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SUMMARY AND CONCLUSIONS 

1. This paper reports the results of an investigation of the basic 
mechanisms underlying intersegmental coordination in lamprey 
locomotion, by the use of a combined mathematical and biologi- 
cal approach. 

2. Mathematically, the lamprey central pattern generator 
(CPG) is described as a chain of coupled nonlinear oscillators; 
experimentally, entrainment of fictive locomotion by imposed 
movement has been investigated. Interpretation of the results in 
the context of the theory has allowed conclusions to be drawn 
about the nature of ascending and descending coupling in the 
lamprey spinal CPG. 

3. Theory predicts and data show that 1) the greater the num- 
ber of oscillators in the chain, the smaller is the entrainment 
frequency range and 2) it is possible to entrain both above and 
below the rest frequency at one end but only above or below at the 
other end. 

4. In the context of the experimental results, the theory indi- 
cates the following: 1) ascending coupling sets the intersegmental 
phase lags, whereas descending coupling changes the frequency of 
the coupled oscillators; 2) there are differences in the ascending 
and descending coupling other than strength; and it also suggests 
that 3) coupling slows down the oscillators. 

INTRODUCTION 

One approach to the investigation of mechanisms un- 
derlying central pattern generation has been to analyze cel- 
lular and network properties and to use this information to 
understand how the system works. This approach has been 
successful with invertebrate preparations, such as leech 
(Calabrese and Peterson 1983; Kristan and Weeks 1983), 
Tritonia (Getting 1983), and lobster (Marder and Meyrand 
1989; Selverston and Moulin 1986). The cellular approach 
to studying central pattern generation in vertebrates is, 
however, much more difficult because of the large number 
of cells and connections that must be identified. Nonethe- 
less, the cellular approach has been successful in simple 
vertebrate systems for elucidating the mechanisms of basic 
rhythm generation and left-right coordination (Xenopus 
embryo, Roberts et al. 1986; lamprey spinal cord, Alford 
and Williams 1989; Grillner et al. 1988). There is, however, 
no understanding of the mechanisms underlying interseg- 
mental coordination. Even in simple invertebrate systems, 
the behavior of the network is not always easily explained 
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on the basis of the properties of the component neurons 
(Marder 1989). Similarly, in vertebrates, even if the details 
of the network were known, the complexity might not 
allow one to understand the emergent properties of the 
system. 

In this paper we present a different approach. We shall 
use a general mathematical treatment of coupled nonlinear 
oscillators developed by Kopell and Ermentrout (1986, 
1988, 1990). First we will describe the mathematical frame- 
work as it relates to what is known about the lamprey 
spinal cord. Then we will present the results of experiments 
designed to test and refine the theory. This interaction be- 
tween mathematics and biology has allowed us to reach 
conclusions about some properties of intersegmental coor- 
dination in the lamprey spinal cord. 

Lamprey locomotor CPG can be described as a 
single chain ofcoupled nonlinear oscillators 

Swimming in the lamprey is characterized by rhythmic 
bursts of activity in ventral roots, which alternate left and 
right and have a rostral-caudal intersegmental delay of 
- 1% of a cycle per segment. The phase lag is independent 
of cycle frequency (which determines swimming speed). 
The centrally generated pattern of ventral root activity re- 
corded during fictive locomotion in the isolated spinal cord 
is the same as that seen in the intact swimming animal 
(Wallen and Williams 1984). The networks producing this 
oscillation are distributed along the cord, since as few as 
two segments taken from anywhere along the cord can 
produce oscillatory behavior (Grillner et al. 1982b). During 
stable fictive locomotion, the frequency is uniform along 
the cord, and the phase relationships between segments are 
constant; i.e., the oscillators are coupled (Stein 1974). Thus 
the CPG for lamprey locomotion can be described as a 
chain of coupled oscillators, with the activity recorded 
from the ventral roots representing the motor output of the 
oscillator chain. 

Following experimental perturbation of fictive locomo- 
tion, the activity resumes its original oscillatory behavior 
within a few cycles (see, for example, Fig. 2 in McClellan 
and Sigvardt 1988; Fig. 5 in Rovainen 1985). Such behav- 
ior is characteristic of nonlinear oscillators with strongly 
attracting limit cycles (Hirsch and Smale 1974). Having a 
limit cycle means that for a given level of activation, there 
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is a fixed rhythmic pattern of neural activity; when the 
oscillator is perturbed the activity may change, but when 
the perturbation is removed, it returns to its original fre- 
quency and pattern. Only a nonlinear oscillator can have a 
limit cycle; the fact that the pattern goes back to normal 
within a cycle or two means the limit cycle is strongly 
attracting. 

