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SUMMARY AND CONCLUSIONS

1. This paper reports the results of an investigation of the basic
mechanisms underlying intersegmental coordination in lamprey
locomotion, by the use of a combined mathematical and biologi-
cal approach.

2. Mathematically, the lamprey central pattern generator
(CPQG) is described as a chain of coupled nonlinear oscillators;
experimentally, entrainment of fictive locomotion by imposed
movement has been investigated. Interpretation of the results in
the context of the theory has allowed conclusions to be drawn
about the nature of ascending and descending coupling in the
lamprey spinal CPG.

3. Theory predicts and data show that I) the greater the num-
ber of oscillators in the chain, the smaller is the entrainment
frequency range and 2) it is possible to entrain both above and
below the rest frequency at one end but only above or below at the
other end.

4. In the context of the experimental results, the theory indi-
cates the following: 1) ascending coupling sets the intersegmental
phase lags, whereas descending coupling changes the frequency of
the coupled oscillators; 2) there are differences in the ascending
and descending coupling other than strength; and it also suggests
that 3) coupling slows down the oscillators.

INTRODUCTION

One approach to the investigation of mechanisms un-
derlying central pattern generation has been to analyze cel-
lular and network properties and to use this information to
understand how the system works. This approach has been
successful with invertebrate preparations, such as leech
(Calabrese and Peterson 1983; Kristan and Weeks 1983),
Tritonia (Getting 1983), and lobster (Marder and Meyrand
1989; Selverston and Moulin 1986). The cellular approach
to studying central pattern generation in vertebrates is,
however, much more difficult because of the large number
of cells and connections that must be identified. Nonethe-
less, the cellular approach has been successful in simple
vertebrate systems for elucidating the mechanisms of basic
rhythm generation and left-right coordination (Xenopus
embryo, Roberts et al. 1986; lamprey spinal cord, Alford
and Williams 1989; Grillner et al. 1988). There is, however,
no understanding of the mechanisms underlying interseg-
mental coordination. Even in simple invertebrate systems,
the behavior of the network is not always easily explained
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on the basis of the properties of the component neurons
(Marder 1989). Similarly, in vertebrates, even if the details
of the network were known, the complexity might not
allow one to understand the emergent properties of the
system.

In this paper we present a different approach. We shall
use a general mathematical treatment of coupled nonlinear
oscillators developed by Kopell and Ermentrout (1986,
1988, 1990). First we will describe the mathematical frame-
work as it relates to what is known about the lamprey
spinal cord. Then we will present the results of experiments
designed to test and refine the theory. This interaction be-
tween mathematics and biology has allowed us to reach
conclusions about some properties of intersegmental coor-
dination in the lamprey spinal cord.

Lamprey locomotor CPG can be described as a
single chain of coupled nonlinear oscillators

Swimming in the lamprey is characterized by rhythmic
bursts of activity in ventral roots, which alternate left and
right and have a rostral-caudal intersegmental delay of
~ 1% of a cycle per segment. The phase lag is independent
of cycle frequency (which determines swimming speed).
The centrally generated pattern of ventral root activity re-
corded during fictive locomotion in the isolated spinal cord
is the same as that seen in the intact swimming animal
(Wallén and Williams 1984). The networks producing this
oscillation are distributed along the cord, since as few as
two segments taken from anywhere along the cord can
produce oscillatory behavior (Grillner et al. 1982b). During
stable fictive locomotion, the frequency is uniform along
the cord, and the phase relationships between segments are
constant; i.e., the oscillators are coupled (Stein 1974). Thus
the CPG for lamprey locomotion can be described as a
chain of coupled oscillators, with the activity recorded
from the ventral roots representing the motor output of the
oscillator chain.

Following experimental perturbation of fictive locomo-
tion, the activity resumes its original oscillatory behavior
within a few cycles (see, for example, Fig. 2 in McClellan
and Sigvardt 1988; Fig. 5 in Rovainen 1985). Such behav-
ior is characteristic of nonlinear oscillators with strongly
attracting limit cycles (Hirsch and Smale 1974). Having a
limit cycle means that for a given level of activation, there
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is a fixed rhythmic pattern of neural activity; when the
oscillator is perturbed the activity may change, but when
the perturbation is removed, it returns to its original fre-
quency and pattern. Only a nonlinear oscillator can have a
limit cycle; the fact that the pattern goes back to normal
within a cycle or two means the limit cycle is strongly
attracting.

Our general mathematical framework considers a single
chain of coupled oscillators (Kopell and Ermentrout 1986,
1988, 1990). The spinal cord would be more precisely
modeled as a double chain of oscillators, corresponding to
the left and right sides of the cord. However, since the
left-right coordination is strictly antiphasic, the model con-
siders each segment as a single oscillator with an output to
both the left and the right sides. The double chain can be
shown to have the same behavior as a single chain.

Each oscillator in the chain can be thought of as a net-
work of neurons having three kinds of output: /) the moto-
neuron activity that activates the muscles and that can be
recorded from the ventral roots; 2) the ascending interseg-
mental coupling signals, whereby one oscillator affects its
rostral neighbor; and 3) the descending coupling signals,
which affect the more caudal oscillator in the chain. The
observed intersegmental phase lag is a result of the inter-
segmental coupling. The ventral root output can be mea-
sured but not the ascending and descending coupling sig-
nals, since the neurons involved have not been identified.
In this study we show how a mathematical analysis of the
effects of perturbing the system with externally applied
movement allows conclusions to be drawn about the as-
cending and descending coupling.

