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Abstract

Most experimental and theoretical studies of brain function assume that neurons transmit information as a rate code, but recent studies on
the speed of visual processing impose temporal constraints that appear incompatible with such a coding scheme. Other coding schemes that
use the pattern of spikes across a population a neurons may be much more efficient. For example, since strongly activated neurons tend to fire
first, one can use the order of firing as a code. We argue that Rank Order Coding is not only very efficient, but also easy to implement in
biological hardware: neurons can be made sensitive to the order of activation of their inputs by including a feed-forward shunting inhibition
mechanism that progressively desensitizes the neuronal population during a wave of afferent activity. In such a case, maximum activation
will only be produced when the afferent inputs are activated in the order of their synaptic weights. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Most models of neural systems implicitly assume that
information is transmitted by neurons in the form of a firing
rate code. For example, the vast majority of Artificial Neural
Network and Connectionist models use an approach that can
be summarized as follows: take a large number of neuron-
like processing units, connect them together with variable
weight connections that are the rough equivalent of
synapses, and use a rule in which the activation level of
each unit is some function of the weighed sum of all the
inputs to each neuron. It is a strategy that seems obviously
‘biologically inspired’, but there is one feature of real biolo-
gical neural networks that is missing from the vast majority
of artificial systems. In nearly all artificial systems, each unit
sends its activation level to all the targets as a continuous
value, often a floating point number between 0 and 1 (some-
times between —1 and +1). In contrast, biological neurons
send information in the form of a sequence of spikes. The
notion that one can summarize a spike train as a single
continuous variable is one that is very firmly entrenched,
not just in artificial neural networks, but also throughout
neuroscience. Indeed, it goes back to the very start of
experimental neurophysiology in the 1920s when the first
recordings of the electrical activity of sensory fibers by
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Adrian (1928) showed that firing rate increased with
increasing stimulus intensity.

Even today, neurophysiologists often assume that all the
useful information that can be learned about neural coding
can be summarized in the form of a Post-Stimulus Time
Histogram (PSTH) that plots firing rate as a function of
time. Given this state of affairs, it is hardly surprising that
few in the artificial neural network community have felt the
need to look at alternative coding schemes. However, in the
last few years, an increasing number of scientists has begun
to take seriously the possibility that the use of spikes opens
up a whole range of alternative coding options, some of
which have profound implications for the nature of neural
computation (Maass & Bishop, 1999; Rieke, Warland,
Ruyter van Steveninck & Bialek, 1996). One of the motiva-
tions behind such work has been the realization that there
are situations where processing is too fast to be compatible
with a conventional rate based code. We will review such
evidence and argue that other alternative spike based coding
schemes can be considerably more efficient. In particular,
we will discuss the merits of a coding scheme that encodes
information in the relative timing of spikes across a popula-
tion of neurons, or more specifically, in the order in which
neurons fire. We will argue that such coding schemes have a
number of features that make them ideally suited for certain
types of rapid processing tasks. These features include
speed, robustness, and ease of implementation, and make
such schemes particularly attractive for designing artificial
processing systems.
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2. The processing speed constraint

In 1989, Thorpe and Imbert argued that the existence of
neurons in the primate brain that could respond selectively
to complex visual stimuli such as faces, food and familiar
3D objects only 100—150 ms after stimulus onset imposes a
major constraint on models of visual processing (Thorpe &
Imbert, 1989). They argued that to reach such neurons, infor-
mation about the stimulus would need to cross something like
10 layers of neurons on the way from the retinal photorecep-
tors. This means that each individual processing stage would
need to operate in not much more that 10 ms. Given that corti-
cal neurons rarely fire at rates much above 100 Hz, this seems
to imply that such processing can be accomplished under
conditions where each individual neuron only gets to fire either
none or one spike. This seriously limits the precision with
which individual neurons could send information using a firing
rate code because it largely excludes codes that make use of the
interspike interval between two spikes as a way of estimating
instantaneous firing rate.