Our general mathematical framework considers a single 
chain of coupled oscillators (Kopell and Ermentrout 1986, 
1988, 1990). The spinal cord would be more precisely 
modeled as a double chain of oscillators, corresponding to 
the left and right sides of the cord. However, since the 
left-right coordination is strictly antiphasic, the model con- 
siders each segment as a single oscillator with an output to 
both the left and the right sides. The double chain can be 
shown to have the same behavior as a single chain. 

Each oscillator in the chain can be thought of as a net- 
work of neurons having three kinds of output: I) the moto- 
neuron activity that activates the muscles and that can be 
recorded from the ventral roots; 2) the ascending interseg- 
mental coupling signals, whereby one oscillator affects its 
rostra1 neighbor; and 3) the descending coupling signals, 
which affect the more caudal oscillator in the chain. The 
observed intersegmental phase lag is a result of the inter- 
segmental coupling. The ventral root output can be mea- 
sured but not the ascending and descending coupling sig- 
nals, since the neurons involved have not been identified. 
In this study we show how a mathematical analysis of the 
effects of perturbing the system with externally applied 
movement allows conclusions to be drawn about the as- 
cending and descending coupling. 

Each oscillator can be described by a 
single dependent variable 0 (t) 

The output of each oscillator depends on the interactions 
of all its component neurons. For a particular frequency, 
ok, the kth oscillator has a particular behavior (its limit 
cycle). A complete description of this behavior could be 
given by a set of equations describing the properties of all 
the neural elements as functions of time. All these equa- 
tions would be periodic, with the same overall frequency, 
wk, corresponding to the swimming cycle period, 7k. At any 
time, t, between 0 and Tk, there will be a set of values for all 
these properties, representing the state of the oscillator at 
that time in its progression through the cycle. 

Such detailed properties are not known. The power of 
our general mathematical approach is that it allows us to 
study some characteristics of the intersegmental coordinat- 
ing system without knowing the detailed properties of the 

network. We can replace this ensemble of variables by a 
single variable @k(t), representing the state of the kth oscil- 
lator at time t and corresponding to its progression through 
the cycle. @k takes on values from 0 to 2~ as t goes from 0 to 
Tk, the cycle period. 

The instantaneous frequency of the oscillator is given by 
d@,/dt = k),Q 

Efict of coupling between two oscillators depends 
on their phase dlflerence 

In the mathematical framework developed by Kopell 
and Ermentrout (1986, 1988, 1990), the kth oscillator can 
affect the instantaneous frequency of its rostra1 or caudal 
neighbor, dOk-,/dt or dOk+I/dt. The effect of one oscillator 
on another depends on how far each has progressed 
through its cycle, i.e., the effect of oscillator k on oscillator 
k + 1 depends on @k and @k+l. Similarly, the effect of 
oscillator k on oscillator k - 1 will depend on @k and @k-l. 

It has been shown (Sanders and Verhulst 1985) that if the 
effect of one oscillator on the instantaneous frequency of 
another is averaged over the entire cycle, then this effect 
can be expressed as a function of the phase difference be- 
tween the two oscillators, rather than on the OS indepen- 
dently. This averaging technique has been shown to be 
valid if the coupling signals are dispersed around the cycle 
rather than occurring at only one or two points within the 
cycle (Ermentrout and Kopell 1990b). For example, the 
averaging technique can be used if there are as few as three 
signals during a cycle as long as the signals are evenly 
spaced around the cycle. This seems a reasonable assump- 
tion for vertebrate locomotor CPGs, since the oscillatory 
activity is likely to be produced by a network of neurons, 
active in different phases of the cycle. Either these neurons 
and/or their postsynaptic elements can be expected to par- 
ticipate in the coupling. Furthermore, it has been shown 
that if the coupling signals are not so dispersed, then the 
network may not oscillate and can, for example, lock into 
tonic activity or silence (Ermentrout and Kopell 1990a). 
Therefore the stability of the oscillation can itself be taken 
as evidence that the coupling signals are dispersed through 
the cycle and that the effect of coupling can be expressed as 
a function of phase difference only. 

