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A Teachable Scheme
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e Capturing the body by itself.
e Modeling the clothes in relation to it.
e Handling motion and deformations.
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Human Motion Analysis

EPFL, CVLab, 2025
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Applications

e Movies

e Fashion Design

e Sports Coaching

e Medicine
- Enhancing performance
- Injury prevention
- Reeducation
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Articulated Body Model
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e A model M(,p,65,A) takes as input a “smal

texture
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number of pose,

shape, and texture parameters and returns a 3D mesh.
e These parameters can be inferred from images and videos.
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Bodies as 3D Meshes (SMPL)

e The whole body can be represented
as a low-resolution 3D mesh with
/000 vertices.

e That represents 71’000 parameters
to infer from images.

e But these parameters are highly
correlated.

=»The model must encode these
correlations.
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Reminder: PCA Face Model
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s: Average shape
s;:  Shape vector
a; : Shape coefficients
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Factored Model (SCAPE)

()
e The model parameterizes deviations AN
from a template mesh. “ ok
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e Uses the same kind of dimensionality

v
reduction techniques as those used to & i N
create face morphable models. g /\ A\

: - 4 ﬁ shape + pose /
e Requires a large training database for " {8 N shwere >
learning purposes.
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= Simplifies learning and inference. identty’ ﬂ .
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Changing the PCA Coefficients (SMPL)

Parametric model

Vertices in
final shape

Loper et al. , SIGGRAPH’15 A
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4D Body Shapes
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3D at 60 FPs
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University of Tabingen / MPI-Informatics:
e Thousands of people

e Thousands of poses
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Many Different Body Shapes
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From Image to Body Pose

e Use a CNN to detect 2D joints.
o Infer SMPL parameters from those.

Not all joints can be expected to be visible!
=PEL Qiab Bogo et al, ECCV’16 ‘ﬂ



Increasing Robustness
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e Detect 2D joints.
o Infer SMPL parameters from those.
e Use adversarial training to ensure consistency.

=PFL O/Lob Kanazawa et al., CVPR’18 ‘ﬁ



From Video to Body Motion
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e Estimate SMPL parameters from each individual
video frame while enforcing temporal consistency.

e Use an adversarial network to enforce realism,
given a large motion training set.

=PFL Crlab Kocabas et al., CVPR’20 ‘ﬁ



Hidden Joints
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Vision Transformer
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e Loose clothing can hide individual joints.
e Bring in the transformers!
= Direct regression from image to SMPL parameters.
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What About People Wearing Loose Clothing?

Can we also recover the shape and motion of the clothes
in addition to that of the body?
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Garment Parameterization

3D Garment Positional Map

Generated Map

* Parameterize a 3D garment as a set of 2D positional maps.
 Train a diffusion model on it to learn the shape prior.
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Diffusion / Flow Matching

Steps: 1 Steps: 2 Steps: 3 Steps: 5 Steps: 8

e Train a network to turn noise into
a distribution that conforms to a
specific prior.

e Can be "guided” to obey some
constraints.

—> We use it to generate realistic
clothing that matches the images.

Steps: 10 Steps: 15 Steps: 20 Steps: 30 Steps: 40

“PrFL @Lob https://diffusionflow.github.io/ A



Reconstruction Pipeline

Given an image of clothed person, its garment normal estimation N, and body part/depth estimation
(Sg, Sp, Df,, Dll;), we

Normal Estimation ‘
>

Body E‘s&timation
Rendering
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Reconstruction Pipeline

Given an image of clothed person, its garment normal estimation N, and body part/depth estimation
(Sg, Sp, Df,, Dg), we
 synthesize the normal for the invisible back view Ny

Normal Estimation

Normal Diffusion

Body E‘s&timation
Rendering
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Reconstruction Pipeline

Given an image of clothed person, its garment normal estimation N, and body part/depth estimation
(Sg, Sp, Df,, Dzl;)a we

« predict the UV coordinates (Cj, Cp) and depth (D, D%)

Normal Estimation

Normal Diffusion

Mapping Diffusion . ‘
Cr Cz

@

Body E‘s&timation
Rendering
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UV Coordinate (Top) & Depth (Bottom)
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Reconstruction Pipeline

Given an image of clothed person, its garment normal estimation ~, and body part/depth
estimation ,.s, oy, We

» turn predictions to UV positional maps

UV Space
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Reconstruction Pipeline

Given an image of clothed person, its garment normal estimation ~, and body part/depth
estimation ,.s, oy, We

« fit the prior to positional maps for reconstruction

Fitting & Refinement
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UV Positional Map Reconstruction
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Garment Recovery from Real Images
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Li et al. SIGGRAPH’25 ﬁ
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From Images to Video

To handle video cases, we
* introduce temporal diffusion models
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From Images to Videos

To handle video cases, we
* introduce temporal diffusion models

Temporal Mapping Diffusion
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From Images to Videos

To handle video cases, we

+ enforce geometric and temporal guidance
» temporal consistency guidance

Temporal Mapping Diffusion
N3
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From Images to Videos

To handle video cases, we

+ enforce geometric and temporal guidance
depth-to-normal guidance

—————————— > Depth-To-Normal Guidance —_————————————

Temporal Mapping Diffusion
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From Images to Videos

To handle video cases, we

+ enforce geometric and temporal guidance

interpenetration-aware guidance

Depth-To-Normal Guidance
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Interpenetration-Aware Guidance
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From Images to Videos

To handle video cases, we

« fit the prior to the positional maps with projection-based constraint for reconstruction

uv partial maps completed uv maps

Temporal Inpainting Diffusion

Refinement

- > Projection-Based Constraint — —
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Recovered Garments from Videos

Input Front-view Back-view Projection
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What about Long Robes?
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What about Long Robes?

e Quite good but not quite right when seen from the side.
e From a physical point of view, the 3D pose is not realistic.

=There still is work to do!
PhD anyone?
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