In the last decade, the generality of the processing speed
constraint has been reinforced. Initially, it was possible to
argue that the short response latency of inferotemporal
neurons with selective visual responses to stimuli such as
faces could constitute a special case. However, more recent
work has shown that even complex natural scenes that have
never been seen previously can be successfully categorized
on the basis of only 150 ms of processing in humans (Antal,
Keri, Kovacs, Janka & Benedek, 2000; Thorpe, Fize &
Marlot, 1996), and even more rapidly in monkeys
(FabreThorpe, Richard & Thorpe, 1998). This type of
Ultra-Rapid Visual Categorization (URVC) has a number
of interesting features. First, it seems to be largely color-
blind, since monochromatic images are processed very effi-
ciently (Delorme, Richard & Fabre-Thorpe, 2000), a result
consistent with the idea that it relies primarily on rapid
magnocellular visual pathways. Second, categorization
can be as rapid for totally novel images as it is for highly
familiar images, implying that contextual information is
largely unnecessary (Fabre-Thorpe, Delorme, Marlot &
Thorpe, 2001). Third, it is not specific for biologically
important categories like animals, because it is equally
fast and accurate for a completely artifactual category,
namely, means of transport (Van Rullen & Thorpe,
2001b). Finally, it does not require direct fixation of the
object, since it works very well for stimuli presented in
parafoveal vision (Fabre-Thorpe, Fize, Richard & Thorpe,
1998), and has even been demonstrated for images
presented in extreme peripheral vision (Thorpe, Gegenfurt-
ner, Fabre-Thorpe & Biilthoff, 1999).

The existence of this very rapid and automatic
processing mode provides strong evidence for a largely
feed-forward processing mechanism capable of operat-
ing very quickly. Other recent evidence also points in
the same direction. In 1992, Oram and Perrett demon-
strated that even the very start of the neuronal response

of neurons in inferotemporal cortex could be highly
selective for particular stimuli, a hallmark of feed-
forward processing (Oram & Perrett, 1992). Similar
early selectivity was also reported for orientation selec-
tive neurons in V1 (Celebrini, Thorpe, Trotter & Imbert,
1993). More recently, there have been reports that the
selectivity of neurons in high level visual areas such as
inferotemporal cortex could withstand very rapid
changes in the input, resulting either from masking
(Kovacs, Vogels & Orban, 1995; Rolls & Tovee,
1994; Rolls, Tovee & Panzeri, 1999), or by rapid serial
visual presentation (Keysers, Xiao, Foldiak & Perrett,
2001).

Together, these various strands of experimental evidence
argue strongly in favor of the view that at least some forms
of visual processing can be performed very rapidly—so
rapidly, that few if any of the neurons at each level of the
processing hierarchy will have enough time to emit more
than one spike before those in the next layer have to
respond.

While vision is fast, processing in other sensory pathways
can in many cases be even faster, imposing even more
serious constraints. For example, neurons in the bat auditory
cortex can respond just 8 ms after stimulus onset, which,
given the number of intervening subcortical processing
stages leaves only a couple of milliseconds at each level
(Jen, Sun & Lin, 1989), and similarly strong constraints
will apply in the somatosensory system. Likewise, there
are numerous cases in invertebrate sensory systems where
the input—output timing constraints are particularly severe
(Carr, 1993).

3. Is rate coding fast enough?

Most neurophysiologists believe that a Poisson-like rate
code is, to a first approximation, a reasonable description of
the way that neurons transmit information. Describing the
spike generation process as Poisson is clearly a simplifica-
tion, because it ignores the fact that real neurons have
refractory periods that prevent them from generating a
large number of spiking events in a short period. Neverthe-
less, a Poisson model is a reasonable starting point. Gautrais
and Thorpe (1998) looked at the efficiency of such a model
as a means of transmitting information. They argued that
Poisson rate codes are probably too inefficient to account for
the rapid information transmission required for sensory
processing.

Suppose that an observer is listening to the output of a single
neuron and, during a 10 ms observation window, the neuron
emits one spike. If we assume a Poisson process, what can we
conclude about the true firing rate of the neuron? It turns out
that the most that we can say is that there is a 90% chance that
the true firing rate lies somewhere in the range 5-474 Hz
(Gautrais & Thorpe, 1998). Clearly, this is unlikely to be of
much use for transmitting detailed information about the level
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of excitation in a sensory receptor. There are two ways in
which the accuracy of the measurement can be improved.
One is to use a longer observation window, the other to use
apopulation of neurons to transmit the information. In a sense,
these are equivalent since observing a single Poisson process
for ¢ milliseconds provides the same result as observing n
Poisson processes for #/n ms. Thus, by using a population of
30 neurons, and an observed firing rate of 30 spikes in 10 ms,
the 90% confidence interval for the population firing rate can
be reduced to roughly 100 = 30 Hz. However, to obtain a
precision of 100 = 10 Hz would require no less than 281
redundant and independent neurons. This seems to be a very
expensive way to transmit one analog value with only limited
precision.