The frequency of the kth oscillator can thus be repre- 
sented by 

dek/dt = wk + fi?+(@k+l - @k) + H-(&m1 - @k) (1) 

where H+, the ascending coupling function, and H-, the 
descending coupling function, depend only on the phase 
difference between the coupled oscillators (see Fig. 1). 

FIG. 1. 

k- 1 k+ 1 
Lamprey spinal cord represented as a chain of coupled nonlinear oscillators. Each oscillator sends signals to its 

n 

rostra1 neighbor via ascending fibers and to its caudal neighbor via descending 
ascending and descending coupling functions H+(4) and H-(-4), respectively. 

fibers. These signals are represented by the 
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The behavior of the chain of coupled oscillators corresponds ii) Within this range there are zero crossings for H+(4) 
to the solution of a set of dlflerential equations and H-(-4). 

During stable swimming all the oscillators in the chain 
are entrained to the same frequency. In the mathematical 
formulation this is equivalent to the requirement that 
dOJdt for all k be equal to some ensemble frequency Q. It 
is known that in the lamprey there can be substantial ex- 
perimental variation in o along the cord, but there is no 
systematic variation (Cohen 1987b). As an approximation 
we assume that at a given speed of swimming all the oscil- 
lators in the chain have the same intrinsic frequency, O. 

The intersegmental phase lag, i.e., the difference in phase 
between adjacent oscillators, will be represented by qjk = 
Ok+1 - @k. From this definition it follows that $,+I = @k - 
@k- 1 and thus that @ksl - @k = -$k- l . Substituting in Eq. 1, 
and adding equations for the first and nth oscillator, the 
behavior of the network during stable swimming can be 
described by 

Q = 0 + H+(&) (2) 
Q = w + H+(c#Q) + H-(-t#Q-1) 1 < k < n (3) 

Q = w + H-(-q&& (4) 

For a given value of intrinsic frequency W, this constitutes n 
equations in n variables (& , . . . , &-I$ 0). 

The most rostra1 oscillator is affected only by ascending 
coupling (Eq. 2) and the most caudal one only by descend- 
ing coupling (Eq. 4). The minus sign before @k-l in Eqs. 3 
and 4 results from the fact that for both coupling functions, 
the phase delay is taken (by convention) as the difference 
between the phase of the oscillator sending the coupling 
signals and the oscillator receiving them (see Eq. 1). Be- 
cause $k was defined as the phase advance from an oscilla- 
tor to its more caudal neighbor, 4 < 0 corresponds to a 
rostral-caudal delay, i.e., activity traveling from head to 
tail. Thus the mathematical description of stable forward 
swimming in the lamprey corresponds to steady-state solu- 
tions of Eqs. 2-4 with @k < 0. 

There are ascending and descending coupling functions 
that can provide stable phase coupling 

Little is known of the mechanisms underlying ascending 
and descending coupling in the lamprey. However, without 
specifying particular coupling functions H+ and H-, the 
mathematical framework allows us to investigate the prop- 
erties of possible coupling functions, i.e., the conditions on 
H+ and H- under which Eqs. 2-4 have solutions corre- 
sponding to the known properties of lamprey locomotion. 

Kopell and Ermentrout (1986, 1988, 1990) have shown, 
both analytically and numerically, that there is a large class 
of coupling functions for which there are solutions t.hat 
behave like known biological networks, i.e., solutions with 
stable, nonzero phase coupling between the oscillators. 
This class of coupling functions has the following charac- 
teristics: 

i) There is a range of values of 4 over which H+(4) is 
monotonically increasing and H-( -4) is monotonically 

These properties lead to solutions of Eqs. 2-4 with stable 
phase coupling. 

We define the zero-crossing phase values as follows: 
@R = intersegmental phase lag at which the zero crossing of 

ascending coupling function occurs, i.e., H+(4& = 0 
@L = the intersegmental phase lag at which the zero cross- 

ing of descending coupling function occurs, i.e., 
H-(-tiL) = 0. 

