simple Solution to the Problem

1. Initialize {u,, ..., ux}, randomly if need be.

2. Until convergence
2.1. Assign each point x; to the nearest center y,
2.2. Update each center g, given the points assigned to it

A
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_Alternating Optimization

sl o Initialize
= e Associate point to centers
—p= ™ ¢ Recompute centers



http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Three Classes
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Initial Conditions Matter

Initially, the points are assigned to Initially, the points are assigned to
the clusters at random —> Success. the closest cluster —> Failure.

—> In practice try several different random
initialization and keep the one that yields the best

result in term of the sum of square distances.
=EpEL A
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GRAY-LEVEL ONLY (1D)

20
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60

g0
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Color Only (3D)

8 iterations for k=5

=PrL



Color Only (3D)

Different Initializations for k=5

e Different results for different initializations.
e For k well chosen, the results are good for this image
pecause it features bright and distinctive colors. A




XY + Color (5D)

j i€C;
X = z or ?ji
i a 0
. b - - O -
oL URL U URL L
L (x2]- c[2])? + (x[3] — €[3])* + (x[4] — c[4])

Run K-Means algorithm with regularly spaced seeds on a
grid and using a distance that is a weighted sum of
distances in image space and in gray level/color space.

—> Superpixels |, . etal PAMI’IZA
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SLIC Superpixels

1024x1024 256x256

256x256

e Superpixel segmentations with cénters on a
64x64, 256x256, and 1024x1024 grid.

e Can be used to describe the image in terms of
a set of small regions.
EPFL J A




Color or Black and White
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Electron Microscopy

=PrL




Mitochondria Segmentation

ATP synthase particles

Intermembrane space

Ribosome Cristae

Granules

Inner membrane
Outer membrane

Deoxyribonucleic acid (DNA)

=PrL



e Compute image statistics for each superpixel.

e Train a classifier to assign a probability to be
within a mitochondria.

e (Can be used to produce segmentations using the

graph-based techniques we will describe next.
EPFL




SVM Classification

o

Input Space Feature Space

* The features incorporate the filter responses among other
things.

* The probability of a superpixel belonging to a mitochondria is
estimated from the SVM output.

cpr=  But how we can turn this into a segmentation? A
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Images as Graphs

An image I(x,y) is equivalent to a graph G(V,E)

Original image I(x,y)

Graph G(V,E)
- V is a set of vertices or nodes that represent individual pixels.

- E is a set of edges linking neighboring nodes together. The weight or strength of
the edge is proportional to the similarity between the vertices it joins together.

e




Graph-Cut

A cut through a graph is defined as
the total weight of the links that
must be removed to divide it into
two separate components.

=PrL



Min-Cut

 Find the cut through the graph
that has the overall minimum
weight, which can be done
effectively.

It should be the subset of edges
of least weight that can be
removed to partition the graph.

* Since weight encodes similarity,
this should be equivalent to
partitioning the graph along the
boundary of least similarity.

=PrL A




Trivial Cut

« Has a preference for shortcuts,
which may sometime result in
trivial solutions.

e Must be constrained to avoid
them.

=PrL A




ST Min-Cut

- Introduce two special nodes called
source (S) and sink (T)

- S and T are linked to some image
nodes by links of very large weight
that will never be selected in a cut.

- Find the minimum cut separating
the source from the sink.

--> The problem becomes deciding how to connect S and T to the
image nodes.

=PrL A




Interactive ST Min-Cut

User-selected pixels connected to S (red) Minimum S-T cut
and pixels connected to T (cyan)

--> If we have a good initial ‘guess’ to tell us how to link the source and sink to
the image, we will get an optimal segmentation.

=PrL A




Back To Mitochondria

4

Background

‘ terninal

rerminal

e A high probability of being a mitochondria can
be represented by a strong edge connecting a
supervoxel to the source and a weak one to

the sink.

e And conversely for a low probability.
EPFL




Back To Mltochondrla
{ ’x

Another classifier can be trained to assign a
high-weight to edges connecting supervoxels
belonging to the same class and a low one to
others.

