
JOURNALOF NEUROPHYSIOLOGY 
Vol. 66, No. 5, November 1991. Printed in U.S.A. 

Representation of Sensory Information in the Cricket Cereal 
Sensory System. II. Information Theoretic Calculation 
of System Accuracy and Optimal Tuning-Curve 
Widths of Four Primary Interneurons 

FRI?DfiRIC E. THEUNISSEN AND JOHN P. MILLER 
Department of Molecular and Cell Biology, Division of Neurobiology, University of California, Berkeley, California 94 720 

SUMMARY AND CONCLUSIONS the higher order “decoder” networks to be capable of reoptimiza- 
tion. 

1. Principles of information theory were used to calculate the 
limit of accuracy achievable by a subset of the wind-sensitive pri- 
mary interneurons in the cricket cereal sensory system. For these 
calculations, an ensemble of four neurons was treated as an infor- 

INTRODUCTION 

mation channel, which encoded the direction of air-current stim- 
uli for a defined range of air-current velocities. The specific infor- 
mation theoretic parameter that was calculated was the “transin- 
formation” or “mutual information” between the air-current 
directions and the neuronal spike trains, which were characterized 
in the preceding report. Under the assumptions used for these 
calculations, the ensemble of four interneurons was demonstrated 
to be capable of encoding between 4.2 and 3.5 bits of information 
about wind direction. This corresponds to an average directional 
accuracy of 4.7 and 7.7 O, respectively. 

2. The same principles were applied to estimate the extent to 
which any variation in the width of the tuning curves would affect 
the transfer of information. As the widths of simulated tuning 
curves were varied, the mean ensemble accuracy showed a clear 
global maximum. This maximum corresponds to tuning curves 
widths of 110’ wide (at half maximum), which was remarkably 
close to the actual mean widths of the tuning curves observed in 
the cricket of 130”. 

3. The effect of varying the parametric “spacing” of the tuning 
curves within the stimulus range was also examined through a 
series of simulations. The configuration allowing the maximum 
information transfer corresponded to equal spacing of the tuning 
curves around the stimulus range (i.e., 90° separation of peak 
sensitivity points). This theoretically optimum spacing corre- 
sponded exactly to the values observed in the experiments pre- 
sented in the preceding report. 

4. These simulations also showed that the degradation in the 
accuracy resulting from a shift in the tuning-curve spacing would 
depend on the plasticity of the higher order decoder of directional 
information. If  there were no plasticity in the interneurons mak- 
ing up the higher order decoder, then the accuracy would be de- 
graded by 50% for a mean tuning-curve shift of only 3,5 O. How- 
ever, if the higher order decoding network were capable of being 
reoptimized to any arbitrary shift in tuning curves, the degrada- 
tion in attainable accuracy would be much less severe as shifts of 
up to loo would result in virtually no degradation in the accuracy. 

5. From these results, two general conclusions can be drawn 
about the coding of specific stimulus parameters by arrays of sen- 
sory cells. First, the effectiveness of the coding of a stimulus param- 
eter by an ensemble of cells with broadly overlapping tuning 
curves is strictly limited by the intrinsic variance in the cells’ re- 
sponses. Second, the robustness of any sensory system to shifts in 
tuning-curve characteristics can be greatly enhanced by allowing 
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In the preceding paper, six interneurons of the cricket 
cereal sensory system were characterized in terms of their 
responses to wind stimuli of different peak velocities and 
directions. The cells were divided into two classes, on the 
basis of their wind velocity sensitivity. The “low-velocity” 
class is composed of four interneurons that had sensitivity 
to stimuli spanning the entire 360° range of possible direc- 
tions in the horizontal plane. The stimulus-response curve 
of each cell had a characteristic “tuning-curve” (or “recep- 
tive-field”) shape typical of many sensory systems. For 
each of these four cells, the response was maximal for a 
particular air-current stimulus direction, and the response 
decreased in a systematic fashion as the stimulus was ro- 
tated from this optimal direction. The tuning curves of 
these four cells were broad and equally spaced in angular 
separation. It is assumed that the ensemble response of 
these four cells encodes information about the direction 
and the velocity of air-current stimuli, and questions con- 
cerning the directional accuracy achievable by this subsys- 
tem of four cells were raised. 

The goal of the study reported here was to determine the 
limits of directional accuracy, taking into account not only 
the characteristic responses of these four cells but also the 
variance in their responses. Further, we wanted this estima- 
tion of the limiting accuracy to be model independent in 
the sense that it would not depend on any specific model for 
“decoding” by higher order neurons. A measure that satis- 
fies all these requirements is the statistical quantity defined 
as “transinformation” in information theory. This measure 
is uniquely dependent on the conditional probabilities of 
the response for specific stimuli and yields a quantitative 
measure of the maximum discriminatory resolution of the 
system. In the case of this sensory system’, this measure can 
be translated into degrees of directional accuracy. 

Principles of information theory were also used to inves- 
tigate the optimality of certain parameters characterizing 
the operation of this system. Previous theoretical studies 
have demonstrated the relatively high degrees of accuracy 
and noise tolerance achievable within an array of sensory 
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cells that have broad, overlapping response curves. This 
form of coding is sometimes referred to as “coarse coding” 
(Hinton et al. 1986; Heiligenberg 1987). Inspired by such 
studies, we carried out simulations to investigate the depen- 
dence of system accuracy on the widths and the relative 
spacing of the tuning curves. In all cases the actual values of 
the parameters observed in the real system were found to be 
very close to the values that yield the theoretical maximum 
information transfer for this system. 

METHODS 

Information theory 

The principles of information theory were described by Shan- 
non ( 1948). His purpose was to find a quantitative measure for 
the amount of information carried by the “symbols” used in any 
kind of communication scenario, and to calculate the rate at 
which information could be transmitted by a temporal sequence 
of such symbols. This is essentially the same problem we consid- 
ered in this study, i.e., we wished to determine the amount of 
information about stimulus direction encoded in the neural spike 
train responses of four sensory interneurons in this system. In the 
following sections we briefly summarize the aspects of informa- 
tion theory relevant to our investigation, review recent applica- 
tions of information theory to similar questions in other neuro- 
physiological studies, and then present in that theoretical and his- 
torical context the methods and assumptions on which our own 
studies are based. 

ENTROPYANDTRANSINFORMATION. Considerasourceofsym- 
bols (i.e., a “transmitter”), which we will call X, and its corre- 
sponding set of symbols { xj} used in the communication. An 
essential idea in information theory is that the amount of informa- 
tion conveyed by a symbol is inversely related to its probability of 
occurrence. In other words, receiving a symbol that a priori is 
known to have very low probability of occurrence will yield a large 
amount of information about the state of the source.’ The infor- 
mation conveyed by one particular symbol xj is written in binary 
units as 

1 
i(Xj) = log, - ( 1 PCxj) 

= -log2 [Ptxj)l 

where p( Xj) is the probability of occurrence of symbol Xj. 
A quantity that is important for our subsequent analysis is the 

average amount of information conveyed by each of the different 
symbols transmitted by the source X. This average is simply the 
sum, over all possible symbols, of the information conveyed by 
each symbol times that symbol’s probability of occurrence 

ffx = C -P(Xj> log, [p(Xj)I 
j=l 

Gw 

where YI is the total number of discrete symbols in the set. This 
quantity H, was defined by Shannon as the “entropy” of the trans- 
mitter X, because it corresponds to the amount of a priori uncer- 
tainty about the source (and is also equivalent to the a posterior? 
average amount of information that can be obtained from its set of 
symbols { x > ). H, can also be thought of as representing the frac- 
tional number of binary digits (or bits) needed to encode the sym- 
bols of X with an optimal encoder. 

’ This makes intuitive sense, considering our own written language. The 
letter “x” occurs in many fewer words in a standard English dictionary 
than does the letter “e.” I f  you were presented with a word having all but 
one letter masked out, you could offer a much better “guess” about what 
that word was if the exposed letter were an “x7 rather than an “e.” 

In many cases the symbols of interest cannot normally be repre- 
sented as a finite set of discrete symbols {x} but constitute instead 
an infinite ensemble representing the values of a continuous pa- 
rameter. In the case of the cereal sensory system, for example, the 
symbols corresponding to the air-current stimulus direction 
should, presumably, be allowed to represent any arbitrary angle in 
the horizontal plane. In such cases involving continuous variables, 
p(x) becomes a continuous probability function and Eq. 2a can 
be rewritten in its equivalent integral form 

H, = 
s 

-Pew% [PWldX Gw 

where the integration is carried out over the whole range of the 
parameter to be represented. 