We define another function f(4) as the average of H+(#) 
and H-(-+), i.e., 

f(6) = 1wf+(4) + m-&l 

We note by f ‘($), the first derivative off with respect to 4. 
The class of coupling functions then has the following ad- 
ditional characteristic: 

iii) at least one of the following holds 
f’kh) < 0 or  f’@R) ’ 0  

This condition again holds for a large class of coupling 
functions. If the condition is not met, the phase lags along 

0 
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FIG. 2. An example of a pair of ascending and descending coupling 
functions H+(4) and H-(-6) that have the 5 necessary characteristics (see 
text). A: coupling functions H+(4) and H-(-4) and f(4) for 6 over the 
entire range from -7r to +K. The dotted lines enclose the range of 4 over 
which the conditions are met, i.e., the range over which a stable solution to 
Eqs. 2-4 can occur. B: same coupling functions for 4 from -s/4 to +s/4, 
showing the zero crossing points, & and 4R. Solid line represents H+(4); 
dashed line, H-( -4); broken line, f(4). The coupling functions used are 

decreasing. H+(6) = 1.1 sin (4 + r/50) and H-(-@I) = -sin (4 + ?r/6) 
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the cord could be zero and thus would not match what is 
seen in the lamprey. 

In Fig. 2 is shown one example of a pair of functions 
H+(4) and H-(-4) that have these three properties. 

Swimming frequency and intersegmental phase lag 
depend on characteristics of ascending 
and descending coupling 

It has been shown mathematically that the intersegmen- 
tal phase lags (&), which occur in the solution to Eqs. 2-4 
are approximately equal for all k except within a boundary 
layer at the rostra1 or caudal end (Kopell and Ermentrout 
1986, 1990). This boundary layer is quite small if n is large 
(-20). In other words, the intersegmental phase delay is 
constant along the cord, except for a segment or two at one 
end or the other. 

It can be shown that the value taken by the intersegmen- 
tal phase lag $k (except for k near 1 or n) is near the zero 
crossing of either the ascending or descending coupling 
function. Which value it is near, & or 4R, depends on the 
relative magnitudes of each coupling function at the zero 
crossing of the other. If 1 H+(&) 1 > 1 H-(-&) 1, the value 
of the intersegmental phase lag $k becomes approximately 
&, the zero crossing of the ascending coupling. Thus in 
this case it is the ascending coupling that determines the 
intersegmental phase lag, and we say that the ascending 
coupling “dominates.” If, on the other hand, I H-(-&) I > 
I H+(&) I then descending coupling dominates and the in- 
tersegmental phase lag is approximately &,. If 
I H-(-&) I = I H+@J~) I then the phase lags need not be 
uniform down the cord and would be very sensitive to 
small changes in coupling and local differences in fre- 
quency (Kopell and Ermentrout 1990). Within the context 
of this theory, the uniformity of the intersegmental phase 
lags along the lamprey spinal cord and their stability indi- 
cates that one of the two coupling functions is dominant. 

Thus, under our hypotheses, the steady-state chain of 
oscillators operates with phase lags nearly equal to the zero 
crossing of the dominant coupling. One of the terms in Eq. 
3 is then very small. If the ascending coupling dominates, 
for large n, the ensemble frequency then becomes approxi- 
mately 

fi = w + H-(-4& (5) 
If the descending coupling dominates, it becomes approxi- 
mately 

i-l = w + Ii?+(&) (6) 
The experiments reported here suggest that ascending cou- 
pling dominates in the lamprey spinal CPG. 

Entrainment experiments provide information 
about intersegmental coupling 

Movement-generated sensory feedback (Grillner et al. 
1982a) may contribute to the control of the relative timing 
between neural activation and the development of curva- 
ture during swimming (Williams et al. 1989). In the in vitro 
spinal cord, imposed movement can entrain the centrally 
generated rhythm (Grillner et al. 198 1). Such entrainment 
by mechanosensory feedback occurs locally, at the point 
where the bending is applied, and the intersegmental coor- 

dinating system is responsible for the entrainment of the 
rest of the spinal cord (McClellan and Sigvardt 1988). Thus 
it has been possible in the present study to gain information 
about intersegmental coupling from an investigation of 
some of the properties of entrainment. 

