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SUMMARY AND CONCLUSIONS

I. Principles of information theory were used to calculate the
limit of accuracy achievable by a subset of the wind-sensitive pri-
mary interneurons in the cricket cercal sensory system. For these
calculations, an ensemble of four neurons was treated as an infor-
mation channel, which encoded the direction of air-current stim-
uli for a defined range of air-current velocities. The specific infor-
mation theoretic parameter that was calculated was the “transin-
formation” or “mutual information” between the air-current
directions and the neuronal spike trains, which were characterized
in the preceding report. Under the assumptions used for these
calculations, the ensemble of four interneurons was demonstrated
to be capable of encoding between 4.2 and 3.5 bits of information
about wind direction. This corresponds to an average directional
accuracy of 4.7 and 7.7°, respectively.

2. The same principles were applied to estimate the extent to
which any variation in the width of the tuning curves would affect
the transfer of information. As the widths of simulated tuning
curves were varied, the mean ensemble accuracy showed a clear
global maximum. This maximum corresponds to tuning curves
widths of 110° wide (at half maximum), which was remarkably
close to the actual mean widths of the tuning curves observed in
the cricket of 130°.

3. The effect of varying the parametric “spacing” of the tuning
curves within the stimulus range was also examined through a
series of simulations. The configuration allowing the maximum
information transfer corresponded to equal spacing of the tuning
curves around the stimulus range (i.e., 90° separation of peak
sensitivity points). This theoretically optimum spacing corre-
sponded exactly to the values observed in the experiments pre-
sented in the preceding report.

4. These simulations also showed that the degradation in the
accuracy resulting from a shift in the tuning-curve spacing would
depend on the plasticity of the higher order decoder of directional
information. If there were no plasticity in the interneurons mak-
ing up the higher order decoder, then the accuracy would be de-
graded by 50% for a mean tuning-curve shift of only 3.5°. How-
ever, if the higher order decoding network were capable of being
reoptimized to any arbitrary shift in tuning curves, the degrada-
tion in attainable accuracy would be much less severe as shifts of
up to 10° would result in virtually no degradation in the accuracy.

5. From these results, two general conclusions can be drawn
about the coding of specific stimulus parameters by arrays of sen-
sory cells. First, the effectiveness of the coding of a stimulus param-
eter by an ensemble of cells with broadly overlapping tuning
curves is strictly limited by the intrinsic variance in the cells’ re-
sponses. Second, the robustness of any sensory system to shifts in
tuning-curve characteristics can be greatly enhanced by allowing
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the higher order “decoder” networks to be capable of reoptimiza-
tion.

INTRODUCTION

In the preceding paper, six interneurons of the cricket
cercal sensory system were characterized in terms of their
responses to wind stimuli of different peak velocities and
directions. The cells were divided into two classes, on the
basis of their wind velocity sensitivity. The “low-velocity”
class is composed of four interneurons that had sensitivity
to stimuli spanning the entire 360° range of possible direc-
tions in the horizontal plane. The stimulus-response curve
of each cell had a characteristic ‘“tuning-curve” (or “recep-
tive-field”) shape typical of many sensory systems. For
each of these four cells, the response was maximal for a
particular air-current stimulus direction, and the response
decreased in a systematic fashion as the stimulus was ro-
tated from this optimal direction. The tuning curves of
these four cells were broad and equally spaced in angular
separation. It is assumed that the ensemble response of
these four cells encodes information about the direction
and the velocity of air-current stimuli, and questions con-
cerning the directional accuracy achievable by this subsys-
tem of four cells were raised.

The goal of the study reported here was to determine the
limits of directional accuracy, taking into account not only
the characteristic responses of these four cells but also the
variance in their responses. Further, we wanted this estima-
tion of the limiting accuracy to be model independent in
the sense that it would not depend on any specific model for
“decoding” by higher order neurons. A measure that satis-
fies all these requirements is the statistical quantity defined
as “transinformation” in information theory. This measure
is uniquely dependent on the conditional probabilities of
the response for specific stimuli and yields a quantitative
measure of the maximum discriminatory resolution of the
system. In the case of this sensory system, this measure can
be translated into degrees of directional accuracy.

Principles of information theory were also used to inves-
tigate the optimality of certain parameters characterizing
the operation of this system. Previous theoretical studies
have demonstrated the relatively high degrees of accuracy
and noise tolerance achievable within an array of sensory
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cells that have broad, overlapping response curves. This
form of coding is sometimes referred to as “coarse coding”
(Hinton et al. 1986; Heiligenberg 1987). Inspired by such
studies, we carried out simulations to investigate the depen-
dence of system accuracy on the widths and the relative
spacing of the tuning curves. In all cases the actual values of
the parameters observed in the real system were found to be
very close to the values that yield the theoretical maximum
information transfer for this system.

METHODS

Information theory

The principles of information theory were described by Shan-
non (1948). His purpose was to find a quantitative measure for
the amount of information carried by the “symbols™ used in any
kind of communication scenario, and to calculate the rate at
which information could be transmitted by a temporal sequence
of such symbols. This is essentially the same problem we consid-
ered in this study, i.e., we wished to determine the amount of
information about stimulus direction encoded in the neural spike
train responses of four sensory interneurons in this system. In the
following sections we briefly summarize the aspects of informa-
tion theory relevant to our investigation, review recent applica-
tions of information theory to similar questions in other neuro-
physiological studies, and then present in that theoretical and his-
torical context the methods and assumptions on which our own
studies are based.

ENTROPY AND TRANSINFORMATION. Consider a source of sym-
bols (i.e., a “transmitter””), which we will call X, and its corre-
sponding set of symbols {x;} used in the communication. An
essential idea in information theory is that the amount of informa-
tion conveyed by a symbol is inversely related to its probability of
occurrence. In other words, receiving a symbol that a priori is
known to have very low probability of occurrence will yield a large
amount of information about the state of the source.' The infor-
mation conveyed by one particular symbol x; is written in binary
units as

i(x;) = log, ( ) = —log, [p(x)] (1)

P(xj)
where p(x;) is the probability of occurrence of symbol x;.

A quantity that is important for our subsequent analysis is the
average amount of information conveyed by each of the different
symbols transmitted by the source X. This average is simply the
sum, over all possible symbols, of the information conveyed by
each symbol times that symbol’s probability of occurrence

H, = 3 —p(x;)log, [p(x))] (2a)

j=1

where 7 is the total number of discrete symbols in the set. This
quantity H, was defined by Shannon as the “entropy” of the trans-
mitter X, because it corresponds to the amount of a priori uncer-
tainty about the source (and is also equivalent to the a posteriori
average amount of information that can be obtained from its set of
symbols { x}). H, can also be thought of as representing the frac-
tional number of binary digits (or bits) needed to encode the sym-
bols of X with an optimal encoder.

! This makes intuitive sense, considering our own written language. The
letter ““x” occurs in many fewer words in a standard English dictionary
than does the letter “e.” If you were presented with a word having all but
one letter masked out, you could offer a much better “guess’ about what
that word was if the exposed letter were an ““x” rather than an ‘“e.”

1691

In many cases the symbols of interest cannot normally be repre-
sented as a finite set of discrete symbols { x } but constitute instead
an infinite ensemble representing the values of a continuous pa-
rameter. In the case of the cercal sensory system, for example, the
symbols corresponding to the air-current stimulus direction
should, presumably, be allowed to represent any arbitrary angle in
the horizontal plane. In such cases involving continuous variables,
p(x) becomes a continuous probability function and Eq. 2a can
be rewritten in its equivalent integral form

.= [ = p(x) 10, [p() 1 (2b)

where the integration is carried out over the whole range of the
parameter to be represented.