Although it may seem inappropriate to characterize aspects of 
neurally coded information in terms of binary bits, it is actually 
quite reasonable from a biological perspective. Consider, for exam- 
ple, our problem of characterizing the intrinsic resolution with 
which the cereal sensory system could represent the direction of an 
air current. I f  the system’s resolution was limited to the segrega- 
tion of air currents directed at the front of the animal from air 
currents directed at the rear of the animal, then the system would 
effectively be able to divide the whole stimulus range of 360” into 
only two “bins.” In other words the system could be thought of as 
resolving wind direction with one bit of accuracy. If  the stimulus 
range could be divided into four bins, encoding the direction in- 
formation would require two bits. Every doubling in the number 
of bins would imply one more bit of information. Fractional bi- 
nary quantities are also possible: a division of the range into five 
bins corresponds to 2.32 bits. 

In general, however, sensory systems should not be thought of 
as segregating the ranges of relevant stimulus parameters into 
fixed numbers of bins with discrete boundaries. Rather, any sys- 
tem will display intrinsic limitations in the reliability or probabil- 
ity with which two different stimuli having slightly different pa- 
rameters can be distinguished. To illustrate this point, consider a 
typical series of stimulus-response measurements from the preced- 
ing report (Miller et al. 199 1 ), in which 32 identical air-current 
stimuli were directed at a cricket from a single direction. A range 
of responses were elicited that were distributed around the mean 
response according to a Gaussian probability function. Conse- 
quently, the corresponding set of 32 estimates of stimulus direc- 
tion derived from this probabilistic response set by any subsequent 
optimal decoder would itself be characterized by a probability 
distribution. In general, the probability distribution of these de- 
coded direction estimates would be centered at the correct direc- 
tion and would have a spread that depended on I) the spread of 
the probability distribution of the neuronal responses and 2) the 
rate at which the mean ensemble response changed as a function 
of stimulus direction. In such cases, the accuracy of the system in 
distinguishing different stimuli is usually defined in terms of the 
spread of this probability function characterizing the decoder esti- 
mates of a stimulus direction: the wider the spread, the lower the 
corresponding accuracy. Roughly speaking, a stimulus range can 
be thought of as being fractionated with a resolution equivalent to 
the width of this probability distribution, and the mean resolution 
of the system in bits is therefore approximately equal to the loga- 
rithm (base 2) of the extent of the stimulus parameter range di- 
vided by the mean width ofthis probability distribution. A rigor- 
ous derivation of the relation that is relevant to our case (i.e., 
relating the width of a Gaussian probability function to the infor- 
mation theoretic quantities in bits) is summarized later in the text 
and is presented in detail in the APPENDIX. 

The different forms of Ey. 2 have been used in several theoreti- 
cal studies to calculate the upper limit of the information trans- 
mission rates in several neural systems (for example, see McKay 



1692 THEUNISSEP 

and McCulloch 1952; Rapaport and Horvath 1960). Such calcu- 
lations were carried out by multiplying the mean information per 
symbol (i.e., HX) by the presumed rate at which the symbols were 
being transmitted. Such calculations, however, required ad hoc 
assumptions about the nature of the symbols used for the neural 
coding scheme and were therefore extremely problematic. These 
calculations yielded upper limits to the information transfer rate 
that may be extremely and unreasonably high, and therefore es- 
sentially meaningless from a physiological standpoint. The basis 
for this overestimation is that the summation (or integration) lim- 
its over which H, was calculated spanned the entire range of possi- 
bly “decodable” symbols in the transmitted signals, without tak- 
ing into account the “meaning” associated with each symbol.2 

A more appropriate and model-independent quantity related to 
neural processing is the amount of information transferred be- 
tween layers of neurons, rather than the total entropy of the signal 
stream transmitted by one layer. To calculate this quantity of in- 
formation transfer, the proportion of the observed signal variance 
that does not encode independent information about the transmit- 
ter must somehow be subtracted from the entropy of the true 
symbol set itself. Such a calculation can be accomplished in a 
straightforward manner. Because we wish to characterize a 
transfer of information from one layer of neurons to another, a 
second set of symbols at a “receiver” must be defined. Assume 
that the meaningful information contained within the whole set of 
transmitted symbols {x} is encoded as a set of symbols {v} at 
some subsequent level in the system. The “conditional entropy” 
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H YlX = ss -Pk v> 1% [Pcd-eldxdy (3) 

TRANSINFORMATION IN THE CRICKET CERCAL SYSTEM. The 
first goal of the work presented here was to determine the limit of 
accuracy with which four sensory interneurons in the cricket cer- 
cal system could encode information about wind stimulus direc- 
tion. To determine this limit, the transinformation between the 
sensory stimuli and interneuronal output was calculated, on the 
basis of experimental measurements presented in the preceding 
report (Miller et al. 199 1). For these studies, the source or trans- 
mitter X was considered to be the air-current stimulus generator, 
and the set of symbols {x} corresponded to all possible directions 
of the transient, unidirectional air currents used in these experi- 
ments (see Fig. 1). In other words, the input symbol variable x in 
Eqs. 1-4 corresponds to the continuous range of stimulus direc- 
tions in the horizontal plane, which we will subsequently refer to 

cal parameters of presynaptic neurons or, in the case of sensory 
systems, to the range of relevant sensory stimuli. Note that Eq. 3 is 
written in its integral form, which is appropriate for cases in which 
the x and y symbols correspond to parameters of continuous func- 
tions. In the general formulation of information theory, x and/or 
y could represent discrete symbols, in which case the integration 
signs would be changed to summation signs. 

PREVIOUSCALCULATIONS OFTRANSINFORMATIONINNEURAL 
SYSTEMS. In their pioneering work on the application of transin- 
formation in neurobiology, Eckhorn and Pope1 ( 1974, 1975 ) cal- 
culated the net transinformation and the rate of transinformation 
flow at the level of the retinal ganglion cells and lateral geniculate 
nucleus (LGN) cells of the cat. The experimental input to the 
system was a flashing light (with a pseudorandom rate) repre- 
sented as a binary function of time. The output of the system was 
taken as the neural impulse trains, also represented by a binary 
function of time. By taking into account the conditional probabil- 
ity of spike occurrence given previous spike activity, Eckhorn and 
Pope1 obtained measurements of information transfer without 
making any arbitrary assumptions about the nature of the neural 
code. Along the same lines, Richmond and Optican (1990) 
showed that a significant part of the information conveyed by 
single cells of Vl about a complete set of multidimensional spatial 
visual stimuli was present in the temporal patterns of the spike 
trains. To get around the overwhelming dimensional size of the 
representation when a binary code is used, and to gain more in- 
sight on the actual encoding of the information, they used a princi- 
pal component decomposition of the temporal spike pattern. 
They found that three to four principle components were suffi- 
cient to encode all the relevant structure of the spike pattern. 

In these studies listed above, the approach taken in examining 
neural information processing was to calculate the information 
contained in the ensemble of spike-train patterns elicited by spe- 
cific stimulus sets. De Ruyter van Steveninck and Bialek ( 1988) 
used the same transinformation principles but applied those prin- 
ciples in a way that can be thought of as being the inverse of the 
above approach. In their studies, de Ruyter Van Steveninck and 
Bialek calculated the information contained in all sensory stimuli 
that could have evoked specific, observed spike-train responses. 
By doing the calculations over all possible response patterns of up 
to three spikes, they provided some insight into the actual neural 
code used in their preparation and addressed questions related to 
real-time decoding of neural response patterns. 

Fuller and Looft ( 1984) extended the principles defined in the 
original work of Eckhorn and Pope1 to the multineuron case. They 
calculated the transinformation for a group of cutaneous receptor 
cells of the cat to test the two prevalent assumptions: I) that the 
receptor responses are conditionally independent and 2) that the 
information about the stimulus is encoded by the mean rate of the 
neuron spike train. They found that the first assumption is approx- 
imately true, but that a mean rate code will only transmit part of 
the information. 
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FIG. 1. Schematic flow chart of the information transfer in the cricket cereal system and the corresponding mathematical 
symbolic notation used in the transinformation calculation. 

as 8. The “output” symbol variable y  in Eqs. 3 and 4, which 
represents the encoded information about stimulus direction, 
corresponds to the ensemble response of a set of interneurons dur- 
ing an interval after the stimulus, which we will subsequently refer 
to as r. The interneurons for which we performed the transinfor- 
mation calculation is the four-member class of 10-2 and 10-3 cells 
described in the preceding report (Miller et al. 199 1). 