Each oscillator can be described by a
single dependent variable O (1)

The output of each oscillator depends on the interactions
of all its component neurons. For a particular frequency,
wy, the kth oscillator has a particular behavior (its limit
cycle). A complete description of this behavior could be
given by a set of equations describing the properties of all
the neural elements as functions of time. All these equa-
tions would be periodic, with the same overall frequency,
wy, corresponding to the swimming cycle period, 74. At any
time, 7, between 0 and 7, there will be a set of values for all
these properties, representing the state of the oscillator at
that time in its progression through the cycle.

Such detailed properties are not known. The power of
our general mathematical approach is that it allows us to
study some characteristics of the intersegmental coordinat-
ing system without knowing the detailed properties of the
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network. We can replace this ensemble of variables by a
single variable ©,(f), representing the state of the kth oscil-
lator at time ¢ and corresponding to its progression through
the cycle. O, takes on values from 0 to 27 as ¢ goes from O to
7k, the cycle period.

The instantaneous frequency of the oscillator is given by

d@k/dl = Wi

Effect of coupling between two oscillators depends
on their phase difference

In the mathematical framework developed by Kopell
and Ermentrout (1986, 1988, 1990), the kth oscillator can
affect the instantaneous frequency of its rostral or caudal
neighbor, dO,_,/dt or dO,,,/dt. The effect of one oscillator
on another depends on how far each has progressed
through its cycle, i.e., the effect of oscillator k on oscillator
k + 1 depends on O, and O,,,. Similarly, the effect of
oscillator k on oscillator k — 1 will depend on O, and ©,_,.

It has been shown (Sanders and Verhulst 1985) that if the
effect of one oscillator on the instantaneous frequency of
another is averaged over the entire cycle, then this effect
can be expressed as a function of the phase difference be-
tween the two oscillators, rather than on the 0s indepen-
dently. This averaging technique has been shown to be
valid if the coupling signals are dispersed around the cycle
rather than occurring at only one or two points within the
cycle (Ermentrout and Kopell 1990b). For example, the
averaging technique can be used if there are as few as three
signals during a cycle as long as the signals are evenly
spaced around the cycle. This seems a reasonable assump-
tion for vertebrate locomotor CPGs, since the oscillatory
activity is likely to be produced by a network of neurons,
active in different phases of the cycle. Either these neurons
and/or their postsynaptic elements can be expected to par-
ticipate in the coupling. Furthermore, it has been shown
that if the coupling signals are not so dispersed, then the
network may not oscillate and can, for example, lock into
tonic activity or silence (Ermentrout and Kopell 1990a).
Therefore the stability of the oscillation can itself be taken
as evidence that the coupling signals are dispersed through
the cycle and that the effect of coupling can be expressed as
a function of phase difference only.

The frequency of the kth oscillator can thus be repre-

sented by
dOy/dt = wi + H*(Orsy — 01) + H ™ (Or—y — O)) o)

where H*, the ascending coupling function, and H~, the
descending coupling function, depend only on the phase
difference between the coupled oscillators (see Fig. 1).

H+

k+ 1 n

Lamprey spinal cord represented as a chain of coupled nonlinear oscillators. Each oscillator sends signals to its

rostral neighbor via ascending fibers and to its caudal neighbor via descending fibers. These signals are represented by the
ascending and descending coupling functions H*(¢) and H (—¢), respectively.
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The behavior of the chain of coupled oscillators corresponds
to the solution of a set of differential equations

During stable swimming all the oscillators in the chain
are entrained to the same frequency. In the mathematical
formulation this is equivalent to the requirement that
de,/dt for all k£ be equal to some ensemble frequency Q. It
is known that in the lamprey there can be substantial ex-
perimental variation in w along the cord, but there is no
systematic variation (Cohen 1987b). As an approximation
we assume that at a given speed of swimming all the oscil-
lators in the chain have the same intrinsic frequency, w.

The intersegmental phase lag, i.c., the difference in phase
between adjacent oscillators, will be represented by ¢, =
Ok+1 — 0. From this definition it follows that ¢,_; = 0, —
04— and thus that ©;_; — O = —¢,_,. Substituting in Eq. 1,
and adding equations for the first and nth oscillator, the
behavior of the network during stable swimming can be
described by

Q=w+H ) @
Q=w+H(p)+H (—psm)) 1<k<n &)
Q=w+H(~¢n1) )

For a given value of intrinsic frequency w, this constitutes »
equations in # variables (¢, . .., ¢,_1, Q).

The most rostral oscillator is affected only by ascending
coupling (Egq. 2) and the most caudal one only by descend-
ing coupling (Eq. 4). The minus sign before ¢;_, in Egs. 3
and 4 results from the fact that for both coupling functions,
the phase delay is taken (by convention) as the difference
between the phase of the oscillator sending the coupling
signals and the oscillator receiving them (see Eg. I). Be-
cause ¢, was defined as the phase advance from an oscilla-
tor to its more caudal neighbor, ¢ < 0 corresponds to a
rostral-caudal delay, i.e., activity traveling from head to
tail. Thus the mathematical description of stable forward
swimming in the lamprey corresponds to steady-state solu-
tions of Egs. 2-4 with ¢, < 0.

