Delineation

eDynamic Programming
eDeformable Models
eHough Transform

eGraph Based Approaches

=PrL
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From Gradients to Outlines




From Deep-Nets to Outlines

- 2
. P e )
5 - .

' L

. .\* , : o : \
(b) ground truth (c) HED: output

(a) original image

—> Still work to do!
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Mapping and Overlays
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ty matters!
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Connect
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Connectomics

D Coronal Horizontal
M1

_________
-

M1-p - M

= | —> Topology needed

! S2

1 mm

Courtesy of C. Petersen A
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Analogy

Low level processing

/
* Uses Deep Nets to find

the most promising

locations to focus on.

! High level processing
* Performs lﬁe-based

search when possible.

lxl l [ (pl

ALLSYSTEMS Go § Relies on reinforcement

learning and other ML
== LEChNiques to train. A
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Techniques

Semi-Automated Techniques:

e Dynamic Programming
e Deformable Models

Fully Automated Techniques:

e Hough Transform
e Graph Based Approaches
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r




Reminder: Canny Limitations

* There 1s no 1deal value of o!
* Deep nets can help but do not solve the problem.

=PrL




Interactive Delineation

o 'he user p.rowdes the start and end pomts (red X).
e The algorithm does the rest ( ). 5




Live Wire In IAction

=PrL Mortensen and Barrett, SIGGRAPH’95 A




1D Dynamic Programming

4
33

h(x(, Xy, ..., X,) = — Z g(x,) + Z r( X, Xpi 1)

r(Xg, X ) = dlff (¢(xk) ¢(xk+1))

where ¢ denotes the gradient orientation.
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1D Dynamic Programming

* N Locations
* Q Quantized values

- Global optimum O(NQ2) A

Ml
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1D Dynamic Programming

To find
min, A(x;,X,,...,X,)

where
n-1

h(x,X,,....X,) =T(8,X,)+ Ef (x;,x,,)+1(x,,8)
=1

define

fi(xy) = min_(r(s,x;)+ 1(x},X,))

— minx2 (r(x,,x;)+ f(x,))

J2(x3)

fn—l (’xn) = nlinxn_1 (I' (’xn—l’xn) + fn—Z(’xn—l))

= mina(x,,x,,...,x,) =min,_ (r(x,,g)+ f,_ (x,))
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2D Dynamic Programming

Notations:

S

L

c(u,v)

d(v)

"N
r

Start point

List of active nodes

LLocal costs for linku -> v

Total cost from sto v

c(u,v)
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Dijkstra Path Expansion

Open nodes represent "unvisited" nodes. Filled nodes are
visited ones, with color representing the distance: The
greener, the shorter the path. Nodes in all the different
directions are explored uniformly, appearing more-or-less as

a circular wavefront. g



https://en.wikipedia.org/wiki/Wavefront
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra’s Algorithm

Initialization :
d(s)<— 0 and d(u) < o foru = s
T=9

VvV=s_s

Loop until goal is reached:
T<—TU {V}
for all v — u edges such that u & T
ifdv)+c(v,u) <d(u)
d(u)<—dWw)+c(v,u)
end

end

v =argmin, . d(w)

Maintain a sorted list of paths 5
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Live Wire

Sorting is the expensive operation. Normally nlog(n), but can
be reduced to log(n) if all costs are integer costs

Local costs computed using gradient:

c(u,v) = 255 = > (g(u)+ g(v))

Eiagonal penalized by multiplying cost of non diagonal edges
y:
1 5

V2 7

Add a constant cost for each edge.

.