METHODS 

Preparation 
Experiments were performed on spinal cords from nine adult 

lampreys (Ichthyomyzon unicuspis). Animals were anesthetized 
in tricaine methylsulphate. The 50 segments of spinal cord/noto- 
chord just caudal to the last gill slit were removed and placed in a 
Sylgard-lined preparation dish in lamprey saline, cooled to 
7-9OC. The notochord under segments 5-7, 18-20, 30-32, and 
43-45 was pinned firmly to the bottom of the dish (see Fig. 3). 
Experiments were performed on the entire 50-segment piece, after 
which the preparation was cut between segments 25 and 26, and 
experiments performed on both the rostra1 and the caudal25-seg- 
ment piece. In the 50-segment piece, saline-filled glass electrodes 
were placed on ventral roots 8, 15, 25, 34, and 42. In the 25-seg- 
ment pieces, an additional electrode was placed on a ventral root 
between the rostra1 or caudal two electrodes (see Fig. 3). For each 
animal, up to six experiments were performed: rostra1 and then 
caudal forcing of the 50-segment piece, rostra1 and caudal forcing 
of the rostra1 25-segment piece, and rostra1 and caudal forcing of 
the caudal25-segment piece. 

Experimental protocol 
In each experiment the arm of a Gould servocontrolled pen 

motor was attached to one of the free ends of the particular spinal 
cord/notochord piece under study. Fictive locomotion was in- 
duced by the addition of 0.5 mM D-glutamate to the bathing 
solution. The end of the preparation attached to the motor arm 
was moved side to side by driving the motor with a sinusoidal 
electric signal. During such imposed movement, ventral root ac- 
tivity and the output of the servomotor representing the move- 
ment were recorded. For each experiment, the highest and lowest 
frequencies were determined for which one-to-one entrainment 
could be maintained for at least 30 cycles, and these frequencies 
were taken as the limits of the entrainment range. Before each 
experiment, control activity (no movement) was recorded, and 
the rest rate determined. Approximately 100 cycles of activity for 
each experimental condition were analyzed by the use of either 
Cambridge Electronic Devices or RC Electronics software. Cycle 
periods and phase lags from movement to the midpoint of the 
ventral root bursts were determined. 

I  es* I  I  *a. I  

"I 8 1 1 15 111 ‘I’ 34 38 42111 
Rostra1 25 Caudal 25 

FIG. 3. Diagram of the in vitro lamprey spinal cord preparation. The 
activity in several ventral roots from a 50-segment piece of spinal cord was 
recorded while either the rostra1 or caudal free end of the preparation was 
moved from side to side. After measurements of the entrainment ranges, 
the 50-segment piece of cord was cut in the middle, and the experiments 
repeated on both the rostra1 and caudal 25 segments. 
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FIG. 4. Entrainment of ventral root activity of a 50-segment piece of spinal cord entrained by side-to-side movements of 
the caudal end of the spinal cord/notochord at 0.8 Hz. The rest rate for this spinal cord preparation was 0.7 Hz. Left: activity 
recorded from 5 ventral roots (vr) along the cord is entrained one to one with the movement. Top right: phase lag from 
movement to the midpoint of the ventral root burst in vr 42 is -0.4 throughout the 100 cycles of recorded activity. Solid line 
represents the mean phase lag; dashed line, one standard deviation about the mean. Bottom right: frequency histogram 
shows the preferred phase lag is between 0.35 and 0.40. 

RESULTS gram in Fig. 4. Similar phase plots were obtained for all 
Figure 4 illustrates data collected during an experiment frequencies in all experiments reported. 

with a 50-segment piece on which bending was imposed at 
segment 45. It can be seen that the activity recorded from 
each of the five ventral roots is entrained and that the 
rostral-caudal delay characteristic of locomotion is pre- 

Mechanical entrainment of the lamprey spinal cord 
in vitro corresponds mathematically to a 
forced chain of oscillators 

served. The phase lag from the movement to the ventral We now add a forcing function HF(&) to our equations, 
root burst remains relatively constant over the 100 cycles of where 4M is the phase lag between the imposed movement 
activity as shown plotted against time and in a phase histo- and the local oscillator. This function is added to the first 

1 k- 1 k k+ 1 n 
FIG. 5. The entrainment of lamprey spinal cord activity by movement at the caudal end as represented by a chain of 

oscillators, the last oscillator of which is forced by a periodic forcing function, HF. 
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equation, for forcing at the rostra1 end, or to the nth 
tion, for forcing at the caudal end (F g i . 5) . 