This transinformation calculation is considered as representing 
the limit to the system’s accuracy, because it can be proven that no 
possible neural (or engineered) decoder could extract more infor- 
mation from the spike trains (under our set of limiting assump- 
tions) than can be calculated to be “encodable” according to Eq. 
4. (Of course, the neural circuitry at higher levels might not be 
capable of decoding all of the available information; only behav- 
ioral studies could ultimately test this possibility.) It is in this limit- 
ing sense that the transinformation calculation yields a model-in- 
dependent measure of the accuracy. However, as is the case for 
any measure of sensory performance, the transinformation calcu- 
lation is very much dependent on the assumptions made when 
choosing the relevant coding parameters of the spike train, as well 
as any assumptions that would limit the set of possible stimuli to 
the system. A list of our assumptions, and a consideration of how 
they could have influenced our calculations of the accuracy of this 
system, are as follows. 

activity levels between the 9-2 and 9-3 cell class and the 10-2 and 
10-3 cell class) encoded independent information about air- 
current direction and velocity for stimuli with velocities outside of 
the “log-linear” operating range of the 10-2 and 10-3 cells. The 
first assumption was observed to be valid with respect to two partic- 
ular classes of stimuli: the half-cosine waveforms (used for the 
calculations presented here) and for constant velocity “step” wave- 
forms (like those used for Fig. 2A of Miller et al. 199 1). The 
second assumption also seems reasonable and is considered in 
greater detail in the DISCUSSION. 

Assumptions 

REPRESENTATION OF THE STIMULUS DIRECTIONS AS THE INPUT 
SYMBOLS. For our analysis of directional accuracy to be rigor- 
ous, the ensemble response of the system should, in theory, be 
observed for all possible wind-current velocity profiles at all direc- 
tions, and the contribution of each different stimulus-response 
measurement to the overall transinformation calculation should 
be weighted by that stimulus profile’s actual probability of occur- 
rence in the cricket’s real environment. In practice, such a com- 
plete set of experimental measurements was not possible. There- 
fore we restricted our stimulus shape to the half-cosine waveforms 
described in the previous report, and the peak velocities of the 
waveforms were restricted to the optimal sensitivity range within 
which the responses of the cells varied as the log of velocity (Fig. 3, 
Miller et al. 199 1). By restricting our calculations to this limited 
set of inputs, we made the following implicit assumptions: 1) the 
general aspects of the tuning curves (i.e., their shapes, widths, and 
variances) were relatively independent of the precise velocity pro- 
files of different air-current stimuli, and 2) other aspects of the 
neuronal responses within the system (for example, the relative 

REPRESENTATION OF THE CELL RESPONSES AS THE OUTPUT 
SYMBOLS. As indicated above, the output variable r must be 
some representation of the recorded activity of the nerve cells, 
which has relevance in the information transfer process. As shown 
elsewhere (Eckhorn et al. 1976)) a “signal code” (binary function 
of time of the spike occurrences) would be the most complete 
representation. In our study the analysis was limited to the mean 
elicited spike counts in an interval after the stimulus. We believe 
that this is a very reasonable first-order representation for the cells 
in this particular neural subsystem, because their spike-train re- 
sponses displayed very regular firing rates (see Miller et al. 199 1). 
The integration time for the estimation of the mean spike count 
was 100 ms. The choice of the length of the integration time con- 
stitutes an additional assumption about the resolution of the sys- 
tem. We are, in effect, assuming that higher decoding neurons 
could be able to integrate this response for - 100 ms. If  the inte- 
gration time is reduced, the information transfer would also be 
reduced, but this effect is less significant for regularly firing units 
such as these cells. 

For our calculations, therefore, the output symbol variable y  in 
Eqs. 3 and 4 can be substituted with the ensemble response vector 
r=hr,,r,, 4) r where rl is the mean spike count (MSC) of 10-3 
left ( lo-3L), r2 is the MSC of lo-2L, r3 is the MSC of 10-2 right 
( lo-2R), and r4 is the MSC of lo-3R. Each of the four cells had a 
maximum MSC for its optimal stimulus direction, and the re- 
sponses fell off symmetrically on either side of that optimal direc- 
tion (Fig. 5 in Miller et al. 199 1). The curves of MSC versus wind 
direction are therefore considered to represent “directional sensi- 
tivity curves,” or “directional tuning curves.” 

The calculation of transinformation and systematic accuracy 
required a knowledge of two features of the cells’ response charac- 
teristics: 1) the shape of these directional tuning curves, plotted as 
the mean spike count values and 2) the values for the response 
variance at each stimulus orientation for each cell. These data 
were presented in the preceding paper and are dealt with in our 
computations as follows. 
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DIRECTIONALTUNINGCURVES OFTHEFOURINTERNEURONS. 
As described in the preceding report, analytic functions corre- 
sponding to truncated cosine functions were fitted to the 10-2 and 
1 O-3 cells’ directional tuning curves. For reasons of computational 
efficiency, the calculations presented in this report were carried 
out on the basis of these analytic functions, rather than with the 
observed data points themselves. The use of continuous functions 
allowed us to interpolate reasonable values for the MSCs of the 
interneurons at intermediate stimulus directions and for a range of 
velocities for which real experimental data were not obtained. The 
use of these model curves was considered valid, because 1) the 
fitted curves were statistically indistinguishable from the real data 
curves, and 2) small deviations from those curves would not in 
any case be expected to significantly alter the results of our calcu- 
lations. 

The general form of the analytic function used to represent the 
stimulus-response characteristics of each individual cell in the 
four cell ensemble was as follows 

r = [ I-,,,/( 1 - a,)] * [ cos (0 - S,,,) - a,] for cos (8 - O,,) > a, (5a) 

and 

r = 0 for cos (8 - O,,,) < a, wo 

where r is the response amplitude (i.e., mean spike count), equiva- 
lent to the y symbol; rmaX is the maximum response amplitude; 8 is 
the stimulus direction in radians, equivalent to the x symbol; 0,,, 
is the optimal stimulus direction evoking the maximum response; 
and a, is the threshold stimulus value for evoking spike activity. 

In this function, the response r can be thought of as being the 
resultant sum of excitation from sensory receptor afferents and 
inhibition from local interneurons. The threshold value is presum- 
ably determined by the relative amount of excitation and inhibi- 
tion, as well as by the spike threshold of the interneurons. The 
klaYcl( 1 - a,)] coefficient can be thought of as a gain factor. 

As well as being plausible from a physiological standpoint, this 
formulation of the equation is convenient for parametric variation 
simulations. Operationally, changing the value of the threshold 
parameter a, modifies the width of the tuning curve but maintains 
the maximum response at a constant value by adjusting the gain. 

Because the experimental directional tuning curves were only 
measured for one particular peak stimulus velocity (i.e., the veloc- 
ity at which the MSC response was at ~60% of saturation), the 
parametric representation allowed us to simulate the response of 
the system for a range of velocities that were not actually charac- 
terized with full tuning curves. To carry out these simulations, rmax 
was increased or decreased proportionally to the log of the stimu- 
lus velocity, according to the relationship demonstrated in the 
previous report. In doing so, we effectively assumed that, within 
this log-linear region of the cells’ velocity sensitivity, the shape of 
the tuning curves varied only by a scaling factor. 

Regardless of the plausibility of Eq. 5 as a suggestive model for 
directional selectivity, the form of the equation is essentially arbi- 
trary; a number of other functions could have been used to fit the 
observed data equally well. A significant concern does arise, how- 
ever, when considering how the shapes of these different functions 
change as the relevant width parameter is changed for the paramet- 
ric variation simulations. To verify that the results were not an 
artifact of the particular analytic function used to represent the 
tuning curves, some calculations were repeated with the use of a 
function that maintained a steeper slope at the tails of the tuning 
curves as widths were increased. The function we chose was a 
cosine with varying period and zero threshold. The MSC response 
in this case was modeled as 

Y = rmax*cos [(27r/Q)*(8 - em,,)] 

where 152 was the period in radians. 

(6) 

RESPONSE VARIANCE OF THE FOUR INTERNEURONS. AS dis- 
cussed above, calculations of the transinformation and system ac- 
curacy require a knowledge of the variance in the responses of the 
individual cells to identical repeated stimuli. This is intuitively 
understandable. Consider a function constructed from the sum of 
two Gaussian functions that have equal amplitudes but different 
mean values. The ability to resolve the two functions depends not 
only on the separation of their means, but also on the relative 
widths of the functions. The case of our neural tuning curves is 
entirely equivalent: the ability to distinguish the directions of dif- 
ferent stimuli on the basis of the mean firing rates of a neuron (or 
neurons) is dependent on the variability in responses from one 
stimulus presentation to the next. 