Cost Expansion

41 35 31 29 35
38 29 23 2'2/24/29
2l: 213 12 9 5 B 3 1 2 4 10 il o
Ny *
28 18 16=21=28 37
4 11 7 4 2 85 8 4 € 3 8 Sobia?
18\1*2 A6=27 38
»
11 6 3 3 7 9 12 11 10 7 1 14\3 1+3/2o 2*9/35/52 35\2*8/32
“
7 4 6 Ik 3 18 17 34 B 5 2 14—’6\(;/12 1+4 2+2 28/35 2+7 /25/31
' »
6§ 2 7 A0 i8 18 2% A9 H 3 & BT 4 ‘:/5‘"9*“*21 L
164 Q1 <6 =12 13=15<19<27 40
B 3 4 3 9 13 44 a5 9 B 6 V4.4 20t A G\ [ BN S
18 13 7 6 14 17 18 17=24 30
¥: § 2 88 F A 8 7 2 F N (e)
12 4 (i} 1 5 6 3 2 4 8 12 45\41 35 31 29 35/(_3/~+\3:§~—36<—40<—50
: 38 29 23/2;-—24 29~—37 3’8 fj @\43
10 ) 7 5 9 B 5 3 7 8 15
28 18 /(*)- 2128 37 46 49 47\4*0 6‘5\
(a) 18 ﬁ*z, 16+27 38 53 59 5339 33/@
6\3 /12 1+4/23 14 (8 13 20 2+9 /35 49 54 35 2/32
» » Y
5 gt 3 5 2 g 5 20 7 5 3 5 =g 14 %\3/12 1*4 2*2 2'8/35 27/\25/ 31
'S V' N | v N } o W (2. 9 (5) \9\-—14<—21 18f—23<—32
401 40 1=¢6 | |16>4 >0 1<+6 13 /\ % e
\ AN ol AN 16;'4 e g%{)'—19<—27<—39
13 7 7 13 7 6 14 8 13 7_ 6 14 18 13 7 6 14 17 18 17=24 3o< 45
(b) (c) (d) 63

(@) Local cost map. (b) Seed point expanded. (c) 2 points expanded. (d) 5 points
expanded. (e) 47 points expanded. (f) Completed cost path-pointer map with
optimal paths shown from nodes with total costs 42 and 39. 5
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Magnetic Lasso in Photoshop

%+ v @
w

NN

:, | |

T

i e~ N
FelENE I W AN

2 e

Integrating the LiveWire into a powerful interface that
allows a user to correct mistakes yields a useful too.

PrL



Tracing Neurons

Tracing for: OP_1 OP_1.nrrd (600%) Fiji

File Analysis View | 43/60: 512.00x512.00 microns (512x512): 8-bit: 15MB D‘Q Q‘O!/v Tl ‘\EA.‘O\,@ f"@i”"’.‘s“‘."-”'.» g ‘/‘&‘ ‘»

Instructions: el i) Image) 3D Viewer

Now select a point further along that structure... [ File Edit View Add Landmarks Help

{ Complete Path " Cancel Path

View paths (2D): projected through all slices &
View paths (3D): | as surface reconstructions &

(upto 0 slices to each side)

Click to change Path colours:

Use colors / labels from

EiNonelimm o

|| Show only selected paths

¥ Use Tubular Geodesics Wi
IIJyI’”

[ Hessian-based analysis

o = 1.0000, multiplier = 4.0000

" Pick Sigma Manually “ Pick Sigma Visually )
sl All Paths
[ All Paths
Hide Path List (_Show Fill List ¥ [ Path (0) [582.1786 microns]

¥ @ Path (1) [83.4047 microns), starts on Path (0)
Path (2) [28.2704 microns], starts on Path (1)
¥ [l Path (3) [74.3051 microns], starts on Path (0)
Path (4) [18.4684 microns), starts on Path (3)
Path (5) [15.1939 microns], starts on Path (3)
BT 56,0753 mcons. st on Pa )
v @l Path (7) [39.5702 microns], starts on Path (6)
Path (8) [30.6376 microns], starts on Path (7)
Path (9) [17.7282 microns], starts on Path (6)

» In the biomedical world, images are 3D cubes of data.

» The approach extends naturally to tracking of 3D
structures such as dendritic trees in the brain, blood
vessels, etc ...

=

M




Face Image

=PrL



Live Wire

=PrL



Limitations

III

e The “optimal” path is not always the “best” one.
e Difficult to impose global constraints.

e The cost grows exponentially with the dimension
of the space in which we work.

--> Must often look for local, as opposed to global,

optimum using gradient descent techniques.
EPFL A
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Techniques

Semi-Automated Techniques:

e Dynamic programming
e Deformable Models

Fully Automated Techniques:

e Hough transform
e Graph Based Approaches
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Snakes

A A AN A A A A S e A S i e i o i i o i i i o o i o e o o o o

=PrL
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2—D Snake

Deformable contours that
Maximize the gradient along the curve;
Minimize their deformation energy.

