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a Surgical procedure for the implantation of the electrode paddle array targeting the posterior roots
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b Technological framework to deliver closed-loop control of spatiotemporal EES
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Extended Data Fig. 1 | Surgical procedure and technological
framework. a, Surgery. Step 1: high-resolution MRI for pre-surgical
planning. The entry point into the epidural space is based on the position
of the conus. Step 2: placement of subdermal and intramuscular needle
EMG electrodes for key leg muscles and paraspinal (PS) muscles. A
subdermal needle is inserted over the sacrum and used as a return
electrode for stimulation. Bottom, schematic of the 16-electrode

paddle array. Step 3: surgical openings based on pre-surgical planning,
typically between the L1 and L2 vertebrae, which are identified through
intraoperative X-ray. The mediolateral positions of the paddle array

are evaluated with X-ray and recordings of EMG responses following
single pulses of EES delivered to the most rostral or most caudal midline
electrodes. Step 4: the rostrocaudal position of the paddle array is
optimized using EMG responses to single-pulse EES delivered to the
electrodes located at each corner of the paddle array. The aim is to obtain
strong ipsilateral responses in hip flexors with the most rostral electrodes
and strong ipsilateral responses in ankle extensors with the most caudal
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electrodes. Step 5: implantable pulse generator (IPG) placed within the
abdomen. Once connected to the paddle array, the impedance of the
electrodes is evaluated to verify that all the components are properly
connected. Step 6: post-surgical CT scan showing the location of the
paddle array with respect to the vertebrae in each participant.

b, Technological framework and surgical procedure. Step 1: participants
wear reflective markers that are monitored using infrared cameras.

An algorithm assigns the markers to the joints in real-time. Step 2: the
spatiotemporal trajectory of the foot around a calculated centre of rotation
(centroid, updated every 3 s) is converted into angular coordinates that
trigger and terminate EES protocols when a user-defined threshold is
crossed. Step 3: EES commands are transmitted to the IPG via Bluetooth
(1) to a module that converts them into infrared signals (2), which are
then transferred to the stimulation programmer device (2'). Step 4: the
stimulation programmer transmits EES commands into the IPG (4) via
induction telemetry, using an antenna (3) taped to the skin and aligned to
the IPG. EES is delivered through the paddle array (5).
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Step 1

Experimental setup. Participant lying supine
16 EMG-channels (surface electrodes)

Identification of electrodes to activate
the targeted spinal cord region

EES (ramp)
to identify the relevant
range of amplitudes
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Identification of electrode configurations

to target selected posterior roots. Step 1: single-pulse EES and EMG
recording setup. Step 2: motor neuron pools are located in specific
segments, which provides information on the relative recruitment of
each posterior root with EES. For example, electrodes targeting the

L3 or L4 posterior roots will elicit the strongest EMG responses in the
knee extensors. A personalized computational model of EES allows the
performance of simulations that evaluate the relative activation of a given
posterior root with a given electrode over the entire amplitude range. Each
curve corresponds to an electrode. The highlighted curve corresponds

to the electrode selected after steps 3-5. Step 3: single pulses of EES are
delivered through the subset of electrodes identified by simulations.

The EMG responses are recorded over a broad range of EES amplitudes.
Step 4: the EMG responses are concatenated and averaged across n =4
repetitions for each EMG amplitude, and the peak-to-peak amplitude

of the average responses is calculated to elaborate a recruitment curve

for each recorded leg muscle (black traces: targeted muscles). Step 5: the
circular plots display the normalized EMG responses (greyscale) when
delivering single-pulse EES at increasing amplitudes (radial axis), where
the white circle highlights the optimal EES amplitude and the polygon
quantifies the relative muscular selectivity at this amplitude (median
response taken over n =4 EES pulses). The motor neuron activation maps
are shown for the optimal amplitudes. Step 6: decision tree to validate or
optimize electrode configurations. The selected electrode is tested during
standing as the position of the spinal cord with respect to the paddle array
can change between supine and standing. In this example, the selectivity
improves during standing. When the selectivity is deemed insufficient, the
current is steered towards the targeted posterior roots using multipolar
configurations. The example shows the increased selectivity of a
multipolar configuration with two cathodes surrounded by three anodes,
compared to the two corresponding monopolar configurations. These
results were verified experimentally and with computer simulations.
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activation map. This index represents the percentage of posterior root
selectivity for the electrode configuration selected experimentally, with
respect to the maximum posterior root selectivity that can be achieved
among all monopolar configurations (all selectivity indices obtained
from computational simulations). Note that in P2, the electrode selected
experimentally to target the right S1 root was located on the midline and
resulted in bilateral activation within computational simulations, which
resulted in a normalized selectivity index of zero.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Single-joint movements enabled by targeted
EES. Step 1: participants are placed in standardized positions to allow
assessment of voluntary torque production at a single joint (isometric
contractions) without and with targeted EES. Step 2: EES protocols
elaborated from single-pulse experiments (Extended Data Figs. 2, 3) are
optimized for each task using multipolar configurations and adjustments
of EES amplitude and frequency. Step 3: sequence of each trial.
Participants were asked to produce a maximal voluntary contribution,
but failed in most cases, as evidenced by the absence of EMG activity
during this period. While they continued trying to activate the targeted
muscle, EES was switched on. After a few seconds, participants were
instructed to stop their voluntary contribution. After a short delay, EES
was switched off. For each sequence, the produced torque and EMG
activity of the key agonist and antagonist muscles acting at the targeted