In terms of the information theoretic calculations, the variance 
in a cell’s response r to repeated stimuli at a direction 8 and a 
velocity v is used to define the conditional probability distribution 
p( r 18, u). With the use of the simplest assumptions, consistent 
with the variance measurements reported in the preceding report, 
we assumed that each cell’s responses varied around it’s mean 
response for that particular direction and velocity with a discrete 
normal distribution. Because the MSC could never be negative, 
the distributions were truncated at zero. In other words, p( r IO, 
v) = 0 if any of the components of the ensemble response r were 
~0. The spread of the distribution was determined by the variance 
of the MSCs reported in the preceding paper (Miller et al. 199 1). 
As shown in Fig. 6 of that paper, graphs of the standard deviation 
of the MSC versus the amplitude of the MSC from each cell could 
be fitted with a linear function. Thus we could estimate the spread 
of p( r 10, u) by first calculating the MSC at that particular direc- 
tion and velocity and then obtaining the variance from its linear 
dependence on the MSC. To estimate the directional accuracy in 
the real system, we chose the variance relationship from the cell 
having the highest variance. 

The deviation from the normal distribution was assessed by 
calculating the skewness coefficient. In all cases, the skewness was 
always less in absolute value than the expected variance of the 
skewness for a normal distribution calculated from 32 points of 
data. 

Note that the functional representation of the conditional proba- 
bility distributions as normal distributions was not strictly neces- 
sary for the directional sensitivity calculation. The probability dis- 
tribution could also have been extracted directly from the data 
used to calculate the variance. Our functional representation sim- 
ply smoothed out these probabilities and allowed a rigorous and 
consistent model for the distributions at intermediate values of 
the MSC. 

COVARIANCEINTHERESPONSESOFDIFFERENTCELLS. Because 
of the limitation of recording from only one cell at a time, any 
possible covariance that might have existed between cells could 
not be measured. Thus an implicit assumption of these calcula- 
tions was that the cells responded independently for a given direc- 
tional stimulus. A consideration of the covariance in cell activities 
would, in effect, have allowed a determination of the proportion of 
the variance in the MSCs that was correlated between cells. An 
optimal decoder could, in certain cases, use such information 
about the covariance to enhance accuracy. (Consider, as an engi- 
neering example, a bipolar amplifier set to reject the “common 
mode noise” on both inputs.) 

By assuming no covariance between activities of different cells, 
by using only the mean firing rates for our representation of the 
spike train, and by choosing the largest variance values measured 
in our experiments, we are, in effect, calculating the lowest bound 
of the maximum directional accuracy of our system. On the other 
hand, our choice of the integration time over which to estimate the 
MSC and the restriction of the stimuli to a limited velocity range 
might have lead to overestimations of this lowest bound. 
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Calculation methods 

The directional transinformation ( T, = Hr - H,,,) can also be 
written as 

or 

where 

To = 
s 

p(0) T(0) do (8) 

T(B) = log J 2(~)P0d~ (9) 

is the transinformation for a particular input symbol 8 (Mansuri- 
pur 1987). T( 0) is also referred to as the “partial transinforma- 
tion.” This is the form that was used in our calculations. In these 
equations, the conditional probability p( r 10) was calculated by 
taking the average of p( r 18, v) over all velocities in the velocity 
interval of interest 3 : 

PW) = J PW, VI PWdV (10) 

To calculate the partial transinformation for a given direction 0, 
a four-dimensional nonanalytic integral had to be calculated (i.e., 
the integrand in Eq. 9 is a function of r, the 4-dimensional re- 
sponse vector representing the ensemble MSC of the 4 interneur- 
ons). The fastest numerical method for estimating T( 0) is a 
Monte Carlo integration where p( r 10) is used as the “importance 
function” (Davis and Rabinowitz 1984; Gillespie 1975). Finally, 
to obtain the overall transinformation, a simple one-dimensional 
averaging integral (Eq. 8) had to be performed. We calculated the 
overall transinformation, which we will subsequently refer to as 
T,, by obtaining T( 0) for enough values so that their mean value 
would not change. We found that simulating the responses at 128 
directions was sufficient. 

Correspondence between TO in bits and angular resolution 
in degrees 

As discussed earlier, it is reasonable to consider the value of 
transinformation in bits as being directly related to the angular 
resolution of the system. For example, if the average directional 
transinformation is approximately four bits, the simplest interpre- 
tation is that the total stimulus range (i.e., 360” ) could be divided 
by the four cells into 2 4 (i.e., 16 ) different directional bins, each of 
which would be 22.5 O wide (corresponding to a standard devia- 
tion of 6.5” ). A more rigorous interpretation of the measure of 
transinformation is to equate it to the “angular resolution” or 
“standard deviation” of the error with which an optimal decoder 
could compute the stimulus direction from the mean ensemble 
spike count response of these four cells. The formal relation be- 
tween the transinformation values we calculated and the equiva- 
lent accuracy ofthe direction calculations by any presumed opti- 
mal decoder depends on the shape of the probability function that 
characterizes the output of an optimal decoder to identical re- 
peated stimuli. Assuming a Gaussian distribution for this probabil- 
ity function (which was, in fact, a good approximation for a simu- 
lated decoder based on the minimum mean square error), the 

3 Note that in taking the average of over all velocities we are not includ- 
ing any information about the velocity in our transinformation calcula- 
tion. If  one were interested in the encoding of the velocity as well, Eq. 9 
would become T(0, v) = s log, [p( rI 0, v)/p( r)] p( rl8, v) dr. T(0, v) 
would then be integrated over all velocities and directions to obtain the 
total average transinformation. 

number of bits of transinformation in the response with standard 
deviation 0 is approximately given by 

T = log, (G/a) - 1/[2 ln(2)] (11) 

as long as c is less in magnitude than 2n radians (see APPENDIX). 

Four bits of resolution, for example, would correspond to a Gauss- 
ian error with a width of 5.4O. 

RESULTS 

Directional accuracy for stimuli with a “known” velocity 

The directional transinformation T, was calculated ac- 
cording to Eq. 9, using stimulus-response parameter values 
equivalent to the experimental observations presented in 
the preceding report (Miller et al. 199 1) . For this analysis, 
the calculations of transinformation at each direction were 
based on the cells’ responses to stimuli having known direc- 
tion and velocity. (The stimulus velocity used for the exper- 
iments was set to elicit a response equal to -60% of a cell’s 
“saturating” response in its optimal direction.) The curves 
plotted with solid lines in Fig. 2 are the model functions 
representing the cells’ directional tuning curves at this veloc- 
ity, calculated from Eqs. 5a and 5b, with parameters set to 
best fit the physiological data. The transinformation (in 
bits) is plotted as the dashed curve. Transinformation var- 
ied between 3.7 and 4.8 bits, with a mean of 4.22 bits. This 
fluctuation would presumably result in a slight unevenness 
in the attainable accuracy at different stimulus directions. 

Directional accuracy for stimuli with undetermined 
velocities 

Additional calculations were performed according to 
Eqs. 9 and 10 to determine the extent to which uncertainty 
in stimulus velocity would decrease system accuracy in de- 

- 

FRONT RIGHT REAR LEFT 

STIMULtJS ORIENTATION 
FIG. 2. Mean spike count (MSC) in the responses of the 4 10-2 and 

10-3 cells (solid curves) to wind stimuli from different directions, and 
information transfer of the system (dotted line) in bits for a fixed velocity 
set at 60% of the saturating velocity. Smooth response curves were ob- 
tained by fitting a cosine function to the experimental data. Error bars 
(shown for only 1 cell) indicate the mean variance in the cells’ responses. 
The mean value of transinformation is 4.2 bits. 
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termining stimulus direction. For this analysis, the calcula- 
tions of transinformation at each direction were based on 
simulated responses to several stimuli having identical di- 
rections but different velocities, as described earlier. By 
varying the range of velocities from which each stimulus-re- 
sponse set was selected, different levels of uncertainty about 
stimulus velocity could be simulated. Three different sets of 
such calculations were performed, with velocity ranges set 
as shown in Fig. 3A. The stimulus-velocity range for each 
set was centered on the “standard” stimulus velocity used 
for the calculations presented in the preceding section. This 
standard stimulus velocity, indicated in Fig. 3A with an 
asterisk, was the velocity that elicited a response equal to 
60% of a cell’s “saturating” response in its optimal direc- 
tion. The limits of the stimulus-velocity range for each of 
the three calculation sets were adjusted, as shown in Fig. 
3A, to bracket this standard stimulus velocity by amounts 
that elicited responses corresponding to t 12, +24, or t36% 
of the MSC at the saturating stimulus velocity around the 
MSC at the standard velocity. 