--> Interactive tools for contour detection that can be
generalized to handle sophisticated models

L A




Polygonal Approximation

(X, ¥0) (X%, %)
(Xi+'|’ .%+'l)

Weighting coefficient

N N

@ 1
L= - G(x,y,) +— 2X: — X 1 — X1 )? + 2y — p—— 2
N+1§ (%;> 1) NZ,(( = X1 — X )"+ (Y = Yoy — Vi)

Average gradient Average sum of squared 2nd derivatives

I
n/

Average sum of square curvature

EPFL ﬁ
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Matrix Notation

Eq+1/2X'KX +1/2Y'KY

[$1,..

[yl,...

'737N]t

7yN]t

-4 1

6 -4 1

-4 6 -4 1
1 4 6 A4




Local Optimum

OF SEq .
OE SEq ..o
s = e TEY =0

But K is not invertiblel

Ml
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Dynamics

Embed curve in a viscous medium and solve at
each step:

oF dX OEG aX
0= F o F KX + ag—
0X dt 0X dt
oF adY 6EG dY
0= F o FKY + a—
Y dt 0Y dt

.
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Iterating

At every step:
SE SE
0= 5—; F KX +alXe — Xi1) = (K+al)X,=aX_1 — 5—;
SE 5E
0 = 5—; +KY +aY;— Y1) = (K+alY,=aY,_; — 5—YG

- Solve two linear equations at each iteration.

.
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Derivatives of the Image Gradient

/ N
E . —__ E:G X.,V.
G Nl=1 ( lyl)

oE;, |0E; . = OE; E; |0E; _ = OE;
0X | ox, ox,| 9y |y, Yy
oE | 0G oE | 0G
< =__—(-xi9yi) ’ ¢ =—_—(Xp)’,~)
dx, N ox, dy,  Nay,
« We have values of g for integer values
of x and y.
y+1 ety +1) « But x; and y; are not integers.
y gx,y) glx+1y)

—> We need to interpolate.

EPFL x oo .




Bilinear Interpolation

Gx,y+1) G(x+1,y+1)

G(xy) X G(x+1,Y)

p=X,—X
q=Y,-)
G(x;,y;) = (A= p)A-9)G(x,y) + (A = p)gG(x,y + 1) + p(1 - q)G(x + Ly) + pgG(x +1,y +1)
G
©7 = (1= )G +15) = G +(G(x + Ly +1) = G,y +1)

0G
5y = (0= PGy +D =Gy + pGCx+ Ly +1) = Glx +1y)

l

=PrL A




Open and Closed Snakes

-\




Cysts Tumors in Ultrasound Images

Drawn by the physician. Refined by the Computer.

Luoetal.,2017



Network Snakes

g

o0
()
()
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A
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Ribbon Snakes

/
Eqg+12X"KX +1/2Y'KY +12W'Ky,W

t

w1, ..., wWN]

-1 2 -1
-1 2 -1




Dynamics Equations

OF
K nNX, = X,
(K 4 al)X; X1 SY
e
K 1Y, = Y,
(K 4+ al)Y; Yy 1 5y
I
K nNDW, = W, _
(K 4+ ol )W, aWi_1 STV

- Solve three linear equations at each

- Iteration. @

Ml




Delineating Roads

=PrL



Delineating Roads




Evaluation

350
400
]
250
00
0
20 150
100
100
; l
0.
tackec  smbel smbel tand  cockec  smbel  smbe?
\ umber of object clicks Number of mouse moves
1200
1000
900
600
400
0. .
hand :mh: smbksl smbel tand  tockec  smbel smbel
Total monse dista Total mouse move time
00
500
400
00
00
100

tand  tockec  smbel  smkel
Total near mouse move time

It takes far fewer clicks to trace the roads using semi-
automated tools than doing entirely by hand

=PrL | A




Modellng a Rldge Llne in 3D




P ‘s

e—4 Fort Hood Mhage-Stw
v >

Fort Hood

%
2 h
—

Fort Hood I;,[eﬁ:ag'e—'f‘ Ny
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3D Snakes

[Z] [T =T

12

Smooth 3—D snake Rectilinear 3—D snake

=PrL A




Dynamics Equations

SE
(K +a)X; = aX; 5;

SE
(K +al)Y; = aY 5YG

SE
(K +al)Z; = aZi; 5ZG

- Solve three linear equations at each

- Iteration. ﬁ

Ml




Constrained Optimization




=PrL

Site Modeling (1996)

tec-mmc—6-95-ovIiOsgl. X'

NN P




Site Modeling (2019)

© 2018 Google
© 2009 GeoBasis-DE/BKG

=PrL
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Level Sets




Implicit vs Explicit

z=®Ux,y),
z > 0 outside,
z < 0 inside,

—> Consider the curve as the zero level set of
cp=L  a surface.