PFL A
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Mlnlmlzmg a Loss Function

In probabilistic terms, this amounts to minimizing

E(ylz,A) = Zwyzm )+ A Y iyl )

unary term (1.1) €€ pairwise term

with respect to the set of labels y = [y1,...,ya] given the set of
supervoxels [X1,...,Xn], where E 1s negative log-likelithood of

the labels being correct.
EP-L P




3D Mitochondria

Lucchietal. TMI’11

F-l
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Modeling Membranes

LT
i had "

R T
:’l i
&

Here we use three classes instead of two:

e Inside
e Membrane
e Everything else

—>Because the inside is fully enclosed by the membranes, we
can still find a global optimum.

=PFL Lucchi et al. MICCAI’ 14 A




Speeding up the Analysis Process
3.21 um x 3.21 ym X 1.08 ym: 53 mitochondria

Automated result Interactively cleaned-up result

e By hand: 6 hours.
e Semi-automatically: 1.5 hours

—> Substantial time saving for the neuroscientists.
EPFL J A




Graph-Cut on Ordinary Images

=PrL Galun et al., ICCV’03 A




Interactive Foreground Extraction

lterated R

graph cut

AT
) 27
biz
3 ,/‘?

24
A

V4 4 Background

® K-means to learn color distributions

e Graph cuts to infer the segmentation

GrabCut Rother & al. SIGGRAPH 04 A
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Relatively Easy Examples

cPFL GrabCut Rother & al. SIGGRAPH 04 A




More Difficult Examples

Initial
Rectangle

Initial
Result

cPFL GrabCut Rother & al. SIGGRAPH 04 A




Convolutional Neural Nets

forward /inference

backward/learning

© 0P 21
o°,
| AR> aph 450 8O7 O

Connect input layer to output one made of segmentation labels.
Need layers that both downscale and upscale.
Connect the lower layers directly to the upper ones.

PrL A
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Reminder: U-Net for Delineation

Tu

bIa

Downsamplinggg Upsampling

: Skip connection

f —=H

»rg ¥ HH

—> Train a U-Net to output a tubularity map.
=EpEL .




U-Net for Segmentation

1 64 64

128 64 64 2

output
segmentation
map

4
\
\

388 x 388 V¥

390x390 ¥

392 x 392

388 x 388

570 x 570
568 x 568

' 128 128
256 128

512 256

‘g[l'?,l?l =» conv 3x3, RelL.U
= o 3
512 t

copy and crop

- [eTueE # max pool 2:2

8
6

2842
2002

9

9

<F. N
1024 g5 O 4 up-conv 2x2
S I
o 8 S =» conv 1x1
o N

e Same architecture (in more details).

e Train it to produce a segmentation mask instead of
=P=L  a delineation mask. A




Potential Interpretation

output

> | >

segmentation
NIl off ol
2l 3 8 8 map
x | >< >

=
QD
=8
o o
¥
¥

e A key role of the ConvNet is

to generate for every
output pixel a feature
vector containing the
output of all the
intermediate layers.

o e A classifier then assigns a
‘ label to the individual
pixels.
(o] —> — .

.

Ml
v
"N
r




In the Street

30 FPS




Recursive Segmentation

U-Net Rec. U-Net

As for delineation, feeding the output back into the network is an
effective way to take context into account.

PrL Wang et al., ICCV’19 A
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Image

Recursive Hand Segmentation

Wang et al., ICCV’19 A
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Striatum Mitochondria

Method Jaccard Index
Context F. + CRF 84.6%
U-Net 2D 82.4%
U-Net 3D 86.1%

wil A
% o 7] I — ____________ ________________ ..............
= S85% K- e Y A —+ FCN2D U

; —e— [CN 3D
: —#8— [ucchi et al. 2014

80% i ' ' '

0 1 2 3 4 5

Exclusion zone width (voxels)

cPEL —> Using a ConvNet boosts performance but there is still work to do!