The results are shown in Fig. 3 B. In this graph, the aver- 
age directional transinformation (in bits) across all direc- 
tions is plotted versus the width of these velocity uncer- 
tainty ranges. In other words, with zero uncertainty as to 
the stimulus velocity, the mean transinformation was 4.22 
bits, as calculated in the previous section. As the velocity 
uncertainty range was increased, the mean directional accu- 
racy decreased. However, the decrease is not as pronounced 
as might have been expected. Even for velocity ranges for 
which the MSC ranged by ?36% around the response at the 
standard velocity (i.e., from 24 to 96% of the cells’ saturat- 
ing responses, which corresponded to a velocity range from 
3 to 83% of the saturating stimulus velocity), the mean 
transinformation decreased by less than one bit to a value of 
3.5 bits. 

To gain a better intuitive understanding of these plots of 
directional accuracy, the values for transinformation in bits 

A 
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: 
: 
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can be translated into values for angular resolution, as de- 
scribed in METHODS. According to Eq. 1 I, this calculated 
range in transinformation between 3.5 and 4.2 bits corre- 
sponds to an angular resolution of between 7.7 and 4.7 O, 
respectively, depending on the width of the velocity interval 
considered significant. 

Dependence of transinformation 
in tuning-curve width 

on changes 

As discussed earlier, the accuracy achievable by a sensory 
system such as this must be influenced by the relative 
widths of the parametric tuning curves of the constituent 
neurons, which in these experiments were measured to be 
130’. The dependence of directional accuracy on the tun- 
ing-curve widths was assessed by a series of simulations in 
which the widths (measured at half-maximum amplitude) 
were varied between 20 and 220°. The variation was 
achieved by varying a, in Eq. 5a between 0.97 and - 1.68, 
respectively. The simulations were done for two different 
stimulus-response sets: for the standard stimulus velocity 
and for a velocity range corresponding to the response in- 
terval of t24% around this standard velocity. All other pa- 
rameters in the functions were kept constant. 

The results of these simulations are plotted in Figs. 4, 5, 
and 6. In Fig. 4, the simulated tuning curves and corre- 
sponding calculations of transinformation versus direction 
are plotted for each of three specific tuning-curve widths. 
For each tuning-curve width, the data are presented in two 
different complementary formats: a polar plot and a Carte- 
sian plot. These graphs illustrate the extent to which modifi- 
cations of tuning-curve width effect two significant aspects 
of the local transinformation. First, the variation in the 
transinformation (plotted as solid lines) at different direc- 
tions is much greater for the case of the narrow tuning 
curves. This would imply a significant variation of direc- 
tional accuracy at different directions for this case. Second, 
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FRACTION OF RESPONSE RANGE 

FIG. 3. Typical velocity response curve showing 3 different velocity ranges for which the transinformation calculations 
were performed (A) and plot of the mean transinformation as the velocity range is made wider (B) . A : asterisk shows the 
point at which the response is at 60% of the saturating response. This point is called the standard velocity and is used to define 
the 3 progressively larger velocity intervals shown with dotted brackets. The 3 intervals correspond to velocity ranges that 
elicited responses in intervals centered at value of the response at the standard velocity and with width of 24,48, and 72% of 
the total response range. B: mean transinformation values for these 3 velocity intervals, and for the case where the velocity 
was fixed at the standard velocity, are shown plotted against the width of the velocity interval expressed in percent of the total 
response range. 
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FIG. 4. Simulated response curves (tuning curves) and transinformation curves for different tuning-curve widths (i.e., 

different values of the threshold parameter cx,). The curves were plotted in polar coordinates in the top panels and in Cartesian 
coordinates on the bottom. Responses of the 4 cells are shown with thin dashed lines, and the values of transinformation are 
shown with the thick solid lines. Changing the value of the threshold from negative to positive values narrowed the width of 
the tuning curves and effectively reduced the amount of overlap. As overlap was reduced, the transinformation spread 
became larger. 
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the overall mean transinformation across all directions was close to the width of 130’ measured for the actual inter- 
significantly lower in the very narrow and very wide tuning- neurons (Miller et al. 199 1) . 
curve sets than in the intermediate width case, which sug- The bottom (dashed) curve plotted in Fig. 5 represents 
gests that some optimal width might exist. another significant aspect of the system response character- 

The results of many such calculations at a broad range of istics: the spread (in bits) of the local transinformation 
tuning-curve widths are plotted in Fig. 5 to allow a more value from the mean T, as a function of tuning-curve width 
systematic analysis of the trends suggested by Fig. 4. The (i.e., the difference between the minimum and maximum 
top (solid) curve in Fig. 5 shows the average transinforma- local transinformation values for the different curve 
tion across all directions (in bits) for a wide range of model widths). These data were obtained by the use of the fixed 
tuning-curve widths, calculated for the stimulus-response standard velocity simulation; curves generated from the 
sets at the standard stimulus velocity. The similar curve different velocity uncertainty intervals were very similar. 
immediately below that top curve shows the mean To for the Note that the spread in To was large for the relatively narrow 
same range of model tuning-curve widths, but calculated tuning curves. As the tuning-curve widths were increased, 
instead for the stimulus-response sets chosen from the in- the local transinformation curves became smoother, result- 
termediate “velocity uncertainty” interval indicated above. ing in a decrease in the graph of the spread of T, values. The 
In both cases the average transinformation showed a clear significance of all these results and the “structure” in these 
global maximum for tuning-curve widths of - 11 O” . This is curves will be considered in more detail in the discussion. 
close to the point at which a, = 0 (i.e., 1 20° width) where To determine whether the results were artifacts of the 
the tuning curves from three cells begin to overlap. (The particular model function used to represent the cell’s tun- 
simulated tuning curves and calculated T, function for that ing-curve shapes, the calculations that yielded the results 
case are shown in the middle panel of Fig. 4.) Note that this plotted in Fig. 5 were repeated with the use of a different 
theoretical optimum tuning-curve width is, indeed, very model tuning-curve function, as indicated in METHODS. In 
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TUNING CURVE WIDTH, DEGREES 
FIG. 5. Mean transinformation values (solid lines) and spread of T, 

values around the mean (dashed line) for different values of tuning-curve 
width. The top solid line is the mean transinformation calculated for a 
particular velocity set at 60% of the saturating velocity. The solid curve 
immediately below shows the mean transinformation calculated for an 
intermediate velocity interval as defined in Fig. 3. The spread was calcu- 
lated as the difference between the maximum and minimum transinfor- 
mation values for all possible directions for the particular velocity case. 
The arrow points to the transinformation value calculated for the cricket 
from actual experimental data. The limit of transinformation in the real 
system is close to the optimal point. The bold tick marks on the x-axis 
correspond to the critical overlap values between tuning curves of neighbor- 
ing cells (see text). 

Fig. 6 the curve plotted with the solid line was calculated 
with the use of Eq. 5 to represent the cell tuning curves, and 
the curve plotted with the dashed curve was calculated with 
the use of Eq. 6. Both simulations were done for the fixed 
“standard velocity” case. The similarity of these two curves 
verifies that the results were not artifacts of the particular 
model function used to represent the cell’s tuning curve. 

Dependence of transinformation on shifts 
of the tuning curves 

Data presented in the preceding report showed that the 
points of peak sensitivity of the four cells’ tuning curves 
were spaced equally around the horizontal plane at 90° in- 
tervals (Miller et al. 199 1). The precise locations and sepa- 
ration of the curves appeared to be constrained very rigidly, 
as shown by the low variances in those values. Simulations 
by Heiligenberg ( 1987 ) demonstrated that the accuracy of a 
coarse-coded representation of a discretely sampled sensory 
continuum such as in the system studied here will depend, 
to some extent, on the interval spacing of the neural tuning 
curves. Simulations were carried out to determine the im- 
mediate effects on system accuracy that would result from 
short-term dynamic shifts in the relative spacing of the tun- 
ing curves. 