There are ascending and descending coupling functions
that can provide stable phase coupling

Little is known of the mechanisms underlying ascending
and descending coupling in the lamprey. However, without
specifying particular coupling functions H* and H ", the
mathematical framework allows us to investigate the prop-
erties of possible coupling functions, i.e., the conditions on
H* and H™ under which Egs. 2-4 have solutions corre-
sponding to the known properties of lamprey locomotion.

Kopell and Ermentrout (1986, 1988, 1990) have shown,
both analytically and numerically, that there is a large class
of coupling functions for which there are solutions that
behave like known biological networks, i.e., solutions with
stable, nonzero phase coupling between the oscillators.
This class of coupling functions has the following charac-
teristics:

i) There is a range of values of ¢ over which H*(¢) is
monotonically increasing and H (—¢) is monotonically
decreasing.
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ii) Within this range there are zero crossings for H*(¢)
and H™(—¢).

These properties lead to solutions of Egs. 2—4 with stable
phase coupling.
We define the zero-crossing phase values as follows:
¢r = intersegmental phase lag at which the zero crossing of
ascending coupling function occurs, i.e., H*(¢g) = 0
¢ = the intersegmental phase lag at which the zero cross-
ing of descending coupling function occurs, i.e.,
H™(=¢1) = 0.
We define another function f(¢) as the average of H*(¢)
and H (—¢), i.e.,

S(¢) = "H[H(¢) + H (=¢)]

We note by f'(¢), the first derivative of f'with respect to ¢.
The class of coupling functions then has the following ad-
ditional characteristic:

iii) at least one of the following holds

S(¢) <0 or fl¢r)>0

This condition again holds for a large class of coupling
functions. If the condition is not met, the phase lags along

—-n/4 0

FIG. 2. An example of a pair of ascending and descending coupling
functions H*(¢) and H (—¢) that have the 5 necessary characteristics (see
text). A: coupling functions H*(¢) and H (—¢) and f(¢) for ¢ over the
entire range from —= to +x. The dotted lines enclose the range of ¢ over
which the conditions are met, i.e., the range over which a stable solution to
Egqs. 2-4 can occur. B: same coupling functions for ¢ from —=n/4 to +n/4,
showing the zero crossing points, ¢, and ¢g. Solid line represents H*(¢);
dashed line, H (—¢); broken line, f(¢). The coupling functions used are

H*(¢) = 1.1 sin(¢ + 7/50) and H (—¢) = —sin (¢ + 7/6)
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the cord could be zero and thus would not match what is
seen in the lamprey.

In Fig. 2 is shown one example of a pair of functions
H*(¢) and H (—¢) that have these three properties.

Swimming frequency and intersegmental phase lag
depend on characteristics of ascending
and descending coupling

It has been shown mathematically that the intersegmen-
tal phase lags (¢x), which occur in the solution to Egs. 2-4
are approximately equal for all k except within a boundary
layer at the rostral or caudal end (Kopell and Ermentrout
1986, 1990). This boundary layer is quite small if 7 is large
(~20). In other words, the intersegmental phase delay is
constant along the cord, except for a segment or two at one
end or the other.

It can be shown that the value taken by the intersegmen-
tal phase lag ¢, (except for k near 1 or #n) is near the zero
crossing of either the ascending or descending coupling
function. Which value it is near, ¢; or ¢r, depends on the
relative magnitudes of each coupling function at the zero
crossing of the other. If |H*(¢.)| > | H (—¢gr)|, the value
of the intersegmental phase lag ¢, becomes approximately
¢r, the zero crossing of the ascending coupling. Thus in
this case it is the ascending coupling that determines the
intersegmental phase lag, and we say that the ascending
coupling “dominates.” If, on the other hand, | H (—¢r)| >
| H*(¢1)| then descending coupling dominates and the in-
tersegmental phase lag is approximately ¢p. If
|H (—¢r)| = |H*(¢L)| then the phase lags need not be
uniform down the cord and would be very sensitive to
small changes in coupling and local differences in fre-
quency (Kopell and Ermentrout 1990). Within the context
of this theory, the uniformity of the intersegmental phase
lags along the lamprey spinal cord and their stability indi-
cates that one of the two coupling functions is dominant.

Thus, under our hypotheses, the steady-state chain of
oscillators operates with phase lags nearly equal to the zero
crossing of the dominant coupling. One of the terms in Eq.
3 is then very small. If the ascending coupling dominates,
for large n, the ensemble frequency then becomes approxi-
mately

Q=w+ H (—¢r) (5)

If the descending coupling dominates, it becomes approxi-
mately

Q=0+ H"(¢) (6)

The experiments reported here suggest that ascending cou-
pling dominates in the lamprey spinal CPG.