While it is clear that, given enough neurons, one can
obtain whatever level of precision you could want, there
are numerous situations where there may simply not be
enough neurons available. Take the example of the optic
nerve. There are roughly 100 million photoreceptors in the
primate retina, and information from these receptors needs
to be compressed into the activity of roughly 1 million optic
nerve fibers. Since we know that this figure includes both
ON- and OFF-center receptive fields as well as transient and
sustained channels, we can assume that for any particular
type of information there will be no more than a few
hundred thousand ganglion cells to cover the entire visual
field. Is it really conceivable that one could allow 281 such
fibers to be used to transmit the image intensity at each point
in the image? If this were really the case, one would only be
able to sample about 30 by 30 points in the image per
channel, a value that seems totally incompatible with the
highly detailed information provided by the retina. Further-
more, although there may be a small degree of redundancy
between neighboring retinal ganglion cells, the overlap is
relatively small (Meister & Berry, 1999), and in general the
available evidence indicates that coding in the retina is
designed to eliminate redundancy as much as possible.

While population rate coding seems incompatible with the
bandwidth of the optic nerve, it could be argued that popula-
tion rate coding could be used to transmit information
between processing stages further on in the visual system.
After all, while there may only be 1 million retinal ganglion
cells projecting to the LGN, there are probably hundreds of
millions projecting from V1 to extra-striate cortical areas such
as V2 and MT. While this might seem like a large number, it
needs to be remembered that although there are only a rela-
tively small number of different types of retinal ganglion
cells, the number of different image parameters that need to
be encoded by the activity of cells in V1 is way higher.
Neurons in V1 need to encode a large number of parameters
that include orientation, spatial frequency, stereoscopic
disparity, color, and motion, but will also include other
more complex characteristics. As yet, we have virtually no
idea of how much bandwidth is required to transmit informa-
tion between cortical areas. Nevertheless, it seems likely that
the conventional population rate code approach will be hard

pushed to cope with the bandwidth requirements of rapid
intra-cortical information transfer.

There are other problems facing the traditional rate coding
view. One has emerged from a number of recent studies that
have examined the way in which synapses respond to repeated
activation, for example during a burst of afferent activity. The
results are complex, because different results have been
reported for different types of synaptic connections (Abbott,
Varela, Sen & Nelson, 1997; Thomson, 2000; Thomson,
Deuchars & West, 1996; Tsodyks & Markram, 1997). In
some cases the response to a second spike arriving via a
particular synapse can be transiently enhanced (facilitation).
However, in many cases, the effect of a second pulse is signif-
icantly attenuated and there may even be total failure if one
attempts to reactivate the same synapse without leaving a
delay of 50—100 ms for the synapse to recover. Remarkably,
this even seems to be true for putative thalamic excitatory
inputs to cortical pyramidal cells (Stratford, Tarczyhornoch,
Martin, Bannister & Jack, 1996). If such results are
confirmed, it would imply that cortical cells are effectively
blind to firing rates in the lateral geniculate nucleus above
about 10-20 spike.s '! At the very least such results mean
that using the firing rates of individual cells to transmit accu-
rate analog information will be of limited use. Again, the data
strongly indicate that we need to think about how information
can be coded across a population of cells, rather than thinking
about each cell in isolation.

Finally, yet another problem for rate coding stems from
the fact that the firing rate distribution of real neurons is not
flat, but rather heavily skewed towards low firing rates.
Consider again the case of an observer listening to the
output of a neuron who detects one spike during a 10 ms
time window. What would be the best estimate of the firing
rate if we assume a Poisson process? One might think that
the correct answer should be 100 spike. s~ !. However, this
would only be the case if all firing rates were equally likely.
Suppose that the distribution of firing rates was actually
fitted by a roughly exponential function as suggested by
recent experimental data (Baddeley et al., 1997), and that
the mean firing rate was 30 spike. s '. Gautrais and Thorpe
(1998) pointed out that under these conditions, the best
estimate of the true firing rate given one spike in 10 ms
would in fact be 23 spike. s '. To complicate matters
even more, the best estimate of the true firing rate will
depend on the length of the observation window, but even
when 10 spikes have been observed during 100 ms, the best
estimate would still only be 75 spike. s . Indeed, in order to
obtain an estimated firing rate of 100 spike. s ' with a 10 ms
window, the window would need to contain at least four
spikes (i.e. an observed firing rate of 400 spike. s ).