Although it may seem inappropriate to characterize aspects of
neurally coded information in terms of binary bits, it is actually
quite reasonable from a biological perspective. Consider, for exam-
ple, our problem of characterizing the intrinsic resolution with
which the cercal sensory system could represent the direction of an
air current. If the system’s resolution was limited to the segrega-
tion of air currents directed at the front of the animal from air
currents directed at the rear of the animal, then the system would
effectively be able to divide the whole stimulus range of 360° into
only two “bins.” In other words the system could be thought of as
resolving wind direction with one bit of accuracy. If the stimulus
range could be divided into four bins, encoding the direction in-
formation would require two bits. Every doubling in the number
of bins would imply one more bit of information. Fractional bi-
nary quantities are also possible: a division of the range into five
bins corresponds to 2.32 bits.

In general, however, sensory systems should not be thought of
as segregating the ranges of relevant stimulus parameters into
fixed numbers of bins with discrete boundaries. Rather, any sys-
tem will display intrinsic limitations in the refiability or probabil-
ity with which two different stimuli having slightly different pa-
rameters can be distinguished. To illustrate this point, consider a
typical series of stimulus-response measurements from the preced-
ing report (Miller et al. 1991), in which 32 identical air-current
stimuli were directed at a cricket from a single direction. A range
of responses were elicited that were distributed around the mean
response according to a Gaussian probability function. Conse-
quently, the corresponding set of 32 estimates of stimulus direc-
tion derived from this probabilistic response set by any subsequent
optimal decoder would itself be characterized by a probability
distribution. In general, the probability distribution of these de-
coded direction estimates would be centered at the correct direc-
tion and would have a spread that depended on 1) the spread of
the probability distribution of the neuronal responses and 2) the
rate at which the mean ensemble response changed as a function
of stimulus direction. In such cases, the accuracy of the system in
distinguishing different stimuli is usually defined in terms of the
spread of this probability function characterizing the decoder esti-
mates of a stimulus direction: the wider the spread, the lower the
corresponding accuracy. Roughly speaking, a stimulus range can
be thought of as being fractionated with a resolution equivalent to
the width of this probability distribution, and the mean resolution
of the system in bits is therefore approximately equal to the loga-
rithm (base 2) of the extent of the stimulus parameter range di-
vided by the mean width of‘this probability distribution. A rigor-
ous derivation of the relation that is relevant to our case (i.e.,
relating the width of a Gaussian probability function to the infor-
mation theoretic quantities in bits) is summarized later in the text
and is presented in detail in the APPENDIX.

The different forms of Eq. 2 have been used in several theoreti-
cal studies to calculate the upper limit of the information trans-
mission rates in several neural systems (for example, see McKay
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and McCulloch 1952; Rapaport and Horvath 1960). Such calcu-
lations were carried out by multiplying the mean information per
symbol (i.e., H,) by the presumed rate at which the symbols were
being transmitted. Such calculations, however, required ad hoc
assumptions about the nature of the symbols used for the neural
coding scheme and were therefore extremely problematic. These
calculations yielded upper limits to the information transfer rate
that may be extremely and unreasonably high, and therefore es-
sentially meaningless from a physiological standpoint. The basis
for this overestimation is that the summation (or integration ) lim-
its over which H, was calculated spanned the entire range of possi-
bly “decodable” symbols in the transmitted signals, without tak-
ing into account the “meaning” associated with each symbol.2

A more appropriate and model-independent quantity related to
neural processing is the amount of information transferred be-
tween layers of neurons, rather than the total entropy of the signal
stream transmitted by one layer. To calculate this quantity of in-
formation transfer, the proportion of the observed signal variance
that does not encode independent information about the transmit-
ter must somehow be subtracted from the entropy of the true
symbol set itself. Such a calculation can be accomplished in a
straightforward manner. Because we wish to characterize a
transfer of information from one layer of neurons to another, a
second set of symbols at a “receiver” must be defined. Assume
that the meaningful information contained within the whole set of
transmitted symbols {x} is encoded as a set of symbols {y} at
some subsequent level in the system. The “conditional entropy”

Hye= [ [ =px, 1) 108 tp(311dxdy @)
measures the variance or uncertainty that remains in the encoded
set of symbols { y} when the identity of the symbols of the source
X is known. The transinformation, then, can simply be defined as

4

In other words, H, is a measure of the total range of symbols used
by the encoder (including all redundant and/or “nonsense” sym-
bols), and H,,, is the portion of this range of symbols that is not
correlated to the set of symbols {x}. T, is therefore the relevant
biological quantity and measures the information about the
source X that is actually transmitted through the channel.

This measure of transinformation, also called “mutual informa-
tion,” can be applied to any stochastic system that has a well-de-
fined input and output. In neurobiological systems, the output is
appropriately defined as some parameter of the electrophysiologi-
cal signal (i.e., membrane potential or spike pattern) recorded
from a single neuron or a group of neurons. The input to the
system can correspond either to some relevant electrophysiologi-

T.=H,— Hy,,

? To illustrate this problem with an example using a set of discrete sym-
bols, consider the task of deciphering a handwritten message. If the written
message contained randomly intermixed cursive script and roman printed
characters, then a reader unaware of the equivalence between the 2 sets of
symbols would calculate H, using Eq. 2a summing over a possible set of 52
characters instead of the actual “meaningful” number of 26. In other
words, even if 2 different symbols have the same meaning, they would each
contribute independently to the net mean entropy calculated by Eq. 2a.
Furthermore, in previous studies using H, as a means to quantify neural
information, the maximum information transmission rates were esti-
mated under the assumption that all possible neural symbols had the same
probability of occurrence. In our illustrative example about the handwrit-
ten message, this would be equivalent to assuming that all of the letters of
the alphabet have equal probability of occurring in each word. This mis-
taken assumption would further contribute to an overestimation of the
information transmission rate. Because we have no way of knowing with
any certainty what the significant symbols are in neural spike trains, then
the use of H, to characterize neural information transmission will lead to
an equivalent overestimation problem.
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cal parameters of presynaptic neurons or, in the case of sensory
systems, to the range of relevant sensory stimuli. Note that Eq. 3 is
written in its integral form, which is appropriate for cases in which
the x and y symbols correspond to parameters of continuous func-
tions. In the general formulation of information theory, x and/or
y could represent discrete symbols, in which case the integration
signs would be changed to summation signs.

PREVIOUS CALCULATIONS OF TRANSINFORMATION IN NEURAL
SYSTEMS. In their pioneering work on the application of transin-
formation in neurobiology, Eckhorn and Popel (1974, 1975) cal-
culated the net transinformation and the rate of transinformation
flow at the level of the retinal ganglion cells and lateral geniculate
nucleus (LGN) cells of the cat. The experimental input to the
system was a flashing light (with a pseudorandom rate) repre-
sented as a binary function of time. The output of the system was
taken as the neural impulse trains, also represented by a binary
function of time. By taking into account the conditional probabil-
ity of spike occurrence given previous spike activity, Eckhorn and
Popel obtained measurements of information transfer without
making any arbitrary assumptions about the nature of the neural
code. Along the same lines, Richmond and Optican (1990)
showed that a significant part of the information conveyed by
single cells of V1 about a complete set of multidimensional spatial
visual stimuli was present in the temporal patterns of the spike
trains. To get around the overwhelming dimensional size of the
representation when a binary code is used, and to gain more in-
sight on the actual encoding of the information, they used a princi-
pal component decomposition of the temporal spike pattern.
They found that three to four principle components were suffi-
cient to encode all the relevant structure of the spike pattern.

In these studies listed above, the approach taken in examining
neural information processing was to calculate the information
contained in the ensemble of spike-train patterns elicited by spe-
cific stimulus sets. De Ruyter van Steveninck and Bialek (1988)
used the same transinformation principles but applied those prin-
ciples in a way that can be thought of as being the inverse of the
above approach. In their studies, de Ruyter Van Steveninck and
Bialek calculated the information contained in all sensory stimuli
that could have evoked specific, observed spike-train responses.
By doing the calculations over all possible response patterns of up
to three spikes, they provided some insight into the actual neural
code used in their preparation and addressed questions related to
real-time decoding of neural response patterns.