ARTICLE

joint were calculated over the four indicated phases of the trial. Plots
report the measured torques and EMG activity during the various phase of
the trial for the left legs of all participants for the four tested joints (cyan,
flexor; magenta, extensor), together with EES parameters and electrode
configurations. All measurements were performed before rehabilitation,
except for hip extension in P1 and P2 (not tested before), and ankle
extension in P3 (no capacity before rehabilitation), which were carried

out after rehabilitation. Targeted EES enabled or augmented the specific
recruitment of the targeted muscle, which resulted in the production of the
desired torque at the targeted joint, except for ankle extension of P2. Plots
show quantification of the EMG activity and torque for # = 3 trials per
condition. Note that hip flexion can be enabled or augmented with EES
targeting L1 and/or L4 posterior roots (heteronymous facilitation of flexor
motor neuron pools).
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a Experimental setup

64-channel EEG headset

Participant P1

b The onset of EES elicits a robust response in the sensorimotor cortex contralateral to the stimulated root
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Extended Data Fig. 5 | Modulation of EEG activity during volitional
contraction of leg muscles without and with EES. a, Recordings of EEG
activity while participants were asked to produce an isometric torque at
the knee joint without and with continuous EES targeting motor neuron
pools innervating knee extensors, as shown in b. b, Superimposed EEG
responses (n =40 repetitions) and temporal changes in the topography of
average activity over the cortical surface after the onset of EES, as indicated
above each map. The onset was calculated from the onset of EMG
responses in the targeted vastus lateralis muscle (insets). The stimulation
elicited a robust event-related response over the left sensorimotor cortex
with a latency of 90 & 40 ms for P1 and P3, and of 170 & 40 ms for P2

(full range of the peaks and middle of this range indicated). ¢, Average

normalized time-frequency plots (1 =40 trials) showing ERD and ERS
over the Cz electrode (central top electrode) for each individual during
the voluntary activation of knee extensor muscles without and with
EES. Schematic drawings (left) indicate the motor scores of the tested
legs, including the targeted muscles (*), at the time of enrolment in the
study. Both legs were tested in P1 owing to his asymmetric deficits.

d, Normalized average power (mean =+ s.e.m.) of the 3-band over the Cz
electrode during ERS from 0 to 500 ms after termination of contraction
without and with continuous EES (n =40 repetitions for each condition,
individual data points shown except for outliers more than 3 median
absolute deviations away from the median). ***P < 0.001 (permutation
tests, see Methods).
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a Selection, optimization and parametrization of EES configurations targeting the hotspots underlying walking
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Configuration of spatiotemporal EES to enable
walking. a, Spatial configuration. Step 1: select electrode configurations
from single-pulse experiments to target the three hotspots underlying

the production of walking in healthy individuals (weight acceptance:

L3; propulsion: S1; swing: L1/L4). Step 2: optimize EES amplitude and
frequency while delivering EES during standing. Multipolar configurations
can be used to refine selectivity of EES protocols. Example shows
continuous EES targeting the right L3 posterior root to facilitate right knee
extension during standing, and trains (500 ms) of EES targeting the right
L1 posterior root stimulation to facilitate hip flexion. Two EES frequencies
are shown (P3). b, Temporal configuration. Step 3: decision tree to select
the best strategy to configure the temporal structure of EES protocols. If
the participant is able to initiate leg movements consistently, use closed-
loop EES based on real-time processing of foot trajectory. If the participant
is not able to initiate consistent leg movements but can feel when EES

is applied, use open-loop EES. If the participant is not able to generate
movement and cannot feel EES, use closed-loop EES combined with
physiotherapist assistance to move the legs. Step 4: real-time monitoring
of the spatiotemporal trajectory of the feet. The trajectory is modelled as a
foot rotating in space around the centroid of the movement (updated every
3 s). Angular thresholds determine the onset and end of EES protocols.