4. Alternative coding schemes

Fortunately, rate coding is by no means the only option
available. Over 30 years ago, a meeting on Neural Coding
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Fig. 1. Comparison between three coding schemes that can operate in a short time window. The 10 neurons A—J emit spikes at different times. By using a count
code, corresponding to a population rate code, there are only 10 + 1 states of the system. If the latency of each spike can be determined with millisecond
precision, there are 10'* possible states. Finally, with a rank code, there are 10! possible states.

assessed the plausibility of a wide range of different coding
schemes (Perkel & Bullock, 1968). Many of these alterna-
tive schemes are still perfectly viable. Furthermore, in
recent years, a number of other coding schemes have been
proposed, many of which make use of the fact that real
neurons use spikes. Indeed, the fact that neurons use spikes
to transmit information opens up a whole new range of
coding options, many of which are largely unexplored.

Let us return to the problem posed by the very rapid
processing demonstrated by a number of recent studies.
Such studies indicate that sophisticated processing can be
achieved under conditions where each neuron only gets to
fire either none or one spike, considerably reducing the
number of possible coding schemes that we need to take
into consideration. What are the options? In the following
section, we will consider just a few of the more obvious
possibilities.

To make the differences as clear as possible, consider the
10 neurons illustrated in Fig. 1. Let us suppose that a stimu-
lus has been presented, and we can record the responses of
each neuron during a 10 ms observation window. How
might one decode information concerning the stimulus?

4.1. Count code

The first option is simply to count the number of neurons

that have spiked during a particular time window. This
amounts to using the neurons to implement a population
rate code of the type described in the previous section. Of
the 10 neurons in Fig. 1, nine have fired a spike during the
observation window, which corresponds to a population
firing rate of nine/10 spikes per 10 ms, or 90 spikes s .
With such a coding scheme, it is clear that the maximum
amount of information that can be transmitted is equal to
logy(N + 1) bits, where N is the number of neurons, since
there are only N + 1 = 11 possible states of the system. This
sets the upper limit on the amount of information that can be
transmitted using 10 neurons at 3.46 bits.

4.2. Binary code

A more efficient way of using the same 10 neurons would
be to use them as a binary code. It would be a bit like using
the 10 neurons as if they were lines on a parallel printer port.
The pattern corresponding to the situation in Fig. 1 would be
the binary pattern 1111111101, one of 1024 possible
patterns. In the case of such a binary code, the maximum
amount of information that can be transmitted with N
neurons will simply be log,(2") = 10 bits. This is clearly a
much more efficient code than the simple count code. Note
however, that the information provided by the binary coding
scheme depends critically on the length of the observation
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window. If the window had only been 5 ms long, we would
have obtained the value 111110000. Binary codes of this
sort clearly have the problem that they are not stable over
time.

4.3. Timing code

The maximum amount of information is provided when
the decoding mechanism can determine the precise time of
each spike on each input line. In this case, the total amount
of information that can be transmitted will simply depend on
the number of channels, and the precision with which the
latency of each spike can be determined. If we suppose that
spikes can be timed with a precision of 1 ms, the maximum
amount of information that could be transmitted in # ms will
be N*log,(¢) bits, namely over 33 bits. Such timing based
codes are clearly potentially extremely powerful, but have
the drawback that the decoding mechanism required to
determine the precise latency of each spike may be prohibi-
tively complicated to implement when using real neurons.

4.4. Rank order code

Yet another possibility is to look not at the precise timing
of spikes for each input, but rather the order in which the
neurons fire (Thorpe & Gautrais, 1998). In this case
the neurons in Fig. 1 could be thought of as transmitting
the order C>B>D>A>E>F>G>J>H>1I This
particular order is only one of the 10! orders that can be
obtained with 10 neurons—more than 3.6 million possibi-
lities. Rank Order Codes can in principle be used to transmit
up to logy(N!) bits of information, which in the case of
10 neurons is over 21 bits.

4.5. Codes using synchrony

There are numerous other codes that can be used even
when each neuron is only allowed to fire a maximum of one
spike. One popular option is to use synchrony to link parti-
cular groups of neurons as in Fig. 2. Rather than treating the
10 neurons as a binary code (0111011001), the neurons are
grouped into two blocks (0111022002), greatly increasing
the number of possible combinations. In this case, the
number of possible codes that can be transmitted in a parti-
cular observation window will depend on the number of
different subgroups that can be differentiated. Thus, if the
number of possible phases that can be distinguished in a
10 ms time frame was arbitrarily fixed at 3, one could in
theory transmit up to 4'° patterns this way, allowing a maxi-
mum of log2(410) bits of information to be transferred,
namely 20 bits.

