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A Teachable Scheme 

•Capturing the body by itself. 
•Modeling the clothes in relation to it.  
•Handling motion and deformations. 

Image(s)

Edge information Texture information Shape information

Scene objects

Scene interpretation
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Human Motion Analysis

Muybridge, circa 1890

EPFL, CVLab, 2025
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Applications

• Movies 
• Fashion Design 
• Sports Coaching 
• Medicine 
- Enhancing performance 
- Injury prevention  
- Reeducation 
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• A model  takes as input a “small” number of pose, 
shape, and texture parameters and returns a 3D mesh. 
• These parameters can be inferred from images and videos.

M(θ, β, δ, A)

ShapePose Dynamics Texture

Articulated Body Model



6

Bodies as 3D Meshes (SMPL)

• The whole body can be represented 
as a low-resolution 3D mesh with 
7000 vertices. 

• That represents 71’000 parameters 
to infer from images.  

• But these parameters are highly 
correlated.  

➡The model must encode these 
correlations. 
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Reminder: PCA Face Model

Blanz & Vetter, SIGGRAPH’99
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Factored Model (SCAPE)

• The model parameterizes deviations 
from a template mesh.  

• Uses the same kind of dimensionality 
reduction techniques as those used to 
create face morphable models.  

• Requires a large training database for 
learning purposes. 

➡Simplifies learning and inference.

Anguelov et al. , SIGGRAPH’05
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Changing the PCA Coefficients (SMPL)

Loper et al. , SIGGRAPH’15
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4D Body Shapes
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3D at 60 FPs

University of Tübingen / MPI-Informatics: 
• Thousands of people 
• Thousands of poses
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Many Different Body Shapes
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Many Different Poses
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From Image to Body Pose

• Use a CNN to detect 2D joints.  
• Infer SMPL parameters from those. 

Bogo et al, ECCV’16

Not all joints can be expected to be visible!
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Increasing Robustness

• Detect 2D joints. 
• Infer SMPL parameters from those. 
• Use adversarial training to ensure consistency. 

Kanazawa et al. , CVPR’18
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From Video to Body Motion

• Estimate SMPL parameters from each individual 
video frame while enforcing temporal consistency.  

• Use an adversarial network to enforce realism, 
given a large motion training set. 

Kocabas et al. , CVPR’20
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Hidden Joints

• Loose clothing can hide individual joints. 
• Bring in the transformers! 
➡ Direct regression from image to SMPL parameters.  

Goel et al. , ICCV’23
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What About People Wearing Loose Clothing?

Can we also recover the shape and motion of the clothes 
in addition to that of the body? 
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• Parameterize a 3D garment as a set of 2D positional maps. 
• Train a diffusion model on it to learn the shape prior.

Positional Map3D Garment

Parameterization

Diffusion Prior Model

Training

Generated Map

Garment Parameterization
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Diffusion / Flow Matching

• Train a network to turn noise into 
a distribution that conforms  to a 
specific prior. 

• Can be “guided” to obey some 
constraints. 

—> We use it to generate realistic 
clothing that matches the images.

https://diffusionflow.github.io/
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Given an image of clothed person, its garment normal estimation  and body part/depth estimation 
, we 

• synthesize the normal for the invisible back view  
• predict the UV coordinates  and depth  
• turn predictions to UV positional maps 
• fit the prior to the positional maps for reconstruction 

𝐍𝐹
(𝐒𝐹, 𝐒𝐵, 𝐃𝑏

𝐹, 𝐃𝑏
𝐵)

𝐍𝐵
(𝐂𝐹, 𝐂𝐵) (𝐃𝑔

𝐹, 𝐃𝑔
𝐵)

Reconstruction Pipeline
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Reconstruction Pipeline
Given an image of clothed person, its garment normal estimation  and body part/depth estimation 

, we 
• synthesize the normal for the invisible back view  
• predict the UV coordinates  and depth  
• turn predictions to UV positional maps 
• fit the prior to the positional maps for reconstruction 
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Reconstruction Pipeline
Given an image of clothed person, its garment normal estimation  and body part/depth 
estimation , we 

• synthesize the normal for the invisible back view  
• predict the UV coordinates  and depth  
• turn predictions to UV positional maps 
• fit the prior to the positional maps for reconstruction 
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Reconstruction Pipeline
Given an image of clothed person, its garment normal estimation  and body part/depth 
estimation , we 

• synthesize the normal for the invisible back view  
• predict the UV coordinates  and depth  
• turn predictions to UV positional maps 
• fit the prior to positional maps for reconstruction 
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Garment Recovery from Real Images

Li et al. SIGGRAPH’25
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From Images to Video
To handle video cases, we  

• introduce temporal diffusion models 
• enforce geometric and temporal guidance 
• temporal consistency guidance, depth-to-normal guidance, interpenetration-aware guidance 
• fit the prior to the positional maps with projection-based constraint for reconstruction
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From Images to Videos
To handle video cases, we  

• introduce temporal diffusion models 
• enforce geometric and temporal guidance 
• temporal consistency guidance, depth-to-normal guidance, interpenetration-aware guidance 
• fit the prior to the positional maps with projection-based constraint for reconstruction

Depth-To-Normal Guidance
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From Images to Videos
To handle video cases, we  

• introduce temporal diffusion models 
• enforce geometric and temporal guidance 
• temporal consistency guidance, depth-to-normal guidance, interpenetration-aware guidance 
• fit the prior to the positional maps with projection-based constraint for reconstruction

Depth-To-Normal Guidance

Interpenetration-Aware Guidance
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From Images to Videos
To handle video cases, we  

• introduce temporal diffusion models 
• enforce geometric and temporal guidance 
• temporal consistency guidance, depth-to-normal guidance, interpenetration-aware guidance 
• fit the prior to the positional maps with projection-based constraint for reconstruction

Projection-Based Constraint

uv partial maps completed uv maps
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Recovered Garments from Videos
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What about Long Robes?
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What about Long Robes?

• Quite good but not quite right when seen from the side.  
• From a physical point of view, the 3D pose is not realistic. 
➡There still is work to do! 

PhD anyone? 