Topology Changes are Possible

{ = (I)(x, y, tl)




Curve Evolution

Consider the curve as the zero level set of the surface:

z = ®(x,y,t)
Evolution equation:
0 = &+ [(k)|VP|
@mx@:z —20,,0,9, + ®,,02
where Kk = 5 5
t ez + &y

curvature

(k) 1s the speed at which the surface deforms.
EPFL A
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Level Set Smoothing

Smoothing occurs when 6 (li) — — K

Desirable properties:

Converges towards circles.
Total curvature decreases.
Number of curvature extrema and zeros of curvature decreases.

Relationship with Gaussian smoothing:

Analogous to Gaussian smoothing of boundary over the short run, but does not
cause self-intersections or overemphasize elongated parts.

Can be implemented by Gaussian smoothing the characteristic function of a region.

-




Shape Recovery

Evolution equation: 0 = &;+ 3(k)|VP]
where: B(k) = k(1 — ek)
kr = -
g 1+ VI

- Expansion stops at the boundaries.

.
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Level Sets

=PrL
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Level Sets




Newer Implementatlons

¥
2

-

.&l‘ Y A A
mﬂ

|
¥

Use a DNN to
compute the
energy function.

}

sk e T ol s ol ol ool ol ol @ ol ol e e
[ 7 gr 7 1 ! Ul | i ? g
i’ e M y i | e i

| \ \ . i A | -

"V‘ ’\. *" ’y' ’q! ’\' ,|| |. R

Chen’23 Intelligence & Robotics A




Deep Implicit Surfaces

Changing the topology




Ml

Techniques

Semi-Automated Techniques:

e Dynamic programming
e Deformable Models

Fully Automated Techniques:

e Hough transform
e Graph Based Approaches
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Finding Lines

Canny Edge

Input:
Canny edge points.
Gradient magnitude and orientation.

Output:
All straight lines in image.
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Hough Transform

Given a parametric model of a curve:

e Map each contour point onto the set of parameter
values for which the curves passes through it.

e Find the intersection for all parameter sets thus
mapped.

8




Votli
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Yy A

eprp L€
os(6
) + ysin(f) =
— 7
, 0 <
< f <
<7 g




Synthetic Lines

Image Contours  Accumulator Lines

Once the contour points are associated to
individual lines, you can perform least

squares fitting.
=Pr-L A
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Real Lines

€
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Canny Edge




Road Lines




Road Edges

=Pr-L Kong et al. CVPR’09
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Generic Algorithm

Quantize parameter space with 1 dimension per
parameter.

Form an accumulator array.

For each point in the gradient image such that
the gradient strength exceeds a threshold,
increment appropriate element of the
accumulator.

Find local maxima in the accumulator.

g




Iris Detection

=PrL



Occlusions

In theory:
_@> |7
In practice:

i o>

=PrL
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Circle Detection

Circle of equation:

r = xg-+ 1cos(f)

y = Yo+ rsin(0)
Therefore:

rg = x —rcos(0)

Yo = Yy — rsin(6)

"N
r




Plausible Circles

Edge Pixel

=PrL
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Gradient Orientation

7

L=

i
I
1
[}
]
1
[
i
1
[l
[l
1
\
1
\
[}
\
\

Can vote either along the entire circle or
only at two points per value of the radius.
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Simple Image

Voting scheme:

Result:
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r




Eye Image

Image and accumulator;

=PrL



Ellipses

=PrL
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Ellipse Detection

Ellipse of equation:

r = x9+ acos(0)

y = Yo+ bsin(0)
Therefore:

rg = x — acos(h)

yo = y—bsin(0)

"N
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Gradient Orientation

For each ellipse point:
dx

—5 = —asin(9)
% —  beos(6)
b= atan(-22 B
— atan(asin(8), bcos(d))
- atan(% tan(6))
tan(¢) = %tan(@)

= 0 = atan(—tan(¢))  The accumulator need only be incremented for this 6.

a

Ml
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Generalized Hough




Generalized Hough

P

Y

e \We want to find a shape defined by its boundary
points in terms of the location of a reference point
[Xc,Yel.

e For every boundary point p, we can compute the
displacement vector r = [Xc,Yc] — p as a function of

local gradient orientation f.
=PrL Ballard. , PR’81 A




¢ R(¢:)
D1 | (1, at), (15, A2 e (i, i)
Dy | (r, a2), (17, 43), oo, (2%, a2,)
o | TG, O @ e e B )
ot | a0, B o (i)
Set of potential displacement vectors r,a

given the boundary orientation f.