Hopefully it will be obvious from this very rapid and
incomplete overview that even with one spike per neuron
and a short observation window, there are a large number of
potential coding schemes that need to be examined. It is
interesting to note that the population rate code, which in
this case corresponds to a simple count code, is by far the

least efficient of those considered here. Thus, as in the
previous section, where we argued that a Poisson like rate
code appears too weak to account for the speed and effi-
ciency of information transmission, we again see that the
conventional rate based coding schemes fall well behind
other alternative strategies.

Temporal codes clearly have a big advantage, but before
we can build a model that can take advantage of the poten-
tial bandwidth associated with temporal codes, there are two
vital issues that need to be addressed. The first concerns the
question of how the temporal information might get into the
spike patterns in the first place. The second issue concerns
how neurons in later processing stages might decode the
information.

5. The origin of temporal information

In the last section, we introduced a number of alternative
coding strategies that make use of the temporal structure of
the spikes produced by a population of neurons. We showed
that if it was possible to determine the precise firing time of
spikes on each channel, the total amount of information that
can be transmitted can be very large. Alternatively, just
using the rank order of spikes in different neurons can
also be very effective. The question now is, where might
such differences in spike timing originate?

One obvious source is the sensory stimulus itself. There
are many sensory systems in which the relative time of arrival
of stimuli at different receptors is used for processing. Sound
localization is an obvious example where the fact that a sound
pulse reaches the left ear before the right one is a cue that the
sound source lies on the left of the animal. Motion processing
in the visual system also depends on differences in the time of
arrival of the stimulus on different receptors. The temporal
precision of such mechanisms can be very impressive (Carr,
1993). For example, central neurons in the electric fish are
sensitive to timing differences of less than a millisecond
(Kawasaki, Rose & Heiligenberg, 1988), and in bats the
echolocation system relies on timing differences that can
be even smaller (Edamatsu & Suga, 1993). There is thus
ample evidence that sensory systems can indeed make use
of very small differences in the timing of spikes in different
populations of neurons.

Note, however, that in nearly all these cases, the timing
difference was already present in the sensory stimulus itself.
In 1990, we argued that timing differences will emerge at
almost every stage of the sensory pathways, simply as a
result of the basic integrate and fire properties of neurons
and that these timing differences can also be used for
processing (Thorpe, 1990).

To explain the principle, note that the basic rate-coding
model is based on the notion that sensory neurons can be
considered as analog-to-frequency converters—as stimulus
intensity increases, firing rate increases as well. But an alter-
native view would be to consider the neuron as an analog-to-
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Fig. 4. The simple multi-scale model used in Van Rullen and Thorpe’s study of coding in the optic nerve. The model has ON- and OFF-center receptive fields
at a range of spatial scales (Van Rullen & Thorpe, 2001a). Sampling density is highest for the cells with the highest spatial resolution.

delay converter, a perfectly reasonable suggestion given the
basic integrate-and-fire characteristics of neurons. When a
stimulus is presented, the time for the neuron to reach thresh-
old will depend on the strength of the input—with strong
stimuli, the neuron will reach threshold rapidly, whereas
weaker stimuli will take an increasingly long time to fire
(see Fig. 3(A)). Indeed, if the neuron is a leaky integrator,
particularly weak stimuli may never manage to get the
neuron’s membrane potential over threshold. The result is
that effectively all sensory neurons will show a characteristic
intensity-latency function in which there is a progressive
decrease in latency with increasing intensity (see Fig. 3(B)).

Thus, when we look at the pattern of firing illustrated in
Fig. 1, it is not unreasonable to suppose that this particular
order of firing might result from a situation in which the
strength of the sensory stimulus applied to each of the
input neurons differs. In this particular case, it is likely
that input C receives the strongest input, input B the next
strongest and so on. The idea seems very obvious, and yet
surprisingly few models in computational neuroscience
seem to make use of this simple feature.

Note that the intensity to delay conversion means that both
the precise timing of each spike and the order code become
viable options. However, in the following sections we will
concentrate on the Rank Order Code, because it has a number
of interesting computational properties and because it can be
implemented very easily. In the next section, we will return to
the question of coding in the optic nerve to address the question
of how effective rank order coding could be as a means to
transmit information from the retina to the brain.