Entrainment experiments provide information
about intersegmental coupling

Movement-generated sensory feedback (Grillner et al.
1982a) may contribute to the control of the relative timing
between neural activation and the development of curva-
ture during swimming (Williams et al. 1989). In the in vitro
spinal cord, imposed movement can entrain the centrally
generated rhythm (Grillner et al. 1981). Such entrainment
by mechanosensory feedback occurs locally, at the point
where the bending is applied, and the intersegmental coor-
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dinating system is responsible for the entrainment of the
rest of the spinal cord (McClellan and Sigvardt 1988). Thus
it has been possible in the present study to gain information
about intersegmental coupling from an investigation of
some of the properties of entrainment.

METHODS

Preparation

Experiments were performed on spinal cords from nine adult
lampreys (Ichthyomyzon unicuspis). Animals were anesthetized
in tricaine methylsulphate. The 50 segments of spinal cord/noto-
chord just caudal to the last gill slit were removed and placed in a
Sylgard-lined preparation dish in lamprey saline, cooled to
7-9°C. The notochord under segments 5-7, 18-20, 30-32, and
43-45 was pinned firmly to the bottom of the dish (see Fig. 3).
Experiments were performed on the entire 50-segment piece, after
which the preparation was cut between segments 25 and 26, and
experiments performed on both the rostral and the caudal 25-seg-
ment piece. In the 50-segment piece, saline-filled glass electrodes
were placed on ventral roots 8, 15, 25, 34, and 42. In the 25-seg-
ment pieces, an additional electrode was placed on a ventral root
between the rostral or caudal two electrodes (see Fig. 3). For each
animal, up to six experiments were performed: rostral and then
caudal forcing of the 50-segment piece, rostral and caudal forcing
of the rostral 25-segment piece, and rostral and caudal forcing of
the caudal 25-segment piece.

Experimental protocol

In each experiment the arm of a Gould servocontrolled pen
motor was attached to one of the free ends of the particular spinal
cord/notochord piece under study. Fictive locomotion was in-
duced by the addition of 0.5 mM D-glutamate to the bathing
solution. The end of the preparation attached to the motor arm
was moved side to side by driving the motor with a sinusoidal
electric signal. During such imposed movement, ventral root ac-
tivity and the output of the servomotor representing the move-
ment were recorded. For each experiment, the highest and lowest
frequencies were determined for which one-to-one entrainment
could be maintained for at least 30 cycles, and these frequencies
were taken as the limits of the entrainment range. Before each
experiment, control activity (no movement) was recorded, and
the rest rate determined. Approximately 100 cycles of activity for
each experimental condition were analyzed by the use of either
Cambridge Electronic Devices or RC Electronics software. Cycle
periods and phase lags from movement to the midpoint of the
ventral root bursts were determined.

Caudadl

:)Forcing
i 34 38 42

Caudal 25

Rostral
Forcing

811 15
Rostral 25

FIG. 3. Diagram of the in vitro lamprey spinal cord preparation. The
activity in several ventral roots from a 50-segment piece of spinal cord was
recorded while either the rostral or caudal free end of the preparation was
moved from side to side. After measurements of the entrainment ranges,
the 50-segment piece of cord was cut in the middle, and the experiments
repeated on both the rostral and caudal 25 segments.
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FIG. 4. Entrainment of ventral root activity of a 50-segment piece of spinal cord entrained by side-to-side movements of
the caudal end of the spinal cord/notochord at 0.8 Hz. The rest rate for this spinal cord preparation was 0.7 Hz. Leff: activity
recorded from 5 ventral roots (vr) along the cord is entrained one to one with the movement. Top right: phase lag from
movement to the midpoint of the ventral root burst in vr 42 is ~0.4 throughout the 100 cycles of recorded activity. Solid line
represents the mean phase lag; dashed line, one standard deviation about the mean. Bottom right: frequency histogram

shows the preferred phase lag is between 0.35 and 0.40.

RESULTS

Figure 4 illustrates data collected during an experiment
with a 50-segment piece on which bending was imposed at
segment 45. It can be seen that the activity recorded from
each of the five ventral roots is entrained and that the
rostral-caudal delay characteristic of locomotion is pre-
served. The phase lag from the movement to the ventral
root burst remains relatively constant over the 100 cycles of
activity as shown plotted against time and in a phase histo-

1 k—1 k

The entrainment of lamprey spinal cord activity by movement at the caudal end as represented by a chain of

FIG. 5.

gram in Fig. 4. Similar phase plots were obtained for all
frequencies in all experiments reported.

Mechanical entrainment of the lamprey spinal cord
in vitro corresponds mathematically to a
forced chain of oscillators

We now add a forcing function Hi(¢y) to our equations,
where ¢y is the phase lag between the imposed movement
and the local oscillator. This function is added to the first

k+ 1 n

oscillators, the last oscillator of which is forced by a periodic forcing function, He.
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equation, for forcing at the rostral end, or to the nth equa-
tion, for forcing at the caudal end (Fig. 5).
Caudal forcing

Q=w+ H'(¢)
Q=0+ H(¢) + H(=¢1)

Rostral forcing
Q= w+ H'(¢)) + H¢dm)
Q=w+H'(¢) + H(—¢))

Q=0+ H () + H (—¢-1) Q=w+ H(¢) + H (=x-1)

Q=00+ H(¢pp-1) + H (=)
Q=w+ H (—¢p-1) + HHdm)

Q=w+ H+(¢n7|) + H_(_¢n~2)
Q=w+ H (~¢n1)

As in the unforced case, we have n equations in # vari-
ables. We have introduced an extra variable, ¢y, the phase
lag between the movement and the local oscillator. How-
ever, the ensemble frequency € is no longer unknown; it is
set by the frequency of the applied movement.