In these simulations the mean system accuracy limit was 
calculated for cases in which each of the four tuning curves 
were shifted from their mean positions by a random 
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TUNING CURVE WIDTH, DEGREES 
FIG. 6. Average transinformation values vs. tuning-curve widths from 

2 simulation sets, where different functions were used to model the tuning 
curves. The solid line corresponds to simulations in which tuning curves 
were modeled with Eq. 5. The dashed line corresponds to simulations in 
which tuning curves were modeled with Eq. 6. 

amount, chosen stochastically from a Gaussian distribution 
with a standard deviation ranging from 0 to 1 O”. The effect 
of this additional dynamic shift was to increase the variance 
of the MSCs at each point. The calculations were done for 
a, = 0 for the fixed velocity case, and the results are shown 
in Fig. 7. The curve plotted with a solid line corresponds to 
the mean transinformation (across all directions) for succes- 
sively larger values of shift. The dashed curve represents the 
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DYNAMIC SHIFT OF ALL TUNING CURVES 
(DEGREES FROM OPTIMAL CONFIGURATION) 

FIG. 7. Average transinformation (solid line) and minimum transin- 
formation (dashed line) as the 4 tuning curves were randomly shifted from 
their optimal positions. The x-axis shows the standard deviation of this 
random Gaussian shift. 
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values of the minimum transinformation (i.e., the lower 
accuracy limit in the region left “undersampled” by a 
shifted tuning curve). The decrease of transinformation is 
quite severe: an entire bit (i.e., one-half of the directional 
accuracy) is lost for a mean shift of only 3.5 O. This suggests 
that shifts in the directional tuning curves that could not be 
compensated by “recalibration” of the higher order de- 
coder would drastically reduce system performance. 

The possibility was also considered that any long-term 
static shift in the position of a cell’s tuning curve, caused by 
some accident or aberration during development, could 
eventually be compensated to some extent by a reoptimiza- 
tion of the higher order neural network serving as the de- 
coder. To determine the net extent to which the system 
accuracy would degrade after reoptimization to a static shift 
in a single tuning curve, the transinformation curves were 
calculated for a series of simulations in which the position 
of one tuning curve was shifted away from its normal posi- 
tion in 5O increments. A 90° shift corresponded to a super- 
position of the “test” tuning curve with that of its next- 
nearest neighbor. Here again, the calculation was done for 
the fixed standard velocity case. The results of these simula- 
tions are shown in Fig. 8. 

It is remarkable that even large static shifts of up to 30° 
affected the overall mean accuracy of the system very little. 
The minimum accuracy for all directions decreased more 
rapidly but was still relatively stable to shifts of up to 10’. 

Thus, if there existed enough plasticity in the decoding 
system to allow for such reoptimization to a new configura- 
tion, the system would be robust to static shifts in the posi- 
tion of the tuning curves. For comparison, the average and 
minimal transinformation values for a hypothetical system 
in which one of the cells was totally eliminated are shown as 
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(DEGREES FROM OPTIMAL CONFIGURATION) 
FIG. 8. Average transinformation (-) and minimum transinforma- 

tion (- - -) as one tuning curve was shifted from its optimal position by 
values ranging from 0 to 90". In these simulations, the system was reopti- 
mized to the new configuration. The circles plotted at 90° correspond to 

for the situation where one of the cells was the transinformation values 
completely eliminated. 

circles plotted at the 90° shift point. Even with only three 
functioning cells, the system would be capable of 3.8 bits of 
accuracy, which is more than would be obtained with four 
cells at most of the nonoptimal widths (refer back to 
Fig. 5). 

DISCUSSION 

In the studies reported here, principles of information 
theory were used to calculate the transinformation T, in the 
stimulus-evoked responses of four wind-sensitive inter- 
neurons of the cricket cereal sensory system. As summa- 
rized earlier, T, can be thought of as corresponding to the 
limit of accuracy with which the information about stimu- 
lus direction was encoded in the mean spike rates of four 
interneurons of this system. An optimal decoder con- 
structed from higher order interneurons could theoretically 
achieve this level of certainty in its estimate of the stimulus 
direction. The mean value of T, was calculated to lie be- 
tween 3.5 and 4.2 bits, corresponding to a standard error in 
the system’s assessment of stimulus direction lying between 
7.7 and 4.7 O. This level of accuracy represents a substantial 
degree of “sensory hyperacuity,” because the minimum dis- 
tinguishable stimulus separation is more than an order of 
magnitude finer than the widths of (and parametric spacing 
between) the directional tuning curves of the interneurons 
themselves. 

We reiterate that these calculated values of T, depend on 
the set of assumptions discussed in METHODS. In choosing 
our set of assumptions, we were “conservative” in several 
respects, so as to obtain a lower bound value for the attain- 
able accuracy limit. First, the values we used for the re- 
sponse variance in our calculations were equivalent to the 
upper limits of the experimental measurements. Second, all 
calculations were carried out disregarding the directional 
information that might have been present in aspects of the 
patterns of the spike trains of individual cells. Third, the 
covariance in the responses of the different cells in the en- 
semble was not taken into account. 

Other implicit assumptions in these calculations might, 
however, have led to an overestimation of To. First, the 
response of the cells was obtained by counting spikes over a 
period of 100 ms after stimulus onset. If the actual “integra- 
tion time” were significantly less, attainable accuracy might 
have been less. Studies now in progress indicate, however, 
that use of 50-ms integration periods yield comparable esti- 
mates of T,. Second, it was assumed that the shape of the 
tuning curves was conserved for different velocities. It is 
possible that the curve shapes would “distort” for velocities 
near the upper and/ or lower limits of the cells’ operating 
ranges and possibly degrade the transmitted information. 
(Here the “velocity operating range” is the defined as the 
range for which the response varied proportional to the log 
of the stimulus velocity. This corresponded to velocities 
ranging from 0.0 1 to 0.2 cm/s.) Here again, sample direc- 
tional plots recorded at various velocities within the ranges 
considered in our calculations supported the validity of our 
assumption (discussed in Miller et al. 199 1) . In any case, 
the manifestation of such shape distortions near the sensitiv- 
ity limits would not necessarily decrease the accuracy 
within the central portion of the range. 
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After taking all these assumptions into consideration, we 
obtained an estimate of the directional accuracy, which de- 
pended only on the fraction of the velocity operating range 
over which the calculations were carried out. As we in- 
creased this fraction from a single velocity to a velocity in- 
terval including almost all of the velocity operating range, 
the directional accuracy of these four cells decreased from 
4.2 to 3.5 bits (or 4.7 to 7.7”). It should not seem surprising 
that the calculated directional accuracy would depend in 
such a way on the assumed degree of uncertainty about the 
stimulus velocity. As the velocity range is increased, the 
variability in the response for each cell at a particular direc- 
tion also increases. However, most of this variability is 
strongly positively correlated between the different cells, 
because the activities of cells with overlapping tuning 
curves will tend to follow the same trends in response to a 
change in stimulus velocity. This strong positive correlation 
and the fact that the overlapping tuning curves of adjoining 
cells have opposite slopes, result in different systematic re- 
sponses to different directions over an ensemble of veloci- 
ties. This difference allows the system to maintain a rela- 
tively large directional resolution for velocity intervals that 
span most of the velocity operating range of the cells. 

Note that by choosing a particular fraction of the total 
operating range for the calculations, we were effectively as- 
suming a velocity range over which these four cells were 
“held responsible” for encoding stimulus direction. This is 
actually somewhat problematic, because other cells in the 
cereal system might also contribute to directional informa- 
tion in the operating velocity range of the 10-2 and 10-3 
cells; furthermore, it is possible that the 10-2 and 1 O-3 cells 
might contribute to directional information beyond their 
saturating velocity. Figure 3 of the preceding paper demon- 
strates, for example, that there is a range of velocities within 
which the 1 O-2 and 10-3 cells are below saturation and the 
9-3 are above threshold. A more rigorous approach toward 
calculating total system accuracy would consider all cells in 
the cereal system and all velocities relevant to the cricket. 
The calculated directional accuracy for velocities below the 
saturating velocity of the 10’s would undoubtedly be larger 
than our lower bound estimate presented here, which ig- 
nores other cells. 

Studies now in progress will address some of these as- 
sumptions by explicitly calculating the directional transin- 
formation on the basis of simultaneous recordings of the 
spike-train patterns elicited from both the 10-2 and 1 O-3 
class and the 9-2 and 9-3 class. We have confidence in the 
conservatism of the calculations presented here, however, 
and we are impressed by the level of implied encoding accu- 
racy. 