6. Rank order coding in the retina

The integrate and fire properties of retinal ganglion cells
mean that, in response to a flashed stimulus, the neurons will

tend to fire in an order that reflects the spatial characteristics
of the image. The well known center-surround organization
of receptive fields in the retina means that local contrast
rather than the physical intensity of the stimulus will be
most important for determining the responsiveness of retinal
ganglion cells. Thus, one could in principle use the order of
firing of cells in the optic nerve as a way of encoding the
image.

This possibility has recently been explored by Rufin Van
Rullen (Van Rullen & Thorpe, 2001a) who examined
whether a rank-order coding scheme could be used to effi-
ciently transmit information about an image from the retina
to the cortex. The study used a very simple model of the
retina in which the image was represented by ganglion cells
with ON-center and OFF-center receptive fields at different
scales (see Fig. 4).

In response to the presentation of an image, the activation
strength of each ganglion cell will effectively reflect the
result of a local convolution of the image. The problem
was then to investigate how well this activation strength
could be transmitted to the brain using different coding
strategies. The conventional view is that retinal ganglion
cells transmit information about their activation levels in
the form of a firing rate code. This assumes that the brain
can determine reasonably accurately the firing rates of all
the neurons in the optic nerve. But there is an alternative
scheme in which one simply needs to determine the order in
which the cells in the optic nerve fire. This information can
be used to reconstruct the image by plugging in the recep-
tive field of each neuron that fires with a weight that depends
on the order with which the cell fired—those cells that fire
first are given a high weighting, whereas those that fire later
on are given less and less importance. Examples of how this
reconstruction scheme operates are illustrated in Fig. 5(A)
which illustrates the fact that, when using this rank order
scheme, the identity of many of the objects in natural images



722 S.J. Thorpe et al. / Neural Networks 14 (2001) 715-725

A 0.01%

0.1%

1%

Normalized contrast value (%)

10%

ik

o)

o
L

=
(=]
o

0.001

0.01 0.1 1 10 100
Neuron's rank (%)
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can be determined when only 1-2% of the cells have fired
one spike. Although there is little direct data concerning this
question, it seems likely that when a natural image is
presented to an array of retinal ganglion cells, 1-2% of
cells may well fire a spike during an observation window
sufficiently short to be compatible with the temporal
constraints mentioned earlier.

Note that in order to obtain this result, the weighting of
each retinal spike was adjusted using a form of Look-Up-
Table that varies the impact of each spike as a function of its
order. In order to determine which values to use, a large
number of natural images were tested to determine how
the typical contrast values varied with rank. As shown in
Fig. 5(B), contrast decreases with rank in a very systematic
way. If we take a model retina with 100 000 neurons, and
give a maximal weight to the first neurons to fire, once 10
cells have fired, we should reduce the weighting to around
50%, when 100 cells have fired we should use an effective
weight of only 15% and when 1000 cells have fired we only
need to use a weighting of around 5%. This very rapid drop
in importance explains why the first 1% of cells is so good at
allowing reconstruction to occur, because it effectively
means that we can largely ignore cells that fire later on.
Indeed, if the aim of the visual system was to produce an
energy efficient code, one that used the smallest number of
spikes to transmit the image, one could use leaky integrators
in the retina to ensure that, in response to a typical scene,
only 1-2% of cells actually reach threshold.

It is interesting to note the parallels between this form of
rank order based coding scheme and some of the recent
image compression schemes developed by the graphics
industry. JPEG compression applies a series of convolutions
to an image and then throws away all the components below
a certain threshold value—to get higher compression, one
simply sets the threshold at a higher level. This is effectively

what occurs in the rank order coding model with the inter-
esting twist that the data is sent to the next stage in a tempo-
rally ordered sequence, with the most salient data being sent
first.

7. Decoding rank order

The rapid decrease in weighting that we use in the image
reconstruction can in fact be used more generally as a
decoding mechanism for rank based information. The idea
is a simple one, and can be implemented in a feed-forward
network that includes a population of inhibitory interneur-
ons. Consider the situation in Fig. 6 in which a neuron N
receives excitatory inputs from five input neurons in the
previous layer, but that in addition, each of the input
neurons also connects to a population of interneurons (/)
that produce shunting inhibition in the target cell. Because
of the shunting inhibitory circuit, if the input cells fire in a
particular order, the first input to fire will produce a maximal
effect on the target cell, but the effectiveness of later firing
inputs will become progressively attenuated by the build up
in inhibition. Suppose that, in addition, the excitatory
connection strengths of the five input neurons vary, so that
input A has the strongest connection, input B the second
strongest connection and so forth. In such a case, it is easy
to see that the maximum excitation in the target neuron will
be produced when the input neurons fire in the order of their
connection strengths, starting with the highest weight
(Thorpe & Gautrais, 1998).