Fuller and Looft (1984) extended the principles defined in the
original work of Eckhorn and Popel to the multineuron case. They
calculated the transinformation for a group of cutaneous receptor
cells of the cat to test the two prevalent assumptions: /) that the
receptor responses are conditionally independent and 2) that the
information about the stimulus is encoded by the mean rate of the
neuron spike train. They found that the first assumption is approx-
imately true, but that a mean rate code will only transmit part of
the information.

TRANSINFORMATION IN THE CRICKET CERCAL SYSTEM. The
first goal of the work presented here was to determine the limit of
accuracy with which four sensory interneurons in the cricket cer-
cal system could encode information about wind stimulus direc-
tion. To determine this limit, the transinformation between the
sensory stimuli and interneuronal output was calculated, on the
basis of experimental measurements presented in the preceding
report (Miller et al. 1991). For these studies, the source or trans-
mitter X was considered to be the air-current stimulus generator,
and the set of symbols { x} corresponded to all possible directions
of the transient, unidirectional air currents used in these experi-
ments (see Fig. 1). In other words, the input symbol variable x in
Egs. 1-4 corresponds to the continuous range of stimulus direc-
tions in the horizontal plane, which we will subsequently refer to
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FIG. 1.

symbolic notation used in the transinformation calculation.

as 0. The “output” symbol variable y in Egs. 3 and 4, which
represents the encoded information about stimulus direction,
corresponds to the ensemble response of a set of interneurons dur-
ing an interval after the stimulus, which we will subsequently refer
to as r. The interneurons for which we performed the transinfor-
mation calculation is the four-member class of 10-2 and 10-3 cells
described in the preceding report (Miller et al. 1991).

This transinformation calculation is considered as representing
the /imit to the system’s accuracy, because it can be proven that no
possible neural (or engineered ) decoder could extract more infor-
mation from the spike trains (under our set of limiting assump-
tions) than can be calculated to be “encodable” according to Eq.
4. (Of course, the neural circuitry at higher levels might not be
capable of decoding all of the available information; only behav-
ioral studies could ultimately test this possibility.) It is in this limit-
ing sense that the transinformation calculation yields a model-in-
dependent measure of the accuracy. However, as is the case for
any measure of sensory performance, the transinformation calcu-
lation is very much dependent on the assumptions made when
choosing the relevant coding parameters of the spike train, as well
as any assumptions that would limit the set of possible stimuli to
the system. A list of our assumptions, and a consideration of how
they could have influenced our calculations of the accuracy of this
system, are as follows.

Assumptions

REPRESENTATION OF THE STIMULUS DIRECTIONS AS THE INPUT
SYMBOLS. For our analysis of directional accuracy to be rigor-
ous, the ensemble response of the system should, in theory, be
observed for all possible wind-current velocity profiles at all direc-
tions, and the contribution of each different stimulus-response
measurement to the overall transinformation calculation should
be weighted by that stimulus profile’s actual probability of occur-
rence in the cricket’s real environment. In practice, such a com-
plete set of experimental measurements was not possible. There-
fore we restricted our stimulus shape to the half-cosine waveforms
described in the previous report, and the peak velocities of the
waveforms were restricted to the optimal sensitivity range within
which the responses of the cells varied as the log of velocity (Fig. 3,
Miller et al. 1991). By restricting our calculations to this limited
set of inputs, we made the following implicit assumptions: 1) the
general aspects of the tuning curves (i.e., their shapes, widths, and
variances) were relatively independent of the precise velocity pro-
files of different air-current stimuli, and 2) other aspects of the
neuronal responses within the system (for example, the relative

1693

Set of
Encoded
Symbols {y}

Encoder Y

_%.

. Spike Trains
Cricket Cercal of Four
Sensory System Interneurons

Schematic flow chart of the information transfer in the cricket cercal system and the corresponding mathematical

activity levels between the 9-2 and 9-3 cell class and the 10-2 and
10-3 cell class) encoded independent information about air-
current direction and velocity for stimuli with velocities outside of
the “log-linear” operating range of the 10-2 and 10-3 cells. The
first assumption was observed to be valid with respect to two partic-
ular classes of stimuli: the half-cosine waveforms (used for the
calculations presented here ) and for constant velocity “step’ wave-
forms (like those used for Fig. 24 of Miller et al. 1991). The
second assumption also seems reasonable and is considered in
greater detail in the DISCUSSION.

REPRESENTATION OF THE CELL RESPONSES AS THE OUTPUT
SYMBOLS. As indicated above, the output variable r must be
some representation of the recorded activity of the nerve cells,
which has relevance in the information transfer process. As shown
elsewhere (Eckhorn et al. 1976), a “signal code” (binary function
of time of the spike occurrences) would be the most complete
representation. In our study the analysis was limited to the mean
elicited spike counts in an interval after the stimulus. We believe
that this is a very reasonable first-order representation for the cells
in this particular neural subsystem, because their spike-train re-
sponses displayed very regular firing rates (see Miller et al. 1991).
The integration time for the estimation of the mean spike count
was 100 ms. The choice of the length of the integration time con-
stitutes an additional assumption about the resolution of the sys-
tem. We are, in effect, assuming that higher decoding neurons
could be able to integrate this response for ~100 ms. If the inte-
gration time is reduced, the information transfer would also be
reduced, but this effect is less significant for regularly firing units
such as these cells.

For our calculations, therefore, the output symbol variable y in
Egs. 3 and 4 can be substituted with the ensemble response vector
r=(r,, 1y, 13, r4) where r, is the mean spike count (MSC) of 10-3
left (10-3L), r, is the MSC of 10-2L, r; is the MSC of 10-2 right
(10-2R), and r, is the MSC of 10-3R. Each of the four cells had a
maximum MSC for its optimal stimulus direction, and the re-
sponses fell off symmetrically on either side of that optimal direc-
tion (Fig. 5 in Miller et al. 1991). The curves of MSC versus wind
direction are therefore considered to represent “directional sensi-
tivity curves,” or “directional tuning curves.”

The calculation of transinformation and systematic accuracy
required a knowledge of two features of the cells’ response charac-
teristics: /) the shape of these directional tuning curves, plotted as
the mean spike count values and 2) the values for the response
variance at each stimulus orientation for each cell. These data
were presented in the preceding paper and are dealt with in our
computations as follows.
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DIRECTIONAL TUNING CURVES OF THE FOUR INTERNEURONS.
As described in the preceding report, analytic functions corre-
sponding to truncated cosine functions were fitted to the 10-2 and
10-3 cells’ directional tuning curves. For reasons of computational
efficiency, the calculations presented in this report were carried
out on the basis of these analytic functions, rather than with the
observed data points themselves. The use of continuous functions
allowed us to interpolate reasonable values for the MSCs of the
interneurons at intermediate stimulus directions and for a range of
velocities for which real experimental data were not obtained. The
use of these model curves was considered valid, because 1) the
fitted curves were statistically indistinguishable from the real data
curves, and 2) small deviations from those curves would not in
any case be expected to significantly alter the results of our calcu-
lations.

The general form of the analytic function used to represent the
stimulus-response characteristics of each individual cell in the
four cell ensemble was as follows

r = [Fmax/(1 = a)]*[c0s (8 = Onax) — ;] fOr cos (6 — Omax) > 4, (5a)

and

r=0 for cos(f— 0,.,) <a (5b)

where r is the response amplitude (i.e., mean spike count), equiva-
lent to the y symbol; r,,,, is the maximum response amplitude; 6 is
the stimulus direction in radians, equivalent to the x symbol; 6.,
is the optimal stimulus direction evoking the maximum response;
and g, is the threshold stimulus value for evoking spike activity.

In this function, the response r can be thought of as being the
resultant sum of excitation from sensory receptor afferents and
inhibition from local interneurons. The threshold value is presum-
ably determined by the relative amount of excitation and inhibi-
tion, as well as by the spike threshold of the interneurons. The
[rmax/(1 — a,)] coeflicient can be thought of as a gain factor.