Correspondence between transinformation and 
behaviorally observable acuity 

In general, the transinformation value is the most rigor- 
ous measure of the coding accuracy for any given set of 
assumptions. Unfortunately, the correspondence between 
this neural encoding accuracy and the effective sensory 
acuity that would be observed in “behavioral” or “psycho- 
physics” experiments is difficult to determine in insects. In 
a recent study, the escape reactions of Acheta domestica to 

wind stimuli were observed under open loop conditions 
(Stabel et al. 1985 ). The aim of the study was to describe 
the change in the cricket’s walking behavior in response to 
speaker-generated tone pulses from different directions. 
The crickets were observed to turn away from the stimuli, 
and responses were quantified by plotting the angular veloc- 
ity of the turns versus stimulus angle. It was demonstrated 
that the crickets would display significant turns to stimuli 
with angles ~30” lateral from the rear. Unfortunately, the 
stimulus generation and delivery protocols, the peak stimu- 
lus velocity (500 mm/s), and the ambient environment 
were much different from those in the experiments re- 
ported here, and an appropriate estimate of resolution or 
accuracy from that study is not possible. 

Several research groups have carried out behavioral ex- 
periments on cockroaches (Camhi and Tom 1978; Camhi 
et al. 1978; Westin et al. 1977), but the results of these 
experiments do not adequately address the questions inves- 
tigated here, for several reasons. First, the cockroach cereal 
sensory system is substantially different from the homolo- 
gous system in crickets. (For example, cockroaches have 
smaller cerci with many fewer nliform hairs.) Second, all 
behavioral experiments were done in open field conditions, 
with the use of stimulus velocities much larger and, presum- 
ably, much more “noisy” than the ones used in our experi- 
ments. 

A determination of the extent to which crickets approach 
the maximum acuity judged possible from an analysis of 
their information encoding capabilities must await further 
behavioral experiments, carried out under the same cir- 
cumstances and with similar protocols to those used for the 
studies reported here. 

Mechanisms for decoding by higher order interneuronal 
networks 

Note that we are not proposing any specific model for the 
mechanisms by which the information in these ensemble 
neural responses is decoded by higher order interneuronal 
or motor circuits. Our calculation of the limits of system 
accuracy are essentially model independent: we calculated 
the information encoded in the neural responses in a statis- 
tical sense, and any of a wide range of decoders could be 
derived that would presumably be capable of extracting 
some or all of this information. Adequate data are not 
currently available to allow a discrimination between the 
many conceivable models for information decoding in the 
cricket cereal sensory system. 

Several researchers have, however, proposed candidate 
models for equivalent higher order decoders in the cereal 
sensory system of the cockroach. In two recent studies, mod- 
els were proposed for simple directional decoding algo- 
rithms, on the basis of experimentally observed responses 
of the giant interneurons and of freely behaving 
cockroaches to wind stimuli (Camhi and ‘Levy 1989; Dowd 
and Comer 1988 ) . In both studies the stimulus directions 
were computed on the basis of simple linear summations of 
the action potentials of the giant interneurons. The statisti- 
cal variation of the escape responses could be mimicked by 
adding a certain uncertainty or “noise” on top of the mean 
simulated responses of the interneurons. Researchers in 
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both studies were able to find sets of model parameters and 
“noise levels” that yielded close fits to the behavioral data. 
However, neither model used noise levels that had been set 
to correspond to the actual measured variances in cell re- 
sponses. It must be remembered that the cell response vari- 
ances are very important determinants of the information 
available in their mean spike rates; therefore the interpreta- 
tion of those modeling studies is problematic. 

In a third study (Heetderks and Batruni 1982) a specific 
model for an optimized linear directional discriminator 
was proposed, in which the principles of linear multivariate 
statistical analysis were used. The proposed decoding 
scheme did take into account the variance of the cell re- 
sponses. By the use of this model, twelve directions could be 
discriminated with high reliability, on the basis of an analy- 
sis of the spike trains of 14 interneurons. Unfortunately, the 
variance values used in the model were estimated from only 
five repetitions of the stimulus in each direction, and the 
covariance in the responses of different cells was calculated 
on the basis of independent recordings from different ani- 
mals. Both sets of variance estimates may have therefore 
been far from accurate. 

An adequate understanding of the decoding algorithm 
used for this direction-sensing task will ultimately require a 
detailed analysis of the physiology and functional organiza- 
tion of wind-sensitive interneurons in the thoracic ganglia, 
which are the targets of the cereal interneurons considered 
in these studies. 

Functional optimality of the cricket cereal sensory system 

As demonstrated above, the transinformation calcula- 
tions provided a rigorous assessment of encoding accuracy. 
Perhaps more significantly, this measure also allowed a 
quantitative assessment of the dependence of encoding ac- 
curacy on several aspects of the system’s functional organi- 
zation. We investigated the optimality of the width and 
spacing of the directional tuning curves. Our approach was 
to calculate the transinformation versus direction func- 
tions, similar to the function shown in Fig. 2, for a wide 
range of tuning-curve widths and intercurve spacings. 
EFFECT OF TUNING-CURVE WIDTH ON TRANSINFORMATION. 
Figure 5 shows two interesting characteristics of the transin- 
formation curves calculated for a wide range of model tun- 
ing-curve widths. The first significant result was that there 
exists a single global maximum in the plot of T, versus 
tuning-curve width. This theoretical global maximum oc- 
curred at a tuning-curve width of 1 loo. The second interest- 
ing result is that the amplitude of the fluctuation between 
minimal and maximal T, (i.e., the deviation around the 
mean TO) tends to decrease with increasing tuning-curve 
width. We would suspect that any such fluctuation in T, for 
different directions would essentially degrade the perfor- 
mance of the system as a whole. Here again, we note that 
there is a local minimum in this graph of TO variance versus 
tuning-curve width at a width of 11 O”, corresponding ex- 
actly to the global maximum for mean T, versus tuning- 
curve width. Thus a consideration of both graphs would 
suggest an optimal tuning-curve width of 1 loo. It therefore 
seems very significant that the experimentally measured 
tuning-curve widths were, in fact, - 1 30°. 

The existence of an optimal range for tuning-curve The existence of an optimal range for tuning-curve 
widths in coarse-coded systems such as this one is not sur- widths in coarse-coded systems such as this one is not sur- 
prising and, in fact, was predicted in a simulation study prising and, in fact, was predicted in a simulation study 
carried out by Heiligenberg ( 1987 ) . The narrowness of this carried out by Heiligenberg ( 1987 ) . The narrowness of this 
range and the distinct optimum value obtained in our simu- range and the distinct optimum value obtained in our simu- 
lations were, however, unexpected. Heiligenberg’s simula- lations were, however, unexpected. Heiligenberg’s simula- 
tions suggested that a broad range of tuning-curve widths, tions suggested that a broad range of tuning-curve widths, 
between 2 and 20 times the mean interreceptor spacing, between 2 and 20 times the mean interreceptor spacing, 
would yield equivalent accuracy. Our experimentally ob- would yield equivalent accuracy. Our experimentally ob- 
served half-width value of 130’ is significantly less than two served half-width value of 130’ is significantly less than two 
times the 90’ spacing intervals between adjacent tuning- times the 90’ spacing intervals between adjacent tuning- 
curve optima, and the computed mean accuracy falls to curve optima, and the computed mean accuracy falls to 
50% of the optimal value (i.e., mean T, decreases by 1 bit) 50% of the optimal value (i.e., mean T, decreases by 1 bit) 
for tuning curves with half-widths ~90” or > 170’. for tuning curves with half-widths ~90” or > 170’. 

In retrospect, the narrowness of this optimal range is en- In retrospect, the narrowness of this optimal range is en- 
tirely reasonable and can be explained in terms of the con- tirely reasonable and can be explained in terms of the con- 
straints imposed by the limited dynamic range and intrinsic straints imposed by the limited dynamic range and intrinsic 
response variances of the four interneurons. In the simula- response variances of the four interneurons. In the simula- 
tions using narrower tuning curves, there were ranges of tions using narrower tuning curves, there were ranges of 
stimulus orientations within which only one or none of the stimulus orientations within which only one or none of the 
cells were activated to a significant extent. In such cases, cells were activated to a significant extent. In such cases, 
large regions of “direction space” had nearly identical sys- large regions of “direction space” had nearly identical sys- 
tematic ensemble responses, and the transinformation in tematic ensemble responses, and the transinformation in 
those regions was consequently very low. This caused the those regions was consequently very low. This caused the 
observed degradation of the mean information as plotted in observed degradation of the mean information as plotted in 
Fig. 5, as well as the severe fluctuations around the mean Fig. 5, as well as the severe fluctuations around the mean 
value. The dynamic range of cells having such narrow tun- value. The dynamic range of cells having such narrow tun- 
ing curves would not be used to their maximum discrimina- ing curves would not be used to their maximum discrimina- 
tory resolution. tory resolution. 