Compared with the equations for the unforced chain
(Egs. 2-4), it is easier to see how the equations for the
forced chain are satisfied for given values of the intrinsic
frequency w and the imposed frequency Q. For example—
for caudal forcing—if we are within the frequency range for
which entrainment can occur (i.e., where the equations
have a solution), we can understand the steady-state solu-
tion as follows.

The first equation (for caudal forcing) has only one vari-
able ¢, which will take on the value for which H*(¢) =
Q — w. This value of ¢, then determines the value of
H™(—¢,) in Eq. 2 and, therefore, the value required for
H*(¢,) and of ¢,. The values of ¢, up to ¢,_, are deter-
mined similarly. This leaves the nth equation, which now
determines the value of ¢p.

The above description applies to the steady state, and not
to the “on transient.” When the motor is turned on, the
effect of forcing is felt first at the segment forced, and the
effects work their way along the chain until the steady state
is reached.

Theory predicts and data show that there is a range
of frequencies over which fictive locomotion
can be entrained by imposed movement

Expansion of the mathematical framework to allow for
forcing of chains of oscillators requires that the coupling
functions have two additional characteristics (Kopell et al.
1990a).

We note by f"(¢), the second derivative of ¢.

iv) In the range in which H*(¢) is monotonically in-
creasing and H ~(—¢) is monotonically decreasing (e.g., Fig.

2),/"(¢) # 0.

This is a condition of nonlinearity. Because H*(¢),
H™(—¢), and f(¢) are periodic, they must be nonlinear.
Condition iv) specifies that the sign of the dominant non-
linearity does not change over the relevant interval. This is
true for a large class of coupling functions.

v) Within the range over which H"(¢) is monotonically
increasing and H ~(—¢) is monotonically decreasing, there
must be two values of ¢ for which f(¢) = f(¢1) and two for
which f(¢) = f(¢r).

TABLE 1. Summary of entrainment ranges
Entrainment
Rates
Expt. No. Forcing Rest Rate, Hz Low High
KT2
Whole cord Rostral forcing 0.56 0.58 0.70
Caudal forcing 0.50 0.48 0.58
Rostral cord Rostral forcing 0.80 0.72 0.84
Caudal cord Caudal forcing 0.75 0.70 0.98
KT3
Whole cord Caudal forcing 0.80 0.78 0.89
Rostral cord Caudal forcing 0.80 0.94 1.02
Caudal cord Rostral forcing 0.80 0.74 1.02
Caudal forcing 0.70 0.82 1.00
KT4
Whole cord Rostral forcing 0.55 0.55 0.64
Caudal forcing 0.60 0.45 0.80
Rostral cord Rostral forcing 0.55 0.56 0.66
Caudal forcing 0.40 0.20 0.34
Caudal cord Rostral forcing 0.60 0.56 0.64
Caudal forcing 0.60 0.34 0.86
KT5
Whole cord Rostral forcing 0.65 0.56 0.80
Rostral cord Rostral forcing 0.60 0.86 1.00
Caudal forcing 0.55 0.38 0.66
Caudal cord Rostral forcing 0.85 0.86 1.00
Caudal forcing 0.85 0.84 1.08
KT7
Whole cord Rostral forcing 0.80 0.82 0.90
Caudal forcing 0.85 0.76 0.86
Rostral cord Rostral forcing 0.60 0.68 0.72
Caudal forcing 0.65 0.34 0.94
Caudal cord Rostral forcing 0.65 0.54 0.76
Caudal forcing 0.65 0.64 0.94
KT8
Whole cord Rostral forcing 0.30 0.26 0.38
Caudal forcing 0.33 0.32 0.50
Rostral cord Rostral forcing 0.50 0.46 0.54
Caudal forcing 0.45 0.34 0.48
Caudal cord Rostral forcing 0.38 0.50 0.70
KT9
Whole cord Rostral forcing 0.55 0.65 0.72
Caudal forcing 0.55 0.57 0.68
Rostral cord Rostral forcing 0.80 0.75 0.86
Caudal forcing 0.70 0.35 1.00
Caudal cord Rostral forcing 0.75 0.61 0.98
Caudal forcing 0.75 0.56 1.20
KT10
Whole cord Rostral forcing 0.60 0.66 0.80
Caudal forcing 0.70 0.70 0.90
Rostral cord Rostral forcing 0.90 0.95 1.15
Caudal forcing 1.00 0.65 1.65
Caudal cord Rostral forcing 0.90 0.86 1.35
Caudal forcing 0.90 0.84 1.50
KTI11
Whole cord Rostral forcing 0.85 0.92 1.00
Caudal forcing 0.85 0.87 1.15
Caudal cord Rostral forcing 1.00 0.99 1.30
Caudal forcing 1.00 0.82 1.70

As shown by Kopell, Ermentrout, and Williams (1990a),
this condition is necessary to allow the chain of oscillators
to be forced over the large frequency ranges seen in the
present experiments. If v) is not met and the chain is long,
the range of entrainment is vanishingly small for forcing at
one of the ends. These conditions hold for the functions
illustrated in Fig. 2.
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FIG. 6. Dependence of size of entrainment range on length of cord.
The 50-segment cord is compared with the 25-segment cord in which
bending was applied at the same place, segment 45. Averaged data from
experiments listed in Table 1. n = 8.