As well as being plausible from a physiological standpoint, this
formulation of the equation is convenient for parametric variation
simulations. Operationally, changing the value of the threshold
parameter g, modifies the width of the tuning curve but maintains
the maximum response at a constant value by adjusting the gain.

Because the experimental directional tuning curves were only
measured for one particular peak stimulus velocity (i.e., the veloc-
ity at which the MSC response was at ~60% of saturation), the
parametric representation allowed us to simulate the response of
the system for a range of velocities that were not actually charac-
terized with full tuning curves. To carry out these simulations, 7,,,,
was increased or decreased proportionally to the log of the stimu-
lus velocity, according to the relationship demonstrated in the
previous report. In doing so, we effectively assumed that, within
this log-linear region of the cells’ velocity sensitivity, the shape of
the tuning curves varied only by a scaling factor.

Regardless of the plausibility of Eq. 5 as a suggestive model for
directional selectivity, the form of the equation is essentially arbi-
trary; a number of other functions could have been used to fit the
observed data equally well. A significant concern does arise, how-
ever, when considering how the shapes of these different functions
change as the relevant width parameter is changed for the paramet-
ric variation simulations. To verify that the results were not an
artifact of the particular analytic function used to represent the
tuning curves, some calculations were repeated with the use of a
function that maintained a steeper slope at the tails of the tuning
curves as widths were increased. The function we chose was a
cosine with varying period and zero threshold. The MSC response

in this case was modeled as
7= Fax #€OS [(270/ Q) (0 — Opoax) ] (6)

where Q was the period in radians.
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RESPONSE VARIANCE OF THE FOUR INTERNEURONS. As dis-
cussed above, calculations of the transinformation and system ac-
curacy require a knowledge of the variance in the responses of the
individual cells to identical repeated stimuli. This is intuitively
understandable. Consider a function constructed from the sum of
two Gaussian functions that have equal amplitudes but different
mean values. The ability to resolve the two functions depends not
only on the separation of their means, but also on the relative
widths of the functions. The case of our neural tuning curves is
entirely equivalent: the ability to distinguish the directions of dif-
ferent stimuli on the basis of the mean firing rates of a neuron (or
neurons) is dependent on the variability in responses from one
stimulus presentation to the next.

In terms of the information theoretic calculations, the variance
in a cell’s response r to repeated stimuli at a direction ¢ and a
velocity v is used to define the conditional probability distribution
p(r|6, v). With the use of the simplest assumptions, consistent
with the variance measurements reported in the preceding report,
we assumed that each cell’s responses varied around it’s mean
response for that particular direction and velocity with a discrete
normal distribution. Because the MSC could never be negative,
the distributions were truncated at zero. In other words, p(r|0,
v) = 0 if any of the components of the ensemble response r were
<0. The spread of the distribution was determined by the variance
of the MSCs reported in the preceding paper (Miller et al. 1991).
As shown in Fig. 6 of that paper, graphs of the standard deviation
of the MSC versus the amplitude of the MSC from each cell could
be fitted with a linear function. Thus we could estimate the spread
of p(r|6, v) by first calculating the MSC at that particular direc-
tion and velocity and then obtaining the variance from its linear
dependence on the MSC. To estimate the directional accuracy in
the real system, we chose the variance relationship from the cell
having the highest variance.

The deviation from the normal distribution was assessed by
calculating the skewness coefficient. In all cases, the skewness was
always less in absolute value than the expected variance of the
skewness for a normal distribution calculated from 32 points of
data.

Note that the functional representation of the conditional proba-
bility distributions as normal distributions was not strictly neces-
sary for the directional sensitivity calculation. The probability dis-
tribution could also have been extracted directly from the data
used to calculate the variance. Our functional representation sim-
ply smoothed out these probabilities and allowed a rigorous and
consistent model for the distributions at intermediate values of
the MSC.

COVARIANCE IN THE RESPONSES OF DIFFERENT CELLS. Because
of the limitation of recording from only one cell at a time, any
possible covariance that might have existed between cells could
not be measured. Thus an implicit assumption of these calcula-
tions was that the cells responded independently for a given direc-
tional stimulus. A consideration of the covariance in cell activities
would, in effect, have allowed a determination of the proportion of
the variance in the MSCs that was correlated between cells. An
optimal decoder could, in certain cases, use such information
about the covariance to enhance accuracy. (Consider, as an engi-
neering example, a bipolar amplifier set to reject the “common
mode noise” on both inputs.)

By assuming no covariance between activities of different cells,
by using only the mean firing rates for our representation of the
spike train, and by choosing the largest variance values measured
in our experiments, we are, in effect, calculating the lowest bound
of the maximum directional accuracy of our system. On the other
hand, our choice of the integration time over which to estimate the
MSC and the restriction of the stimuli to a limited velocity range
might have lead to overestimations of this lowest bound.
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Calculation methods

The directional transinformation (7, = H, — H,,) can also be

written as
_ p(r]0)
T,= fp(f?)U log, (———p(r) )p(rlﬁ)dr] do (7)
or
7,= [ p(0) 7(0) do )
where
7(0) = [ 108, (%)p(rw)dr 9

is the transinformation for a particular input symbol § (Mansuri-
pur 1987). T(0) is also referred to as the “partial transinforma-
tion.” This is the form that was used in our calculations. In these
equations, the conditional probability p(r|f) was calculated by
taking the average of p(r|6, v) over all velocities in the velocity
interval of interest?:

p(r10) = [ o716, 0) p(w)dv (10)

To calculate the partial transinformation for a given direction 6,
a four-dimensional nonanalytic integral had to be calculated (i.e.,
the integrand in Eq. 9 is a function of r, the 4-dimensional re-
sponse vector representing the ensemble MSC of the 4 interneur-
ons). The fastest numerical method for estimating 7(6) is a
Monte Carlo integration where p(r|#) is used as the “importance
function” (Davis and Rabinowitz 1984; Gillespie 1975). Finally,
to obtain the overall transinformation, a simple one-dimensional
averaging integral (E£q. 8) had to be performed. We calculated the
overall transinformation, which we will subsequently refer to as
T,, by obtaining 7(8) for enough values so that their mean value
would not change. We found that simulating the responses at 128
directions was sufficient.

Correspondence between Ty in bits and angular resolution
in degrees

As discussed earlier, it is reasonable to consider the value of
transinformation in bits as being directly related to the angular
resolution of the system. For example, if the average directional
transinformation is approximately four bits, the simplest interpre-
tation is that the total stimulus range (i.e., 360°) could be divided
by the four cells into 2* (i.e., 16) different directional bins, each of
which would be 22.5° wide (corresponding to a standard devia-
tion of 6.5°). A more rigorous interpretation of the measure of
transinformation is to equate it to the “angular resolution” or
“standard deviation” of the error with which an optimal decoder
could compute the stimulus direction from the mean ensemble
spike count response of these four cells. The formal relation be-
tween the transinformation values we calculated and the equiva-
lent accuracy of the direction calculations by any presumed opti-
mal decoder depends on the shape of the probability function that
characterizes the output of an optimal decoder to identical re-
peated stimuli. Assuming a Gaussian distribution for this probabil-
ity function (which was, in fact, a good approximation for a simu-
lated decoder based on the minimum mean square error), the

3 Note that in taking the average of over all velocities we are not includ-
ing any information about the velocity in our transinformation calcula-
tion. If one were interested in the encoding of the velocity as well, Eq. 9
would become 7°(6, v) = f log, [p(r|6, v)/p(r)] p(r|6, v) dr. T(6, v)
would then be integrated over all velocities and directions to obtain the
total average transinformation.
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number of bits of transinformation in the response with standard
deviation ¢ is approximately given by

T = log, (V27/0) — 1/[2 In(2)]

as long as ¢ is less in magnitude than 27 radians (see APPENDIX).
Four bits of resolution, for example, would correspond to a Gauss-
ian error with a width of 5.4°.