Context Features 3D CRF

Synapses

U-Net 3D

84

Jaccard Method
Index
66.8% | Context Features 2D
85.2% | Context Features 3D
73.5% | U-Net 2D
77.0% | U-Net 3D




Context-Based Features

Synapse:
Post-synaptic region Pre-synaptic region
* Dendrite e Axon terminal
* No vesicles *  Many vesicles

Non-Synapse:

e The old style context-based features explicitly model orientation.
e How can we do that in a deep-learning framework?

EPFL Becker et al. TMI’13 A




Probabilistic Atlases

-
-

Synapse in canonical  Probability of being Probability of being  Probability of being
orientation a post-synaptic voxel a cleft voxel a pre-synaptic voxel

EPFL &




U-Net + Atlases
74

' A
l ' I—
# i i /

$ )
—— — Conv. block
q A 2 A — Fully connected layer
L ‘ Tl 4 I — Vectorization
{ Clm‘("l)}\ /\ Down sampling
Ay - Ay Affine transform: Accounts for orientation and scaling.
Al A2 Ag T(Al) T(AQ) T(A?))

>
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3D Synapses

Synaptic Junction Segmentation

Baseline vs PA-Net




Atlases for Optic Disk Segmentation

Probabilistic Atlases

Optic disk Optic nerve

Ground truth  U-Net PA-Net
EPFL .




Moral of the Story

e Deep Networks are powerful tools, especially
when there is a lot of training data.

e However, modeling your problem properly is
still needed to achieve the highest possible
level of performance.

e The old techniques often inform our design
choices.

—> Yet another reason why I am still talking
about them.
EPFL A




Reminder: Vision Transformers

llllll

Global Average Pooling

| ]
ffffff$$f

X (Mixer Layer)

MM@MM

Per-patch Fully-c

‘Dll ! II*’J\/I,IJ

<l I | -

e Break up the images into square patches.
e Transform each patch into a feature vector.
e Feed to a transformer architecture.

PEL
i Tolstikhin et al. , ArXiv’21
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Vision Transformers for Segmentation

Segmenter

08— 0 o 0 @ 'S
%‘ % o o —[o] [ol_ _g Scalar o g) @
—F 06— "m0 > 6 0 —5> 9 — 78
08— —0 0~ ., [0 ?— 3
.— —U*B—\ J—U D’_ Transfdnncr _U 0 ' '
r ask

L % ‘ [] Patch embedding } Tree '_ _.

E ﬁ - []Pmmon embedding § Sidewalk [J— (]

- ! L [J Patch encoding j berson m_ ——E

T —

Input Image Segmentation Map

e Replace the “recognition” machinery by a “mask transformer”.
e Pros: Good at modeling long range relationships.
e Cons: Flattening the patches looses some amount of information.

=PFL Strudel et al., ICCV°21 A
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Segment Anything

e Based on a Vision Transformer

e Encoder/Decoder architecture

e Traditional prompt for segmentation
e Class agnostic segmentation

PrL Kirilov, ArXiv'23 A




Segment Anything

e The secret is in the data

e SA-1B dataset:
e 11 million images - 1.1 billion masks
e Interactive and automated annotation

=PrL




U-NET + Transformers

e A CNN produces a low-resolution feature vector.
e A transformer operates on that feature vector.
e The upsampling is similar to that of U-Net

—> Best of both worlds?

Chen et al., TETCI’23 A
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In Short

Local methods can provide valuable information but are inherently
limited.

Domain knowledge, user interaction, and training data can be used
to turn this data into usable results:

Given enough training data, deep nets deliver the best
performance today.

It can be further enhanced by introducing domain knowledge.

Given smaller amounts of training data, K-Means and graphical
models still have their uses.

Same philosophy as for delineation.

PrL A
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What About the Dog?

L Most current algorithms won't “see” it! A