It should be noted that the equations can be solved for
individual coupling functions that do not satisfy the above
conditions. It has been shown, however, that such coupling
functions need not in general lead to uniform phase lags
along the cord (Kopell et al. 1990a).

In the mathematical description of forced chains of
oscillators (Kopell et al. 1990a), the limits of the entrain-
ment frequency range depend on the number of oscillators
in the chain (n), whether ascending or descending coupling
dominates, and on whether f"(¢) is greater or less than zero
[see hypothesis iv)].

In Table 1 is shown the entrainment ranges for all exper-
iments.

It can be shown mathematically that the greater the
number of oscillators in the chain, the smaller is the en-
trainment frequency range. This prediction has been con-
firmed experimentally, as shown in Fig. 6.

According to the mathematics, it is possible to entrain
both above and below the rest frequency at one end but
only above or below at the other end (depending on
whether f” is greater or less than zero; see hypothesis iv).
The data confirm this: with rostral forcing it is not possible
to entrain at frequencies below the rest frequency. With
caudal forcing, it is possible to entrain both above and
below the rest rate. This is illustrated in Fig. 7. Statistical
analysis of the data listed in Table 1 reveals that for rostral
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forcing, the lower limit of the entrainment is not signifi-
cantly different from the rest rate (¢ = 0.24, P = 0.81) but
that for caudal forcing, the lower limit is different from the
rest rate (f = 3.41, P = 0.0025).

The mathematics show that if the ascending coupling
dominates, it is possible to entrain both above and below
the rest frequency when forcing at the caudal end, but not
at the rostral end. Thus, in the context of this theory, the
data imply that the ascending coupling dominates.

Theory and results predict sign of nonlinearity in coupling

According to the theory, if f” > 0, the rest rate provides a
lower limit for entrainment at one or the other end of the
cord (depending on which coupling dominates). For exam-
ple, if ascending coupling dominates, it is possible to en-
train above but not below the rest rate at the rostral end. In
contrast, if /7 < 0, the rest rate would provide an upper
limit for entrainment.

Since the data of Fig. 7 show that it is possible to entrain
above but not below the unforced frequency at the rostral
end, the theory suggests that f” > 0. For all but some
special classes of coupling functions, this nonlinearity indi-
cates that the coupling of the oscillators slows down the
oscillators, i.e., that the intrinsic frequency of each local
oscillator (w) is higher than the ensemble frequency of the
chain (Q). However, there are examples in which this non-
linearity is consistent with having the intrinsic frequency
lower than the ensemble frequency (Ermentrout and Ko-
pell, unpublished observations).

The theory and results predict differences between
ascending and descending coupling other than strength

The ascending coupling H*(¢) and the descending cou-
pling H (¢) may be considered as two separate coupling
systems, which in principle can be entirely unrelated. Each
alone would produce a traveling wave; H*(¢) would pro-
duce a wave with phase lag ¢, and H (¢) one with phase
lag ¢ . If it were the case that ascending and descending
coupling differed only in strength, i.e., H*(¢) were a con-
stant times H (¢), it would follow from the definitions of
¢ and ¢r that ¢; = —¢r. That is, the waves produced by
either coupling alone have the same wavelength but travel
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FIG. 7. Natural frequency provides the lower
bound of the entrainment range for rostral forc-
1 ing, whereas with caudal forcing entrainment can
occur both above and below the natural fre-
quency. Data from experiments listed in Table 1.
Natural frequency has been subtracted from the
upper and lower limits of the entrainment range
and divided by the rest rate. Hence zero repre-
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between the lower limit of the entrainment range
for rostral versus caudal forcing is statistically sig-
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in opposite directions. This is true because the two one-way
coupling functions exert their effects in opposite directions.

The data described in this paper are not compatible with
H*(¢) a multiple of H (¢), by the following reasoning: if
the ascending coupling function dominates, the wave is
determined by ¢g. Because the wave in the lamprey travels
rostral to caudal, we conclude that ¢r < 0. But it follows
from Kopell and Ermentrout (1990) that if H*(¢) is a mul-
tiple of H™(¢) and f"(¢) > 0, then ¢ < ¢r; this contradicts
¢L = —¢r if pr < 0. Therefore H*(¢) in our system cannot
be a multiple of H(¢), i.e., they must differ in some way
other than strength alone.

The functions used in Fig. 2 are consistent with the data.
Note that H~(—¢) has a zero crossing ¢, that is also nega-
tive, with ¢ < ¢r. Such a function H (—¢), alone, would
produce a wave rostral to caudal, i.e., in the same direction
as that induced by H*(¢), not the opposite direction.

DISCUSSION
Interaction of theory and experiment

In this paper we have shown that a general mathematical
framework for coupled oscillators can be tailored by exper-
imental evidence to create a good model of the lamprey
spinal locomotor CPG. Each constraint of the model
within the mathematical framework is supported by the
anatomy and/or behavior of the spinal cord. The model
has allowed conclusions to be drawn about intersegmental
coordination in the lamprey spinal cord, without the ne-
cessity for detailed knowledge of the cells and their interac-
tions.