(1)

RESULTS

Directional accuracy for stimuli with a “known” velocity

The directional transinformation 7, was calculated ac-
cording to Eq. 9, using stimulus-response parameter values
equivalent to the experimental observations presented in
the preceding report (Miller et al. 1991). For this analysis,
the calculations of transinformation at each direction were
based on the cells’ responses to stimuli having known direc-
tion and velocity . (The stimulus velocity used for the exper-
iments was set to elicit a response equal to ~60% of a cell’s
“saturating” response in its optimal direction.) The curves
plotted with solid lines in Fig. 2 are the model functions
representing the cells’ directional tuning curves at this veloc-
ity, calculated from Egs. 5a and 5b, with parameters set to
best fit the physiological data. The transinformation (in
bits) is plotted as the dashed curve. Transinformation var-
ied between 3.7 and 4.8 bits, with a mean of 4.22 bits. This
fluctuation would presumably result in a slight unevenness
in the attainable accuracy at different stimulus directions.

Directional accuracy for stimuli with undetermined
velocities

Additional calculations were performed according to
Egs. 9 and 10 to determine the extent to which uncertainty
in stimulus velocity would decrease system accuracy in de-
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FIG. 2. Mean spike count (MSC) in the responses of the 4 10-2 and
10-3 cells (solid curves) to wind stimuli from different directions, and
information transfer of the system (dotted line) in bits for a fixed velocity
set at 60% of the saturating velocity. Smooth response curves were ob-
tained by fitting a cosine function to the experimental data. Error bars
(shown for only 1 cell) indicate the mean variance in the cells’ responses.
The mean value of transinformation is 4.2 bits.
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termining stimulus direction. For this analysis, the calcula-
tions of transinformation at each direction were based on
simulated responses to several stimuli having identical di-
rections but different velocities, as described earlier. By
varying the range of velocities from which each stimulus-re-
sponse set was selected, different levels of uncertainty about
stimulus velocity could be simulated. Three different sets of
such calculations were performed, with velocity ranges set
as shown in Fig. 34. The stimulus-velocity range for each
set was centered on the “standard” stimulus velocity used
for the calculations presented in the preceding section. This
standard stimulus velocity, indicated in Fig. 34 with an
asterisk, was the velocity that elicited a response equal to
60% of a cell’s “saturating” response in its optimal direc-
tion. The limits of the stimulus-velocity range for each of
the three calculation sets were adjusted, as shown in Fig.
3 A4, to bracket this standard stimulus velocity by amounts
that elicited responses corresponding to +12, +24, or +36%
of the MSC at the saturating stimulus velocity around the
MSC at the standard velocity.

The results are shown in Fig. 3 B. In this graph, the aver-
age directional transinformation (in bits) across all direc-
tions is plotted versus the width of these velocity uncer-
tainty ranges. In other words, with zero uncertainty as to
the stimulus velocity, the mean transinformation was 4.22
bits, as calculated in the previous section. As the velocity
uncertainty range was increased, the mean directional accu-
racy decreased. However, the decrease is not as pronounced
as might have been expected. Even for velocity ranges for
which the MSC ranged by +36% around the response at the
standard velocity (i.e., from 24 to 96% of the cells’ saturat-
ing responses, which corresponded to a velocity range from
3 to 83% of the saturating stimulus velocity), the mean
transinformation decreased by less than one bit to a value of
3.5 bits.

To gain a better intuitive understanding of these plots of
directional accuracy, the values for transinformation in bits
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can be translated into values for angular resolution, as de-
scribed in METHODS. According to Eq. 11, this calculated
range in transinformation between 3.5 and 4.2 bits corre-
sponds to an angular resolution of between 7.7 and 4.7°,
respectively, depending on the width of the velocity interval
considered significant.

Dependence of transinformation on changes
in tuning-curve width

As discussed earlier, the accuracy achievable by a sensory
system such as this must be influenced by the relative
widths of the parametric tuning curves of the constituent
neurons, which in these experiments were measured to be
130°. The dependence of directional accuracy on the tun-
ing-curve widths was assessed by a series of simulations in
which the widths (measured at half-maximum amplitude)
were varied between 20 and 220°. The variation was
achieved by varying a, in Eq. 5a between 0.97 and —1.68,
respectively. The simulations were done for two different
stimulus-response sets: for the standard stimulus velocity
and for a velocity range corresponding to the response in-
terval of +24% around this standard velocity. All other pa-
rameters in the functions were kept constant.

The results of these simulations are plotted in Figs. 4, 5,
and 6. In Fig. 4, the simulated tuning curves and corre-
sponding calculations of transinformation versus direction
are plotted for each of three specific tuning-curve widths.
For each tuning-curve width, the data are presented in two
different complementary formats: a polar plot and a Carte-
sian plot. These graphs illustrate the extent to which modifi-
cations of tuning-curve width effect two significant aspects
of the local transinformation. First, the variation in the
transinformation (plotted as solid lines) at different direc-
tions is much greater for the case of the narrow tuning
curves. This would imply a significant variation of direc-
tional accuracy at different directions for this case. Second,
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FIG. 3. Typical velocity response curve showing 3 different velocity ranges for which the transinformation calculations
were performed (A4) and plot of the mean transinformation as the velocity range is made wider (B). A: asterisk shows the
point at which the response is at 60% of the saturating response. This point is called the standard velocity and is used to define
the 3 progressively larger velocity intervals shown with dotted brackets. The 3 intervals correspond to velocity ranges that
elicited responses in intervals centered at value of the response at the standard velocity and with width of 24, 48, and 72% of
the total response range. B: mean transinformation values for these 3 velocity intervals, and for the case where the velocity
was fixed at the standard velocity, are shown plotted against the width of the velocity interval expressed in percent of the total

response range.
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FIG. 4. Simulated response curves (tuning curves) and transinformation curves for different tuning-curve widths (i.e.,
different values of the threshold parameter a,). The curves were plotted in polar coordinates in the top panels and in cartesian
coordinates on the bottom. Responses of the 4 cells are shown with thin dashed lines, and the values of transinformation are
shown with the thick solid lines. Changing the value of the threshold from negative to positive values narrowed the width of
the tuning curves and effectively reduced the amount of overlap. As overlap was reduced, the transinformation spread

became larger.

the overall mean transinformation across all directions was
significantly lower in the very narrow and very wide tuning-
curve sets than in the intermediate width case, which sug-
gests that some optimal width might exist.

The results of many such calculations at a broad range of
tuning-curve widths are plotted in Fig. 5 to allow a more
systematic analysis of the trends suggested by Fig. 4. The
top (solid) curve in Fig. 5 shows the average transinforma-
tion across all directions (in bits) for a wide range of model
tuning-curve widths, calculated for the stimulus-response
sets at the standard stimulus velocity. The similar curve
immediately below that top curve shows the mean T, for the
same range of model tuning-curve widths, but calculated
instead for the stimulus-response sets chosen from the in-
termediate “velocity uncertainty” interval indicated above.
In both cases the average transinformation showed a clear
global maximum for tuning-curve widths of ~110°. This is
close to the point at which a, = 0 (i.e., 120° width) where
the tuning curves from three cells begin to overlap. (The
simulated tuning curves and calculated 7}, function for that
case are shown in the middle panel of Fig. 4.) Note that this
theoretical optimum tuning-curve width is, indeed, very

close to the width of 130° measured for the actual inter-
neurons (Miller et al. 1991).

The bottom (dashed) curve plotted in Fig. 5 represents
another significant aspect of the system response character-
istics: the spread (in bits) of the local transinformation
value from the mean 7}, as a function of tuning-curve width
(i.e., the difference between the minimum and maximum
local transinformation values for the different curve
widths). These data were obtained by the use of the fixed
standard velocity simulation; curves generated from the
different velocity uncertainty intervals were very similar.
Note that the spread in T, was large for the relatively narrow
tuning curves. As the tuning-curve widths were increased,
the local transinformation curves became smoother, result-
ing in a decrease in the graph of the spread of 7, values. The
significance of all these results and the “structure” in these
curves will be considered in more detail in the discussion.