--> (eneralized template matching.
EPFL
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Algorithm

Make an R-table for the shape to be located.

Form an accumulator array of possible reference points
initialized to zero.

For each edge point,

Compute the possible centers, that is, for each table entry, compute

T = T+ T1rycos(0(p))
Yy = Ye+7psin(0(e))

Increment the accumulator array

..




M

Real-Time Hough
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Accumulator

Rotation

Y Translation X Translation a




From Delineation To Detection

Visual codeword with
displacement vectors

Training image

Instead of indexing displacements by gradient
orientation, index by “visual codeword”.

cPFL Leibe & al. , ECCV’04 A



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

From Delineation To Detection

Test image

Instead of indexing displacements by gradient
orientation, index by “visual codeword”. 5

=PrL Leibe & al. , ECCV’04



http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Optional: Training

b o

1. Use clustering to build codebook of patches around extracted
interest points.

2. Map the patch around each interest point to closest codebook entry.

3. For each codebook entry, store all positions it was found, relative to
object center.

cPFL --> Build an R table. A
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Optional: Testing

Original Image intsrest Points Matched C.odebook Probabilistic
\ . Entries
, = ‘\ﬂw\l_ ’
— .a“? -—ﬂ_._, ‘\m/' \
e ) 8 A °£§ : Oo Q
| Voting Space
seameraton g | [ mm L mggm (cominuou)
Refined Hypothesis Backprojected Backprojection
(uniform sampling) Hypothesis of Maximum

Given test image, extract patches, match to codebook entry.
Cast votes for possible positions of object center.

Search for maxima in voting space.

Extract weighted segmentation mask based on stored masks
for the codebook occurrences. I




Pedestrian Detection

— £ -
: ! .

EPEL Gall & al. , PAMP’11




Occlusion Handling
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Deep Hough Transform

Hough
Transform

Deep feature map

“Hough space”

“Hough space”

Convolutions in
parametric space

v

Deep feature map

X
Zhao, PAMI’21 A



Limitations

Computational cost grows exponentially with
the number of model parameters:

- 0nly works for objects whose shape can be
defined by a small number of parameters.

—>Approach is robust but lacks flexibility.

P
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Techniques

Semi-Automated Techniques:

e Dynamic programming
e Deformable Models

Fully Automated Techniques:

e Hough transform
e Graph Based Approaches
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Magnitude and Orientation

0l 01 .
65I% 617
Contrast: G = 5 5
Orientation: ©® = arctan(gia gi)

=PrL A




Image modeled as a graph:

-> Generate minimal distance graph O(N log(N) algorit

=PrL

Minimum Spanning Tree
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Delineation 1998

'Y Domsdnmg 72 F1ve) s |
FLHenminn 2 (11X ) T B
Qerere Dvpbpeomeanax  Poodll SAsiw/ I - T = e

Detect road centerlines

Find generic paths

Apply semantic filter

Find road widths

cPFL Fischler & Heller, 1998. A




From Image To Roads

MASK PATHS

UNCONNECTED
: . ROAD-SEGS
3D) (2D)
ROAD-NETW ORKS ROAD-NETW ORKS

ROAD
ATTRIBUTES
(WIDTH, FINAL ROAD

MATERIAL....) MODEL

=PrL



Road Editing




Dendrites And Axons

Fluorescent neurons in the adult mouse brain
imaged imaged in vivo through a cranial window

using a 2-photon microscope.
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Delineation 2012: Neurites

Maximum Likelihood Subtree A




.. and Roads

Y X A

Image Filtered image Graph Weighted graph

—> Machine plays a crucial role to ensure that the
same algorithm works in different situations.

=PrL Turetken et al, CVPR’12. ‘m




Histogram of Gradient Deviations

angle(VI(x),N(x)),if ||x — C(sx)|| > ¢

W (x)= <\ angle(VI(x), II(x)) , otherwise,

e One histogram per radius interval plus four
geometric features (curvature, tortuosity, ....).
 Classifier trained on these histograms.