Experiments such as those reported here yield quantita-
tive data and are relatively easy to perform but without a
theoretical framework, it is difficult to see what such data
may reveal about the underlying neural network. For ex-
ample, the experiments clearly show that for rostral forcing
the natural frequency of the cord provides the lower limit
of the entrainment frequency range. This result tells us
nothing without the mathematical framework, but within
the framework it tells us that the ascending coupling is
dominant and sets the intersegmental phase lag.

The mathematics also places in a more formal context
results that may appear intuitively reasonable, for example,
that the greater the number of oscillators in the chain, the
smaller is the entrainment frequency range.

In the theoretical framework, the lamprey CPG has been
modeled as a chain of discrete oscillators. In the vertebrate
spinal cord, however, there is no anatomic evidence for the
existence of unit segmental oscillators (as in the leech, for
example). The ventral roots exit the cord regularly, reflect-
ing the segmentation of the musculature, but this does not
reflect segmentation of motoneurons or interneurons
within the cord. The cells exist instead as rostral-caudal
columns. Current theoretical work investigates the condi-
tions under which an unsegmented array of oscillators can
behave as a discrete chain (Ermentrout and Kopell 1990a).

In this study we have also assumed that there is only
nearest-neighbor coupling; this is probably not the case in
the lamprey (Cohen 1987a; Rovainen 1985). For an un-
forced chain, inclusion in the mathematical framework of
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multiple coupling over several segments has been shown
not to change the basic conclusions of the theory (Kopell et
al. 1990b). The corresponding work remains to be done for
forced chains. It is also important to discover the effects of
long-range coupling, i.e., coupling at a distance that is a
significant fraction of body length.

In the theory there is a requirement for the coupling
functions to be monotonically increasing within the oper-
ating range of ¢. [A monotonic decrease in H (—¢) over a
range ¢, to ¢, is equivalent to a monotonic increase in
H~(¢) over the range —¢, to —¢;.] Such a condition also
exists in phase-response curve (PRC) theory (Perkel et al.
1964), which deals with one-way coupling only and is
closely related to a special case of the general mathematical
framework considered here. PRC theory has been success-
fully applied to the metachronal waves of crayfish swim-
merets, for example (Stein 1976). PRC theory cannot be
used in the lamprey because it is clear that the coupling is
both ascending and descending. Because it is known that
mechanical entrainment occurs locally (McClellan and
Sigvardt 1988), the ability to entrain the entire spinal cord
by mechanical forcing at either end implies that both as-
cending and descending coupling exist. Further indirect
evidence of the bidirectionality of the coupling has been
reported (Cohen 1987a; Dale 1986; Rovainen 1985).

The general model of intersegmental coordination pre-
sented here should be useful for gaining insights into the
mechanisms underlying intersegmental coordination in
other systems that can be modeled as chains of oscillators
such as the crayfish swimmeret system (Stein 1976), leech
heartbeat (Calabrese and Peterson 1983), leech swimming
(Pearce and Friesen 1988), and the oscillators coordinating
the hip, knee, and ankle during vertebrate locomotion
(Grillner 1985).

Leech swimming, like lamprey swimming, results from a
rostral-caudal wave of activation along the length of the
cord. However, unlike lamprey swimming, the phase lags
are not constant along the cord. Pearce and Friesen (1988)
have recently developed a model for the production of in-
tersegmental coordination during swimming in the leech.
Although the model is a numerical simulation and, there-
fore, not directly comparable to the one presented here, it
incorporates some of the same features: /) the oscillators
are described in terms of frequency and phase; 2) both
ascending and descending coupling signals are incorpo-
rated; 3) the assumption used by Pearce and Friesen (1988)
of multiple coupling pulses active during a particular por-
tion of the cycle is equivalent to the method of averaging
used in our model; 4) models of experiments involving
changes in coupling strength result in phase transitions
similar to those found both in our experimental and theo-
retical work (Sigvardt and Kopell, unpublished observa-
tions).

The coordination of the rear-to-front peristaltic form of
the leech heartbeat relies at least in part on inhibitory post-
synaptic potentials (IPSPs) from unidentified heart inter-
neurons [HN(X)] cells that arrive in rostral-caudal order
onto the excitatory neurons to the heart muscle (Calabrese
and Peterson 1983). However, neither quantitative analysis
of phasing nor modeling of how this phasing may result
from known connections has been done.
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Coupling functions govern intersegmental delay and
ensemble frequency

Indirect evidence has been provided for ascending and
descending propriospinal interneurons capable of inducing
or entraining oscillations at a distance (Cohen 1987a; Dale
1986; McClellan and Sigvardt 1988; Rovainen 1985).
However, there is otherwise no experimental data con-
cerning mechanisms for intersegmental coupling in the
lamprey. In the mathematical framework the constraints
on the coupling functions are those that result in activity
with stable, nonzero phase coupling between oscillators;
1.e., stable lamprey swimming. These constraints then tell
us how the intersegmental coordinating system could be
designed to produce stable swimming.