To determine whether the results were artifacts of the
particular model function used to represent the cell’s tun-
ing-curve shapes, the calculations that yielded the results
plotted in Fig. 5 were repeated with the use of a different
model tuning-curve function, as indicated in METHODS. In
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FIG. 5. Mean transinformation values (solid lines) and spread of T}
values around the mean (dashed line) for different values of tuning-curve
width. The top solid line is the mean transinformation calculated for a
particular velocity set at 60% of the saturating velocity. The solid curve
immediately below shows the mean transinformation calculated for an
intermediate velocity interval as defined in Fig. 3. The spread was calcu-
lated as the difference between the maximum and minimum transinfor-
mation values for all possible directions for the particular velocity case.
The arrow points to the transinformation value calculated for the cricket
from actual experimental data. The limit of transinformation in the real
system is close to the optimal point. The bold tick marks on the x-axis
correspond to the critical overlap values between tuning curves of neighbor-
ing cells (see text).

Fig. 6 the curve plotted with the solid line was calculated
with the use of Eq. 5 to represent the cell tuning curves, and
the curve plotted with the dashed curve was calculated with
the use of Eq. 6. Both simulations were done for the fixed
“standard velocity” case. The similarity of these two curves
verifies that the results were not artifacts of the particular
model function used to represent the cell’s tuning curve.

Dependence of transinformation on shifts
of the tuning curves

Data presented in the preceding report showed that the
points of peak sensitivity of the four cells’ tuning curves
were spaced equally around the horizontal plane at 90° in-
tervals (Miller et al. 1991). The precise locations and sepa-
ration of the curves appeared to be constrained very rigidly,
as shown by the low variances in those values. Simulations
by Heiligenberg (1987) demonstrated that the accuracy of a
coarse-coded representation of a discretely sampled sensory
continuum such as in the system studied here will depend,
to some extent, on the interval spacing of the neural tuning
curves. Simulations were carried out to determine the im-
mediate effects on system accuracy that would result from
short-term dynamic shifts in the relative spacing of the tun-
ing curves.

In these simulations the mean system accuracy limit was
calculated for cases in which each of the four tuning curves
were shifted from their mean positions by a random
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FIG. 6. Average transinformation values vs. tuning-curve widths from
2 simulation sets, where different functions were used to model the tuning
curves. The solid line corresponds to simulations in which tuning curves
were modeled with Eq. 5. The dashed line corresponds to simulations in
which tuning curves were modeled with Eq. 6.

amount, chosen stochastically from a Gaussian distribution
with a standard deviation ranging from 0 to 10°. The effect
of this additional dynamic shift was to increase the variance
of the MSCs at each point. The calculations were done for
a, = 0 for the fixed velocity case, and the results are shown
in Fig. 7. The curve plotted with a solid line corresponds to
the mean transinformation (across all directions ) for succes-
sively larger values of shift. The dashed curve represents the
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FIG. 7. Average transinformation (solid line) and minimum transin-
formation (dashed line) as the 4 tuning curves were randomly shifted from
their optimal positions. The x-axis shows the standard deviation of this
random Gaussian shift.
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values of the minimum transinformation (i.e., the lower
accuracy limit in the region left “undersampled” by a
shifted tuning curve). The decrease of transinformation is
quite severe: an entire bit (i.e., one-half of the directional
accuracy) is lost for a mean shift of only 3.5°. This suggests
that shifts in the directional tuning curves that could not be
compensated by “recalibration” of the higher order de-
coder would drastically reduce system performance.

The possibility was also considered that any long-term
static shift in the position of a cell’s tuning curve, caused by
some accident or aberration during development, could
eventually be compensated to some extent by a reoptimiza-
tion of the higher order neural network serving as the de-
coder. To determine the net extent to which the system
accuracy would degrade after reoptimization to a static shift
in a single tuning curve, the transinformation curves were
calculated for a series of simulations in which the position
of one tuning curve was shifted away from its normal posi-
tion in 5° increments. A 90° shift corresponded to a super-
position of the “test” tuning curve with that of its next-
nearest neighbor. Here again, the calculation was done for
the fixed standard velocity case. The results of these simula-
tions are shown in Fig. 8.

It is remarkable that even large static shifts of up to 30°
affected the overall mean accuracy of the system very little.
The minimum accuracy for all directions decreased more
rapidly but was still relatively stable to shifts of up to 10°.

Thus, if there existed enough plasticity in the decoding
system to allow for such reoptimization to a new configura-
tion, the system would be robust to static shifts in the posi-
tion of the tuning curves. For comparison, the average and
minimal transinformation values for a hypothetical system
in which one of the cells was totally eliminated are shown as
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FIG. 8. Average transinformation ( ) and minimum transinforma-

tion (- — —) as one tuning curve was shifted from its optimal position by
values ranging from 0 to 90°. In these simulations, the system was reopti-
mized to the new configuration. The circles plotted at 90° correspond to
the transinformation values for the situation where one of the cells was
completely eliminated.
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circles plotted at the 90° shift point. Even with only three
functioning cells, the system would be capable of 3.8 bits of
accuracy, which is more than would be obtained with four
cells at most of the nonoptimal widths (refer back to

Fig. 5).

DISCUSSION

In the studies reported here, principles of information
theory were used to calculate the transinformation 7, in the
stimulus-evoked responses of four wind-sensitive inter-
neurons of the cricket cercal sensory system. As summa-
rized earlier, 7, can be thought of as corresponding to the
limit of accuracy with which the information about stimu-
lus direction was encoded in the mean spike rates of four
interneurons of this system. An optimal decoder con-
structed from higher order interneurons could theoretically
achieve this level of certainty in its estimate of the stimulus
direction. The mean value of 7, was calculated to lie be-
tween 3.5 and 4.2 bits, corresponding to a standard error in
the system’s assessment of stimulus direction lying between
7.7 and 4.7°. This level of accuracy represents a substantial
degree of “sensory hyperacuity,” because the minimum dis-
tinguishable stimulus separation is more than an order of
magnitude finer than the widths of (and parametric spacing
between ) the directional tuning curves of the interneurons
themselves.

We reiterate that these calculated values of 7, depend on
the set of assumptions discussed in METHODS. In choosing
our set of assumptions, we were “‘conservative” in several
respects, so as to obtain a lower bound value for the attain-
able accuracy limit. First, the values we used for the re-
sponse variance in our calculations were equivalent to the
upper limits of the experimental measurements. Second, all
calculations were carried out disregarding the directional
information that might have been present in aspects of the
patterns of the spike trains of individual cells. Third, the
covariance in the responses of the different cells in the en-
semble was not taken into account.

Other implicit assumptions in these calculations might,
however, have led to an overestimation of T,. First, the
response of the cells was obtained by counting spikes over a
period of 100 ms after stimulus onset. If the actual “integra-
tion time” were significantly less, attainable accuracy might
have been less. Studies now in progress indicate, however,
that use of 50-ms integration periods yield comparable esti-
mates of T,. Second, it was assumed that the shape of the
tuning curves was conserved for different velocities. It is
possible that the curve shapes would “distort” for velocities
near the upper and/or lower limits of the cells’ operating
ranges and possibly degrade the transmitted information.
(Here the “velocity operating range” is the defined as the
range for which the response varied proportional to the log
of the stimulus velocity. This corresponded to velocities
ranging from 0.01 to 0.2 cm/s.) Here again, sample direc-
tional plots recorded at various velocities within the ranges
considered in our calculations supported the validity of our
assumption (discussed in Miller et al. 1991). In any case,
the manifestation of such shape distortions near the sensitiv-
ity limits would not necessarily decrease the accuracy
within the central portion of the range.
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After taking all these assumptions into consideration, we
obtained an estimate of the directional accuracy, which de-
pended only on the fraction of the velocity operating range
over which the calculations were carried out. As we in-
creased this fraction from a single velocity to a velocity in-
terval including almost all of the velocity operating range,
the directional accuracy of these four cells decreased from
4.2t03.5bits(or4.7to 7.7°). It should not seem surprising
that the calculated directional accuracy would depend in
such a way on the assumed degree of uncertainty about the
stimulus velocity. As the velocity range is increased, the
variability in the response for each cell at a particular direc-
tion also increases. However, most of this variability is
strongly positively correlated between the different cells,
because the activities of cells with overlapping tuning
curves will tend to follow the same trends in response to a
change in stimulus velocity. This strong positive correlation
and the fact that the overlapping tuning curves of adjoining
cells have opposite slopes, result in different systematic re-
sponses to different directions over an ensemble of veloci-
ties. This difference allows the system to maintain a rela-
tively large directional resolution for velocity intervals that
span most of the velocity operating range of the cells.