=PrL ‘ﬂ




Roads

>

o wilg iy ol Ny

=PrL



Brainbow Images

F-l
LJ



Blood Vessels




Deep Tsunami

€he New Hork Times

Turing Award Won by Three

Pioneers in Artificial Intelligence

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The researchers worked on key developments for neural networks, which
are reshaping how computer systems are built.

=PrL




Reminder: AlexNet (2012)

5 Convolutional Layers 1000 ways

jo—
2 S o

Softmax

NS,

1 527 i \ 3 I 137~
T 3
trid 128
a \| | poolin 9 ling
48

3 Fully-Connected
Layers

‘ask: Image classification

raining images: Large Scale Visual Recognition Challenge 2010
raining time:|2 weeks on 2 GPUs \

Major Breakthrough: Training large networks
has now been shown to be practical!!

=PrL ‘@




Delineation 2012

Can deep learning improve this?

08

06

S04

0.2

=PrL Turetken et al, CVPR’12. ‘ﬁ




Reminder: U-Net

Tubularity Ma

Downsamplinggg Upsampling

: Skip connection

Skip connection Nl.l.l

—> Train a U-Net to output a tubularity map.
=EpEL P




Training a U-Net

Train Encoder-decoder U-Net architecture using binary cross-entropy

Minimize
| P
Lice(%,y; W) === [y;log(#:) + (1 = yi) log(1 — 4
1
where

= fw (X)7
e X In an input image,

e y the corresponding ground truth.

=PrL Mosinska et al, CVPR’18. ‘@
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Network Output

BCE Loss

Ground truth




Acounting for Topology

e /

The yellow road is
partially hidden by
trees.

A standard U-Net
misses the hidden
portion.

We add to the loss
function wused to
train the network a
term that
encourages points
such as A and B to
be separated.

Onur et al., PAMI’21 The re-trained U-
Net now finds the
complete road.

P
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lterative Refinement

R
h

=

A
.

Image Iter 1 Iter 2 Iter 3 Ground truth

Use the same network to progressively refine the results
keeping the number of parameters constant

=PrL ‘ﬁ
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Delineation 2019

These two steps are closely related!

They should be performed by the same network!

=PrL Mosinska et al, PAMI’19. A




Dual Use U-Net

Image Tubularity Map
and /
Binary Mask (‘
'l
[0.991]
Path score

=PrL ‘ﬁ




Delineation Steps

| 1.Compute a probability map.

' 2. Sample and connect the samples.
= 3. Assign a weight to the paths.

4. Retain the best paths.




treets Of Toronto

False negatives
False positives
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Dendrites And Axons




Typical Annotations
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Original Image “Ground truth” + Mistakes

—> Human annotations are often imprecise.
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Correcting the Annotations
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proposed loss

To account for annotation inaccuracies during training, we jointly train
the network and adjust the annotations while preserving their topology

=PrL Oner et al. , TMI’22 ‘ﬂ
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L * R 1s a regularization term. ‘ﬂ

Annotations as Network Snakes
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_ loss computation
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network output y N
®*, C* = argming Z < (D(cl-), yi) + R(c,)

Distance between network
where output and annotations.

 The y; are the network outputs;
 The ¢, are the annotation vertices;

« C 1s the vector obtained by concatenating all the ¢;;
* D is a distance transform ;

o £ 1s the MSE loss:
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Improved Results

a4

Vanilla U-Net Network snakes

-




On the Job

C: retinai

Intelligencelin

Ophthalmology

EYE CARE PROFESSIONALS AND PATIENTS
IROUCH-=#RFIFICIACINTELLICENCE

The new job 1s good, we do of course a lot of Deep Learning, but also some

good old-school computer vision e.g. registration So the material

from Computer Vision class is definitely helpful and I wouldn't change it to
another all-Deep Learning class (even in the light of today's Turing Award).

Best,

Agata
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1998 - 2038

I
1998 2018 2038

It is difficult to make predictions, especially about the future.
Sometimes attributed to Niels Bohr.
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In Short

e Edge and image information is noisy.
e Models are required to make sense of it.

- An appropriate combination of graph-
based technigues, machine learning, and
semi-automated tools is required.
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