Step 5: example showing the effect of three different angular thresholds
on the onset of EES and resulting kinematics and EMG activity, including
the quantification of kinematics for each step and condition that enables
selecting the optimal onset of EES trains (P1). The same approach is

used to optimize the duration of each train. ¢, Comparisons between
closed-loop and open-loop EES. Plots show the vertical displacements

of the left and right feet and successive step heights during walking with
spatiotemporal EES delivered in closed loop versus open loop, showing the
reduced variability of step height during pre-programmed EES sequences
(P1). d, Resulting EMG patterns. Step 6: example of the progressive
addition of EES protocols targeting specific hotspots. Plots show the
quantification of EMG activity for the displayed muscles (1 =7 gait cycles
for no EES and n =9 gait cycles for each stimulation condition, P2). Step
7: EES amplitudes and frequencies are adjusted to avoid detrimental
interactions between the different EES protocols and thus obtain the
desired kinematic and EMG activity. Plots report the modulation of EMG
activity and kinematics with increases in EES amplitude and frequency
(mean + s.e.m.; amplitude data: n=10, 12, 12, 30, 19, 12, 11, 10 gait cycles
for amplitudes in increasing order, P2; frequency data: n =20, 15, 16, 17,
15, 16, 15 gait cycles for frequencies in increasing order, P3).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Targeted modulation of muscle activity

during walking. Each panel reports the same representative data and
quantification for one participant. Left, EMG activity of leg muscles during
walking on a treadmill without EES (EES OFF) and with spatiotemporal
EES (EES ON) while applying 50%, 45% and 70% body weight support
for participants P1, P2 and P3, respectively. Stance and swing phases are
indicated by grey and white backgrounds, respectively. The personalized
spatiotemporal EES sequence (open loop) is schematized at the top right.
The colours of each EES protocol refer to the targeted hotspots: weight
acceptance (salmon), propulsion (magenta) and swing (cyan). These
colours are used in the EMG traces to indicate the temporal window
over which each targeted EES protocol is active. The bar plots report

the amplitude of muscle activity without EES and with spatiotemporal
EES, for which the quantification was performed over the entire burst

of EMG activity and during each temporal window with targeted EES.

The temporal windows are labelled with a number that refers to the
spatiotemporal EES sequence. These results show the pronounced increase
in the EMG activity of the targeted muscles (P1, no EES: n =7 gait cycles,
EES: n=11 gait cycles; P2, no EES: n =9 gait cycles, EES: n=9 gait

cycles; P3, no EES: n =10 gait cycles, EES: n =57 gait cycles). The average
spatiotemporal trajectories of both feet with respect to the hip in the
sagittal plane are shown for walking without EES and with spatiotemporal
EES. The presence of targeted EES is indicated with the same colour code.
Plots at bottom right show the relationships between EES frequency and
the modulation of the EMG activity of flexor (blue) and extensor (magenta
or salmon) muscles and maximum amplitude of hip movements during
walking (mean £s.e.m.; P1: n =14, 17, 15, 19 gait cycles for increasing
frequencies; P2: n=13, 16, 10, 17, 12 gait cycles for increasing frequencies;
P3: n=20, 15, 16, 17, 15, 16, 15 gait cycles for increasing frequencies).
*#%P < 0.001. Student’s ¢-test.
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Extended Data Fig. 8 | Volitional adaptations of walking during
otherwise unchanged spatiotemporal EES. a—c, Quantifications of
experiments shown in Fig. 4a—c for each participant. a, Step height and TA
EMG activity with and without EES during overground walking (P1, EES
ON: n=7 gait cycles; P2, EES ON: n = 16 gait cycles; P3, EESON, n=7
gait cycles). b, Step height and TA EMG activity during normal steps and
when participants were requested to perform exaggerated step elevations
during overground walking (P1, n =15 normal gait cycles, n=11
exaggerated gait cycles; P2, n =31 normal gait cycles, n =23 exaggerated
gait cycles; P3, n= 14 normal gait cycles, n = 10 exaggerated gait cycles).

¢, Step height and TA EMG activity during the first and last 30 steps
extracted from a sequence of 1 h of locomotion on a treadmill (n = 30 gait
cycles for all conditions). ***P < 0.001; n.s., non-significant; Student’s
t-test. d, EMG activity of representative leg muscles, vertical displacements
of the foot and anteroposterior oscillations of the leg (virtual limb joining
the hip to the foot) while P2 was walking continuously on the treadmill
with spatiotemporal EES (open loop). The participant was asked to

suppress the effects of EES and stand during one cycle of open-loop
spatiotemporal EES sequence, highlighted in brown (SKIP), whereas he
actively contributed to the production of movement the rest of the time.
Plots report the quantification of step height and TA EMG activity during
walking and when skipping steps for each participant (P1, n =13 normal
gait cycles, n =1 skipped cycles; P2, n= 36 normal gait cycles, n=3
skipped gait cycles; P3, n =11 normal gait cycles, n =2 skipped cycles).

e, EMG activity of two representative muscles, vertical displacements of
the foot and anteroposterior oscillations of the leg while P1 was walking
on the treadmill and the speed of the belt increased progressively from 0.8
to 2 km h™L. Plots show relationships between treadmill speed and mean
stride length and TA EMG activity in all participants (P1: n=9,9,9, 9,
10, 18, 15, 9, 9 gait cycles for increasing speeds; P2: n =13, 10, 7, 8, 10,

9 gait cycles for increasing speeds; P3: n=38, 8, 10, 9, 9, 8 gait cycles for
increasing speeds; s.e.m. shown). The range of tested speeds was adapted
to the walking ability of each participant.
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