Note that by choosing a particular fraction of the total
operating range for the calculations, we were effectively as-
suming a velocity range over which these four cells were
“held responsible” for encoding stimulus direction. This is
actually somewhat problematic, because other cells in the
cercal system might also contribute to directional informa-
tion in the operating velocity range of the 10-2 and 10-3
cells; furthermore, it is possible that the 10-2 and 10-3 cells
might contribute to directional information beyond their
saturating velocity. Figure 3 of the preceding paper demon-
strates, for example, that there is a range of velocities within
which the 10-2 and 10-3 cells are below saturation and the
9-3 are above threshold. A more rigorous approach toward
calculating total system accuracy would consider all cells in
the cercal system and all velocities relevant to the cricket.
The calculated directional accuracy for velocities below the
saturating velocity of the 10’s would undoubtedly be larger
than our lower bound estimate presented here, which ig-
nores other cells.

Studies now in progress will address some of these as-
sumptions by explicitly calculating the directional transin-
formation on the basis of simultaneous recordings of the
spike-train patterns elicited from both the 10-2 and 10-3
class and the 9-2 and 9-3 class. We have confidence in the
conservatism of the calculations presented here, however,
and we are impressed by the level of implied encoding accu-
racy.

Correspondence between transinformation and
behaviorally observable acuity

In general, the transinformation value is the most rigor-
ous measure of the coding accuracy for any given set of
assumptions. Unfortunately, the correspondence between
this neural encoding accuracy and the effective sensory
acuity that would be observed in “behavioral” or “psycho-
physics” experiments is difficult to determine in insects. In
a recent study, the escape reactions of Acheta domestica to
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wind stimuli were observed under open loop conditions
(Stabel et al. 1985). The aim of the study was to describe
the change in the cricket’s walking behavior in response to
speaker-generated tone pulses from different directions.
The crickets were observed to turn away from the stimuli,
and responses were quantified by plotting the angular veloc-
ity of the turns versus stimulus angle. It was demonstrated
that the crickets would display significant turns to stimuli
with angles <30° lateral from the rear. Unfortunately, the
stimulus generation and delivery protocols, the peak stimu-
lus velocity (500 mm/s), and the ambient environment
were much different from those in the experiments re-
ported here, and an appropriate estimate of resolution or
accuracy from that study is not possible.

Several research groups have carried out behavioral ex-
periments on cockroaches (Camhi and Tom 1978; Camhi
et al. 1978; Westin et al. 1977), but the results of these
experiments do not adequately address the questions inves-
tigated here, for several reasons. First, the cockroach cercal
sensory system is substantially different from the homolo-
gous system in crickets. (For example, cockroaches have
smaller cerci with many fewer filiform hairs.) Second, all
behavioral experiments were done in open field conditions,
with the use of stimulus velocities much larger and, presum-
ably, much more “noisy” than the ones used in our experi-
ments.

A determination of the extent to which crickets approach
the maximum acuity judged possible from an analysis of
their information encoding capabilities must await further
behavioral experiments, carried out under the same cir-
cumstances and with similar protocols to those used for the
studies reported here.

Mechanisms for decoding by higher order interneuronal
networks

Note that we are not proposing any specific model for the
mechanisms by which the information in these ensemble
neural responses is decoded by higher order interneuronal
or motor circuits. Our calculation of the limits of system
accuracy are essentially model independent: we calculated
the information encoded in the neural responses in a statis-
tical sense, and any of a wide range of decoders could be
derived that would presumably be capable of extracting
some or all of this information. Adequate data are not
currently available to allow a discrimination between the
many conceivable models for information decoding in the
cricket cercal sensory system.

Several researchers have, however, proposed candidate
models for equivalent higher order decoders in the cercal
sensory system of the cockroach. In two recent studies, mod-
els were proposed for simple directional decoding algo-
rithms, on the basis of experimentally observed responses
of the giant interneurons and of freely behaving
cockroaches to wind stimuli (Camhi and Levy 1989; Dowd
and Comer 1988). In both studies the stimulus directions
were computed on the basis of simple linear summations of
the action potentials of the giant interneurons. The statisti-
cal variation of the escape responses could be mimicked by
adding a certain uncertainty or “noise” on top of the mean
simulated responses of the interneurons. Researchers in
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both studies were able to find sets of model parameters and
“noise levels” that yielded close fits to the behavioral data.
However, neither model used noise levels that had been set
to correspond to the actual measured variances in cell re-
sponses. It must be remembered that the cell response vari-
ances are very important determinants of the information
available in their mean spike rates; therefore the interpreta-
tion of those modeling studies is problematic.

In a third study (Heetderks and Batruni 1982) a specific
model for an optimized linear directional discriminator
was proposed, in which the principles of linear multivariate
statistical analysis were used. The proposed decoding
scheme did take into account the variance of the cell re-
sponses. By the use of this model, twelve directions could be
discriminated with high reliability, on the basis of an analy-
sis of the spike trains of 14 interneurons. Unfortunately, the
variance values used in the model were estimated from only
five repetitions of the stimulus in each direction, and the
covariance in the responses of different cells was calculated
on the basis of independent recordings from different ani-
mals. Both sets of variance estimates may have therefore
been far from accurate.

An adequate understanding of the decoding algorithm
used for this direction-sensing task will ultimately require a
detailed analysis of the physiology and functional organiza-
tion of wind-sensitive interneurons in the thoracic ganglia,
which are the targets of the cercal interneurons considered
in these studies.

Functional optimality of the cricket cercal sensory system

As demonstrated above, the transinformation calcula-
tions provided a rigorous assessment of encoding accuracy.
Perhaps more significantly, this measure also allowed a
quantitative assessment of the dependence of encoding ac-
curacy on several aspects of the system’s functional organi-
zation. We investigated the optimality of the width and
spacing of the directional tuning curves. Our approach was
to calculate the transinformation versus direction func-
tions, similar to the function shown in Fig. 2, for a wide
range of tuning-curve widths and intercurve spacings.

EFFECT OF TUNING-CURVE WIDTH ON TRANSINFORMATION.
Figure 5 shows two interesting characteristics of the transin-
formation curves calculated for a wide range of model tun-
ing-curve widths. The first significant result was that there
exists a single global maximum in the plot of T, versus
tuning-curve width. This theoretical global maximum oc-
curred at a tuning-curve width of 110°. The second interest-
ing resulit is that the amplitude of the fluctuation between
minimal and maximal 7T, (i.e., the deviation around the
mean 7,) tends to decrease with increasing tuning-curve
width. We would suspect that any such fluctuation in 7}, for
different directions would essentially degrade the perfor-
mance of the system as a whole. Here again, we note that
there is a local minimum in this graph of 7, variance versus
tuning-curve width at a width of 110°, corresponding ex-
actly to the global maximum for mean 7}, versus tuning-
curve width. Thus a consideration of both graphs would
suggest an optimal tuning-curve width of 110°. It therefore
seems very significant that the experimentally measured
tuning-curve widths were, in fact, ~130°.
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The existence of an optimal range for tuning-curve
widths in coarse-coded systems such as this one is not sur-
prising and, in fact, was predicted in a simulation study
carried out by Heiligenberg ( 1987). The narrowness of this
range and the distinct optimum value obtained in our simu-
lations were, however, unexpected. Heiligenberg’s simula-
tions suggested that a broad range of tuning-curve widths,
between 2 and 20 times the mean interreceptor spacing,
would yield equivalent accuracy. Our experimentally ob-
served half-width value of 130° is significantly less than two
times the 90° spacing intervals between adjacent tuning-
curve optima, and the computed mean accuracy falls to
50% of the optimal value (i.e., mean 7, decreases by 1 bit)
for tuning curves with half-widths <90° or >170°.