Rostra1 forcing Caudal forcing 

fl = w + H+(h) + HF@M) cl 

f2 = w + H+(&) + H-(-&) f-2 
H+(h) 
H+(b) + H-C- 

=0+ 
=a+ 

. . 
i-2 = w + H+(&) + H-(-&-l) 52 = o + H+(&) + H-(-c#Q-~) 

Q = w + H+(&; + H-(-c#+~) Q = w i H+($+J + H-(-c#+& 
Q = w + H-(-&-J Q = o + H-(-4,-,) + HF(@M) 

equa- TABLE 1. Summary of entrainment ranges 

Expt. No. Forcing Rest Rate, Hz Low High 

As in the unforced case, we have n equations in n vari- 
ables. We have introduced an extra variable, &, the phase 
lag between the movement and the local oscillator. How- 
ever, the ensemble frequency Q is no longer unknown; it is 
set by the frequency of the applied movement. 

Compared with the equations for the unforced chain 
(Eqs. 2-4), it is easier to see how the equations for the 
forced chain are satisfied for given values of the intrinsic 
frequency w and the imposed frequency Q. For example- 
for caudal forcing- if we are within the frequency range for 
which entrainment can occur (i.e., where the equations 
have a solution), we can understand the steady-state solu- 
tion as follows. 

The first equation (for caudal forcing) has only one vari- 
able & , which will take on the value for which H+(4) = 
Q- O. This value of & then determines the value of 
H-(-cQ in Eq. 2 and, therefore, the value required for 
H+(&) and of &. The values of & up to &-1 are deter- 
mined similarly. This leaves the nth equation, which now 
determines the value of &. 

The above description applies to the steady state, and not 
to the “on transient.” When the motor is turned on, the 
effect of forcing is felt first at the segment forced, and the 
effects work their way along the chain until the steady state 
is reached. 

Theory predicts and data show that there is a range 
offrequencies over which fictive locomotion 
can be entrained by imposed movement 

Expansion of the mathematical framework to allow for 
forcing of chains of oscillators requires that the coupling 
functions have two additional characteristics (Kopell et al. 
1990a). 

We note by f”(4), the second derivative of 4. 

iv) In the range in which H+(4) is monotonically in- 
creasing and H-( -4) is monotonically decreasing (e.g., Fig. 
2),f’W + 0. 

This is a condition of nonlinearity. Because H+(4), 

Entrainment 
Rates 

KT2 
Whole cord 

Rostra1 cord 
Caudal cord 

KT3 
Whole cord 
Rostra1 cord 
Caudal cord 

KT4 
Whole cord 

Rostra1 cord 

Caudal cord 

KT5 
Whole cord 
Rostra1 cord 

Caudal cord 

KT7 
Whole cord 

Rostra1 cord 

Caudal cord 

KT8 
Whole cord 

Rostra1 cord 

Caudal cord 

KT9 
Whole cord 

Rostra1 cord 

Caudal cord 

KTlO 
Whole cord 

Rostra1 cord 

Caudal cord 

KTll 
Whole cord 

Caudal cord 

Rostra1 forcing 0.56 0.58 0.70 
Caudal forcing 0.50 0.48 0.58 
Rostra1 forcing 0.80 0.72 0.84 
Caudal forcing 0.75 0.70 0.98 

Caudal forcing 0.80 0.78 0.89 
Caudal forcing 0.80 0.94 1.02 
Rostra1 forcing 0.80 0.74 1.02 
Caudal forcing 0.70 0.82 1 .oo 

Rostra1 forcing 0.55 0.55 0.64 
Caudal forcing 0.60 0.45 0.80 
Rostra1 forcing 0.55 0.56 0.66 
Caudal forcing 0.40 0.20 0.34 
Rostra1 forcing 0.60 0.56 0.64 
Caudal forcing 0.60 0.34 0.86 

Rostra1 forcing 0.65 0.56 0.80 
Rostra1 forcing 0.60 0.86 1 .oo 
Caudal forcing 0.55 0.38 0.66 
Rostra1 forcing 0.85 0.86 1 .oo 
Caudal forcing 0.85 0.84 1.08 

Rostra1 forcing 0.80 0.82 0.90 
Caudal forcing 0.85 0.76 0.86 
Rostra1 forcing 0.60 0.68 0.72 
Caudal forcing 0.65 0.34 0.94 
Rostra1 forcing 0.65 0.54 0.76 
Caudal forcing 0.65 0.64 0.94 

Rostra1 forcing 0.30 0.26 0.38 
Caudal forcing 0.33 0.32 0.50 
Rostra1 forcing 0.50 0.46 0.54 
Caudal forcing 0.45 0.34 0.48 
Rostra1 forcing 0.38 0.50 0.70 