For simulations using broader tuning curves, the accu- For simulations using broader tuning curves, the accu- 
racy would also be expected to degrade. The broader is a racy would also be expected to degrade. The broader is a 
cell’s directional tuning curve, the lower is that cell’s mean cell’s directional tuning curve, the lower is that cell’s mean 
response differential at any two different stimulus direc- response differential at any two different stimulus direc- 
tions. As the mean response differential between two differ- tions. As the mean response differential between two differ- 
ent stimulus directions approaches the value of the re- ent stimulus directions approaches the value of the re- 
sponse variance, the stimulus discrimination is severely de- sponse variance, the stimulus discrimination is severely de- 
creased. In such a situation, the dynamic range of each cell creased. In such a situation, the dynamic range of each cell 
(and therefore of the ensemble as a whole) would be ex- (and therefore of the ensemble as a whole) would be ex- 
tended too broadly over the stimulus space. Because Heili- tended too broadly over the stimulus space. Because Heili- 
genberg did not explicitly consider response variances in his genberg did not explicitly consider response variances in his 
simulations, the resulting compression of the optimality simulations, the resulting compression of the optimality 
range was not anticipated. range was not anticipated. 

The local minima observed in the dotted curve in Fig. 5 The local minima observed in the dotted curve in Fig. 5 
(i.e., T, fluctuation vs. tuning-curve width) can be under- (i.e., T, fluctuation vs. tuning-curve width) can be under- 
stood in terms of the characteristics of the T, versus direc- stood in terms of the characteristics of the T, versus direc- 
tion curves (i.e., similar to Fig. 2) near the critical tuning- tion curves (i.e., similar to Fig. 2) near the critical tuning- 
curve widths where orders of overlap increase. As the curve widths where orders of overlap increase. As the 
widths were systematically increased from the lowest value widths were systematically increased from the lowest value 
of 20”, the effective dynamic range of each interneuron was of 20”, the effective dynamic range of each interneuron was 
spread over a wider and wider stimulus range, and the re- spread over a wider and wider stimulus range, and the re- 
gion with no response from any of the four cells became gion with no response from any of the four cells became 
smaller and smaller. This resulted in a systematic decrease smaller and smaller. This resulted in a systematic decrease 
in the peak T, and an increase in minimum T,, accounting in the peak T, and an increase in minimum T,, accounting 
for the gradual decrease in the variation of T, around the for the gradual decrease in the variation of T, around the 
mean. mean. 

However, at tuning-curve widths >62” (marked with a However, at tuning-curve widths >62” (marked with a 
bold tic on the x-axis), the variation in T, jumped to a local bold tic on the x-axis), the variation in T, jumped to a local 
maximum. Sixty-two degrees is the critical width at which maximum. Sixty-two degrees is the critical width at which 
each cell’s tuning curve just overlaps with those of its next each cell’s tuning curve just overlaps with those of its next 
nearest neighbors. For tuning curves slightly broader than nearest neighbors. For tuning curves slightly broader than 
62”, the uniqueness of the ensemble response for those 62”, the uniqueness of the ensemble response for those 
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small regions where the tuning curves overlap creates sharp 
local peaks in the plots of TO versus direction, accounting 
for the jump in the variation around the mean T, plotted in 
Fig. 5. 

A similar jump in TO variance can be seen in the dotted 
curve of Fig. 5 for each of the successive higher order “over- 
lap threshold” widths of 120 and 164’ (each of which are 
indicated with a bold tic on the x-axis.) Above 120”, each 
cell’s tuning curve overlaps with those of all three other 
cells. Above 164”, each cell’s tuning curve has “wrapped 
around” sufficiently to have two regions of overlap with its 
nearest neighbors. In each case, the incremental overlaps 
cause local jumps in T, values, which increase the variance 
of T, around the mean. 

Thus the general trends of these plots, and the fine struc- 
ture they display, can be understood at a qualitative level on 
the basis of a consideration of the underlying phenomena. 
EFFECTS OF TUNING-CURVE SHIFTS ON TRANSINFORMATION. 

The overall systematic accuracy depends on a precise rela- 
tive spacing of the directional tuning curves. Figure 7 dem- 
onstrates that any shift in the relative positions of the tuning 
curves would result in a severe degradation of accuracy, if 
the higher order decoding circuit could not be reoptimized 
to the new configuration. This seems remarkable in light of 
the observation that the position of the cerci are quite vari- 
able in freely behaving crickets. Presumably, a shift in cer- 
cal angle would result in a corresponding shift of the tuning 
curves of the left 10-2 and 10-3 cells with respect to those of 
the right 10-2 and 10-3 cells. 

However, the directional tuning curves of these cells4 
were reported in other studies to show little or no change 
when the cerci were displaced to different positions within 
their normal range of movements (Rozhkova 1980; Rozh- 
kova and Polishuk 1976). There must exist, therefore, 
some physiological “constancy mechanism,” which trans- 
lates the coordinate systems attached to the cerci into a 
coordinate system attached to the cricket’s body. The na- 
ture of this mechanism is unknown but may involve some 
form of proprioreceptive feedback from mechanoreceptors 
located near the base of the cerci. 

Fine tuning of the cereal sensory system during development 

It is interesting to note that the intra- and interanimal 
variance in the shapes, widths, and spacing of the tuning 
curves observed experimentally were extremely small. This 
suggests that the establishment of these curves during devel- 
opment, and their maintenance during subsequent moults, 
must be under rigid constraints. Moreover, the excellent 
correspondence between the observed neural characteris- 
tics and the theoretically optimal values increases our confi- 
dence in the validity of our general approach and our basic 
assumptions. Certainly, evolution and natural selection 
have had a long time to “fine tune” this behaviorally im- 
portant system toward an optimal configuration. 

The physical basis for this functional fine tuning must lie 
in 1) the precise anatomic characteristics of the afferent 

map of wind direction and of the dendritic arbors of the 
four interneurons within this map, 2) the relative efficacies 
of the synapses from the afferents and local interneurons 
onto these interneurons, and 3) the electrical properties and 
spike thresholds of the interneurons. A significant shift in 
any of these parameters away from their standard values 
would act to degrade system performance. It will be of sub- 
stantial interest to determine the normal variance in these 
parameters in typical crickets, and to determine the relative 
contributions of genetic preprogramming and activity-de- 
pendent plasticity to this functional tuning process. 

APPENDIX 

Correspondence between transinformation and the 
standard deviation in the representation ofthe stimulus 

In the preceding report the intrinsic accuracy with which a sen- 
sory network could encode a stimulus parameter was calculated in 
terms of “bits” of information. A more conventional quantity 
used to represent this accuracy is the standard deviation of an 
internal representation of the stimulus, which can then be directly 
associated to the “error” in the response. An average value for this 
standard deviation can be calculated from the local transinforma- 
tion values, by assuming a specific probability distribution for the 
response. The calculation becomes straightforward when one as- 
sumes that I ) the probability distribution is a Gaussian centered at 
the correct value of the stimulus and 2) the value of local transin- 
formation is constant for all values of the stimulus parameter and 
therefore equal to the mean transinformation. 

The conditional probability of the response y given a stimulus x 
at 0 is then written as 

1 
s 

+X 
P(Yld = K(g) e 

-(v2/2a2) where K(a) = e-(~2/202) dy 
-r 

The local transinformation is 

T,(x) = E log, [ (S)] = J;~P(Ylxl log, ($$g dY 

- 
As long as c is small compared with 27r, K(a) r 1J2acr, and the 

local transinformation can be approximated by taking the limits 
of the integral to plus and minus infinity. In that case and because 
p(y) = 1/27r (from our 2nd assumption) 

Since ZJ,( x) and CT are constant for all x (from our 2nd assump- 
tion), we can solve directly for 0 in term of the mean transinfor- 
mation Ty 

where Ty is the transinformation in bits and c is the standard 
deviation expressed in radians. 

4 The giant interneurons (GIs) referred to in Rozhkova and Polishuk This work was supported by National Institutes of Health Grant ROl 
( 1976) and Rozhkova ( 1980) are identical to the neurons we call 10-2 and DC-00483 to J. P. Miller. 
10-3 in this report. Address for reprint requests: J. P. Miller, Dept. of Molecular and Cell 
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