In retrospect, the narrowness of this optimal range is en-
tirely reasonable and can be explained in terms of the con-
straints imposed by the limited dynamic range and intrinsic
response variances of the four interneurons. In the simula-
tions using narrower tuning curves, there were ranges of
stimulus orientations within which only one or none of the
cells were activated to a significant extent. In such cases,
large regions of “direction space” had nearly identical sys-
tematic ensemble responses, and the transinformation in
those regions was consequently very low. This caused the
observed degradation of the mean information as plotted in
Fig. 5, as well as the severe fluctuations around the mean
value. The dynamic range of cells having such narrow tun-
ing curves would not be used to their maximum discrimina-
tory resolution.

For simulations using broader tuning curves, the accu-
racy would also be expected to degrade. The broader is a
cell’s directional tuning curve, the lower is that cell’s mean
response differential at any two different stimulus direc-
tions. As the mean response differential between two differ-
ent stimulus directions approaches the value of the re-
sponse variance, the stimulus discrimination is severely de-
creased. In such a situation, the dynamic range of each cell
(and therefore of the ensemble as a whole) would be ex-
tended too broadly over the stimulus space. Because Heili-
genberg did not explicitly consider response variances in his
simulations, the resulting compression of the optimality
range was not anticipated.

The local minima observed in the dotted curve in Fig. 5
(i.e., T, fluctuation vs. tuning-curve width) can be under-
stood in terms of the characteristics of the 7, versus direc-
tion curves (i.e., similar to Fig. 2) near the critical tuning-
curve widths where orders of overlap increase. As the
widths were systematically increased from the lowest value
of 20°, the effective dynamic range of each interneuron was
spread over a wider and wider stimulus range, and the re-
gion with no response from any of the four cells became
smaller and smaller. This resulted in a systematic decrease
in the peak 7, and an increase in minimum 7, accounting
for the gradual decrease in the variation of 7, around the
mean.

However, at tuning-curve widths >62° (marked with a
bold tic on the x-axis), the variation in 7, jumped to a local
maximum. Sixty-two degrees is the critical width at which
each cell’s tuning curve just overlaps with those of its next
nearest neighbors. For tuning curves slightly broader than
62°, the uniqueness of the ensemble response for those
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small regions where the tuning curves overlap creates sharp
local peaks in the plots of T, versus direction, accounting
for the jump in the variation around the mean T, plotted in
Fig. 5.

A similar jump in T, variance can be seen in the dotted
curve of Fig. S for each of the successive higher order “over-
lap threshold” widths of 120 and 164° (each of which are
indicated with a bold tic on the x-axis.) Above 120°, each
cell’s tuning curve overlaps with those of all three other
cells. Above 164°, each cell’s tuning curve has “wrapped
around” sufficiently to have two regions of overlap with its
nearest neighbors. In each case, the incremental overlaps
cause local jumps in 7, values, which increase the variance
of T, around the mean.

Thus the general trends of these plots, and the fine struc-
ture they display, can be understood at a qualitative level on
the basis of a consideration of the underlying phenomena.

EFFECTS OF TUNING-CURVE SHIFTS ON TRANSINFORMATION.
The overall systematic accuracy depends on a precise rela-
tive spacing of the directional tuning curves. Figure 7 dem-
onstrates that any shift in the relative positions of the tuning
curves would result in a severe degradation of accuracy, if
the higher order decoding circuit could not be reoptimized
to the new configuration. This seems remarkable in light of
the observation that the position of the cerci are quite vari-
able in freely behaving crickets. Presumably, a shift in cer-
cal angle would result in a corresponding shift of the tuning
curves of the left 10-2 and 10-3 cells with respect to those of
the right 10-2 and 10-3 cells.

However, the directional tuning curves of these cells*
were reported in other studies to show little or no change
when the cerci were displaced to different positions within
their normal range of movements (Rozhkova 1980; Rozh-
kova and Polishuk 1976). There must exist, therefore,
some physiological “constancy mechanism,” which trans-
lates the coordinate systems attached to the cerci into a
coordinate system attached to the cricket’s body. The na-
ture of this mechanism is unknown but may involve some
form of proprioreceptive feedback from mechanoreceptors
located near the base of the cerci.

Fine tuning of the cercal sensory system during development

It is interesting to note that the intra- and interanimal
variance in the shapes, widths, and spacing of the tuning
curves observed experimentally were extremely small. This
suggests that the establishment of these curves during devel-
opment, and their maintenance during subsequent moults,
must be under rigid constraints. Moreover, the excellent
correspondence between the observed neural characteris-
tics and the theoretically optimal values increases our confi-
dence in the validity of our general approach and our basic
assumptions. Certainly, evolution and natural selection
have had a long time to “fine tune” this behaviorally im-
portant system toward an optimal configuration.

The physical basis for this functional fine tuning must lie
in 1) the precise anatomic characteristics of the afferent

4 The giant interneurons (GIs) referred to in Rozhkova and Polishuk
(1976) and Rozhkova (1980) are identical to the neurons we call 10-2 and
10-3 in this report.
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map of wind direction and of the dendritic arbors of the
four interneurons within this map, 2) the relative efficacies
of the synapses from the afferents and local interneurons
onto these interneurons, and 3) the electrical properties and
spike thresholds of the interneurons. A significant shift in
any of these parameters away from their standard values
would act to degrade system performance. It will be of sub-
stantial interest to determine the normal variance in these
parameters in typical crickets, and to determine the relative
contributions of genetic preprogramming and activity-de-
pendent plasticity to this functional tuning process.

APPENDIX

Correspondence between transinformation and the
standard deviation in the representation of the stimulus

In the preceding report the intrinsic accuracy with which a sen-
sory network could encode a stimulus parameter was calculated in
terms of “bits” of information. A more conventional quantity
used to represent this accuracy is the standard deviation of an
internal representation of the stimulus, which can then be directly
associated to the “error” in the response. An average value for this
standard deviation can be calculated from the local transinforma-
tion values, by assuming a specific probability distribution for the
response. The calculation becomes straightforward when one as-
sumes that /) the probability distribution is a Gaussian centered at
the correct value of the stimulus and 2) the value of local transin-
formation is constant for all values of the stimulus parameter and
therefore equal to the mean transinformation.

The conditional probability of the response y given a stimulus x
at 0 is then written as

+x
e~ 02 where K(a):f e~ gy

p(ylx) = K(o)

The local transinformation is

L0 =E {1032 (p—l%%))] = f_' p(y]x) log, (—pl()’rly);)) dy

As long as ¢ is small compared with 27, K(¢) = V2_7ra, and the
local transinformation can be approximated by taking the limits
of the integral to plus and minus infinity. In that case and because
p(y) = 1/2x (from our 2nd assumption)

o

2 1 ?
- we (22
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T,(x) = log, (——~)

o
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T,(x) = E [log, (—E) + log, [e” "%}
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Since T,,(x) and ¢ are constant for all x (from our 2nd assump-
tion), we can solve directly for ¢ in term of the mean transinfor-

mation 7,
ﬁ 2-Ty
e

where T, is the transinformation in bits and ¢ is the standard
deviation expressed in radians.
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