To see why, consider the case where the weights of the
excitatory synapses from the input neurons A—E are, respec-
tively, 5, 4, 3, 2 and 1. Initially, the modulatory effect of the
shunting inhibition is null and so each input is maximally
effective. However, every time one of the inputs fires, the
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Fig. 6. A simple circuit sensitive to the order of activation of inputs A—E.
The neuron N receives excitatory inputs from each of the inputs. In addition
it receives shunting inhibition from a pool of inhibitory interneurons whose
activity increases every time one of the inputs fires. As a result, only the first
input to fire is unaffected by the shunting inhibition, and the inhibition
builds up progressively during the processing of a wave of spikes. The
final activation of the output neuron will be maximal only when the inputs
are activated in the order of their weights.

shunting inhibition attenuates the effectiveness of the inputs.
A simple model would be to say that after each input spike,
the sensitivity of the target cell decreases by 50%. In this
case, if the inputs fire in the order A> B > C > D > E, the
total excitatory input to the target cell will be
(5%0.5%+(4*0.5") + (3*0.5%) + (2*0.5%) + (1*0.5*) = 8.06.
Any other pattern of firing will produce a lower level of activa-
tion with the weakest response being produced when the inputs
fire in the opposite order, in which case the final activation
would be 3.56. By setting the threshold of the target neuron to
an appropriate value, the neuron can be made arbitrarily selec-
tive. For example, with the threshold set at 8.0, only the order
ABCDE would be capable of driving the neuron over thresh-
old, an impressive result given that there are 5! = 720 possible
orders with five inputs.

One of the appealing features of such a decoding scheme
is that it is simple to implement in biological hardware.
Most decoding schemes that involve precise temporal infor-
mation end up involving large numbers of neurons and are
thus expensive to implement. For example, sound localiza-
tion makes use of differences in the time of arrival of spikes
originating in the left and right ears, but to decode this
information requires expensive delay lines (Carr, 1993). In
the case of rank order decoding, on the other hand, a simple
feed-forward network with shunting inhibition is sufficient.
Interestingly, such an arrangement appears to be remarkably
frequent in sensory processing pathways. For example, in
the visual system, thalamic afferents originating in the
lateral geniculate nucleus will make direct excitatory
connections onto the dendrites of pyramidal cells in layers
IV and V, but at the same time, they also contact fast-spik-
ing inhibitory interneurons which make contacts on the
soma of the same pyramidal cells (Callaway, 1998). It

seems plausible to suppose that such connections could
produce shunting inhibition of the target cells and could
very rapidly reduce the sensitivity of these cells to excita-
tory inputs. Indeed, recent intracellular recording studies
have shown that in response to a visual input, shunting
inhibition builds up very rapidly during the first millise-
conds of the response (Borg-Graham, Monier & Fregnac,
1998). This is exactly what would be needed to implement
the rank decoding scheme proposed here.

8. Learning and rank order coding

A further advantage of the rank order coding scheme is
that it is relatively straightforward to implement learning in
such a network. As noted in the previous section, a target
neuron can be made sensitive to the order of its inputs by
using a desensitization mechanism such as shunting inhibi-
tion to progressively decrease the effectiveness of inputs
arriving later on. In order to make a neuron sensitive to a
particular temporal sequence of activation, it is sufficient to
use a learning rule that increases synaptic weights for inputs
that fire early, and reduces them for inputs that fire later on.
Interestingly, this sort of timing dependent synaptic plasti-
city is precisely what has been described recently in a
number of studies (Bi & Poo, 1999; Markram, Liibke,
Frotscher & Sakmann, 1997; Song, Miller & Abbott,
2000). Excitatory Post-Synaptic Potentials (EPSPs) that
occur before a post-synaptic spike are strengthened,
whereas those that fire after the post-synaptic spike become
depressed. Further work will be required to see precisely
how such rules could relate to Rank Order Coding, but it
seems likely that the net result of such a mechanism will be
that inputs that always fire in advance of the post-synaptic
neuron will receive maximum reinforcement—and this is
precisely what we are looking for.