The observation that the spinal cord can be entrained
within a substantial range of frequencies by forcing at ei-
ther the rostral or the caudal end provides a significant
mathematical constraint on the system. Not all chains of
oscillators behave in this way. In particular, if hypothesis v)
is violated, the range of entrainment is vanishingly small
for forcing at one of the ends of the cord. Examples of
systems in which v) is violated may be constructed using
coupling in which H*(¢) and H (¢) are “tuned” to have
(L) = (¢r), so that both H*(¢) and H (¢) give the same
traveling wave (Kopell et al. 1990a). Systems satisfying our
hypotheses can be entrained over a substantial range of
frequencies by forcing at either end.

In the absence of forcing, the system operates at a phase
lag near the zero crossing of the dominant coupling func-
tion. “Dominance” of ascending coupling does not imply
that the coupling signals in the ascending direction are
stronger. Indeed, the functions H*(¢) and H ~(¢) need not
be related at all, so we cannot speak of their relative ampli-
tudes. [In the special case that H*(¢) is a multiple of H (¢),
the coupling with the larger amplitude is dominant. We
have argued above that this special case is not relevant.]
However, it was shown by Kopell, Ermentrout, and Wil-
liams (1990a) that there is a simple characterization of
dominance in terms of the effect of the coupling on the
emergent frequency of the network, as we shall now de-
scribe.

Since the effect of the dominant coupling on the ensem-
ble frequency is near zero at the resultant phase lag, the
ensemble frequency is approximately equal to the intrinsic
frequency plus the effect of the nondominant coupling at
that phase lag (see Egs. 5 and 6). Using H*(¢) and H (¢) as
possible dominant couplings, we then get two possible en-
semble frequencies. The actual dominant coupling turns
out to be the one for which the ensemble frequency is the
closer of the two possibilities to the intrinsic frequency. It
then follows that the dominant coupling sets the interseg-
mental phase lag, whereas the nondominant coupling de-
termines how much the ensemble frequency differs from
the intrinsic frequency.

The dominance of ascending intersegmental coupling
may reflect a greater need for mechanical feedback near the
caudal end. In the lamprey, the mechanical wave arises
near the head and travels toward the tail so that errors in
the relative timing between activation and movement
would grow progressively worse in the more caudal regions
in the absence of feedback. By this reasoning, it is more
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important for feedback from caudal regions to have an
entrainment range that goes both above and below the rest
rate. The dominance of ascending over descending cou-
pling provides this.

To have a traveling wave, the phase lag as set by the
ascending coupling function must not be zero. According
to the theory, therefore, the zero crossing (¢r), must not be
at the origin. This property can, therefore, be considered a
constraint on evolution for the production of non-
synchronous coupling by neural networks.

The lamprey can swim over a range of swimming speeds
(corresponding to a range of frequencies). The rostral-cau-
dal delay in activation increases in proportion to the cycle
length so that the intersegmental phase lag is independent
of frequency. In the mathematical framework the coupling
functions were assumed to be dependent only on phase
difference (¢), independent of either the intrinsic frequency
w, or the ensemble frequency Q. In consequence, the inter-
segmental phase lags are also independent of frequency, as
in the swimming lamprey. This contrasts with phase lags
produced by synaptic or conduction delays that do not
scale with frequency. For phase constant swimming, the
ascending and descending interneuronal coupling systems
must therefore be designed to produce this frequency inde-
pendence.

Strategies for modeling neural systems

Traditional neurophysiological techniques, such as sin-
gle-cell or multiple-cell recordings and anatomic and phar-
macologic studies, can provide detailed information about
the properties of cells and their connections. However, for
multicellular networks, the amount of detail and its normal
variability are so great that the detail can obscure the es-
sential features of the system that underlie its function. To
deduce the relationship between the structure and the
function of the particular neural network, a theoretical
framework is essential. Such a theoretical framework or
model allows one to organize the large quantities of infor-
mation and separate the patterns of structure that are es-
sential to the network’s function from those that may vary
without functional significance.

Such modeling activities can be approached in many
complementary ways, none of which alone is wholly ade-
quate. One method is to build “realistic’” models, which
incorporate as much detail as is known and to guess other
parameters. One drawback of this data-dominated strategy
is that the equations can then approach in complexity the
original system. Furthermore, the result need not yield
much insight into the mechanisms of the emergent behav-
ior. At the other extreme are very abstract methodologies
that begin with many simplifying and/or generalizing as-
sumptions. The resulting models are removed from the
original biological setting to render them mathematically
pliant. As a result it is often hard to compare the predic-
tions with experiment. Although such models may offer
insight into how the function might be performed, it is
usually impossible to assert that this is how it is performed
in the biological system.

We have adopted an intermediate strategy: investigate a
large collection of possible models that taken together form
a theoretical framework. Within this general framework,
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we have tried to make only those simplifications that can
be justified on biological grounds and have then deduced,
by analytical means, which details are important in gener-
ating the known biological behavior. Such interplay be-
tween theory and experiment is bidirectional: data collec-
tion can be restricted to parameters that have been shown
to be functionally relevant, and theoretical analysis can be
directed toward revealing experimental methods for testing
alternative assumptions. When theory and experiment are
related in this interactive, mutually constraining way, those
features of the neural network that are vital to its function
may be more easily revealed.
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