Using SpikeNet, a software program designed for simu-
lating large networks of asynchronously firing integrate-
and-fire neurons (Delorme, Van Rullen, Gautrais & Thorpe,
1999) we have already shown that simple feed-forward
architectures are capable of performing non-trivial tasks
that include the detection of faces in natural images (Van
Rullen, Gautrais, Delorme & Thorpe, 1998). More recently,
this work has been extended to include the view-indepen-
dent identification of faces (Delorme & Thorpe, 2001, this
volume). Both models have the same basic features. First,
the input layer is composed of neurons with ON- and OFF-
center receptive fields similar to those of the retinal ganglion
cells in Van Rullen’s study of retinal coding described
earlier. These cells perform a local convolution of the
image and then emit one spike at a time that depends on
the strength of the signal. These spikes are then sent to
arrays of neurons in the next layer that is the rough equiva-
lent of V1. By connecting the ON- and OFF-center cells
appropriately, it is relatively simple to produce neurons
that are selective to edges with a range of orientations. In
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both simulations we used eight orientation maps, corre-
sponding to steps of 45° although there is no particular
reason why one should not use a much more detailed set
of orientation maps. In the next stage, we use the outputs of
the orientation maps to drive feature detection maps that are
trained with a supervised learning rule to respond when the
neurons in the orientation maps fire in the appropriate order.

9. Extensions to the basic model

Although the face-detection and face-identification
models described in the previous section use an entirely
feed-forward processing architecture, other work in our
group has shown that other types of architecture can be
incorporated into the same basic scheme. For example, in
a recent study, we showed that horizontal connections
between orientation selective maps can be used to imple-
ment contour integration even under conditions where each
neuron only gets to fire one spike (Van Rullen et al., 2001a,
2001b). The pattern of connectivity used is very much the
sort that has been used in a number of recent models of
contour processing (Li, 1998). However, because in our
simulations each neuron only fires one spike we can effec-
tively prevent the system from using a true iterative
mechanism. The result is that the model can perform
contour integration very rapidly, in a way that is compatible
with the severe timing constraints on visual processing
imposed by studies on ultra-rapid visual categorization.

Another extension to the basic model is to allow top-
down influences to modulate processing in earlier stages.
This can be used to implement a simple mechanism for
spatial attention in which processing of a particular region
of the visual scene can be given higher priority by effec-
tively lowering the threshold of neurons with receptive
fields in that area (Van Rullen & Thorpe, 1999). Note that
this effective threshold reduction could easily be obtained
by providing an increase in tonic background excitation to
neurons in a particular region. The net result is that informa-
tion concerning the attended region of visual space will
reach later stages in the processing hierarchy earlier, thus
giving them a competitive advantage.

10. Concluding comments

Rate coding has dominated almost all theoretical and
experimental work on neural function for more than half a
century. The idea that the output of a neuron can be distilled
into a single number is certainly an appealing simplification,
and one that has proved useful in a great deal of theoretical
work. However, real neurons transmit information as spikes,
and as soon as one tries to implement even the simplest rate
coding model with real neurons that produce real spikes,
things start to get very complicated. As we have tried to
argue in this paper, the remarkable speed of sensory proces-
sing, together with the anatomical and physiological

constraints mean that a simple rate coding scheme is almost
certainly inadequate. Processing is too fast to allow the
firing rates of individual neurons to be measured with any
precision, and although one certainly can attempt to
measure the firing rate of a population of neurons, it turns
out that this is an extremely inefficient way of transmitting
information.

Fortunately, the fact that neurons use spikes opens up a
huge range of other potential codes, many of which have
received little or no attention. In this paper we have stressed
the possibility that sensory systems could easily make use of
the fact that the timing of the first spike in response to a
stimulus provides information about the strength of that
stimulus. This simple fact is one that should be obvious to
anyone with even the most rudimentary knowledge of
neurophysiology. And yet, the possibility that the order in
which neurons fire could be used to encode information is
one that has hardly been tested experimentally. Our simula-
tions have shown that networks of asynchronously firing
neurons of this sort can indeed perform sophisticated tasks
that include face detection and identification. The fact that
such simulations can work even under conditions where
each neuron only gets to fire one spike is an important
one, because it is one of only a very few mechanisms that
are compatible with the extremely severe temporal
constraints imposed by visual processing.

Clearly, a great deal of further work will be required if we
are to fully understand the computational implications of
spiking neurons. This work will require close interactions
between experimentalists, theoreticians and modelers. But it
is an area that holds a great deal of promise and may well
provide a key to our understanding of the brain in decades to
come.
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