Rostra1 forcing 0.55 0.65 0.72 
Caudal forcing 0.55 0.57 0.68 
Rostra1 forcing 0.80 0.75 0.86 
Caudal forcing 0.70 0.35 1 .oo 
Rostra1 forcing 0.75 0.61 0.98 
Caudal forcing 0.75 0.56 1.20 

Rostra1 forcing 0.60 0.66 0.80 
Caudal forcing 0.70 0.70 0.90 
Rostra1 forcing 0.90 0.95 1.15 
Caudal forcing 1 .oo 0.65 1.65 
Rostra1 forcing 0.90 0.86 1.35 
Caudal forcing 0.90 0.84 1.50 

Rostra1 forcing 
Caudal forcing 
Rostra1 forcing 
Caudal forcing 

0.85 
0.85 
1 .oo 
1 .oo 

0.92 
0.87 
0.99 
0.82 

1 .oo 
1.15 
1.30 
1.70 

H-(39, and fb?9 are periodic, they must be nonlinear. 
Condition iv) specifies that the sign of the dominant non- 
linearity does not change over the relevant interval. This is As shown by Kopell, Ermentrout, and Williams (1990a), 
true for a large class of coupling functions. this condition is necessary to allow the chain of oscillators 

to be forced over the large frequency ranges seen in the 
v) Within the range over which H+(4) is monotonically present experiments. If v) is not met and the chain is long, 

increasing and H-( -4) is monotonically decreasing, there the range of entrainment is vanishingly small for forcing at 
must be two values of 4 for whichf(@) =f(&) and two for one of the ends. These conditions hold for the functions 
WhiChfW = f (dd* illustrated in Fig. 2. 
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Caudal forcing at segment 45 

50 segments caudal 25 segments 

FIG. 6. Dependence of size of entrainment range on length of cord. 
The 50-segment cord is compared with the 2%segment cord in which 
bending was applied at the same place, segment 45. Averaged data from 
experiments listed in Table 1. n = 8. 

It should be noted that the equations can be solved for 
individual coupling functions that do not satisfy the above 
conditions. It has been shown, however, that such coupling 
functions need not in general lead to uniform phase lags 
along the cord (Kopell et al. 1990a). 

In the mathematical description of forced chains of 
oscillators (Kopell et al. 1990a), the limits of the entrain- 
ment frequency range depend on the number of oscillators 
in the chain (n), whether ascending or descending coupling 
dominates, and on whetherf”(@ is greater or less than zero 
[see hypothesis iv)]. 

In Table 1 is shown the entrainment ranges for all exper- 
iments. 

It can be shown mathematically that the greater the 
number of oscillators in the chain, the smaller is the en- 
trainment frequency range. This prediction has been con- 
firmed experimentally, as shown in Fig. 6. 

According to the mathematics, it is possible to entrain 
both above and below the rest frequency at one end but 
only above or below at the other end (depending on 
whether f’ is greater or less than zero; see hypothesis iv). 
The data confirm this: with rostra1 forcing it is not possible 
to entrain at frequencies below the rest frequency. With 
caudal forcing, it is possible to entrain both above and 
below the rest rate. This is illustrated in Fig. 7. Statistical 
analysis of the data listed in Table 1 reveals that for rostra1 

50 

hR c- -25 
'LJ 

-50 

Rostra1 Forcing 50 

25 

-25 

-50 

forcing, the lower limit of the entrainment is not signifi- 
cantly different from the rest rate (t = 0.24, P = 0.81) but 
that for caudal forcing, the lower limit is different from the 
rest rate (t = 3.41, P = 0.0025). 

The mathematics show that if the ascending coupling 
dominates, it is possible to entrain both above and below 
the rest frequency when forcing at the caudal end, but not 
at the rostra1 end. Thus, in the context of this theory, the 
data imply that the ascending coupling dominates. 

Theory and results predict sign of nonlinearity in coupling 

According to the theory, iff’ > 0, the rest rate provides a 
lower limit for entramment at one or the other end of the 
cord (depending on which coupling dominates). For exam- 
ple, if ascending coupling dominates, it is possible to en- 
train above but not below the rest rate at the rostra1 end. In 
contrast, if fN < 0, the rest rate would provide an upper 
limit for entrainment. 

Since the data of Fig. 7 show that it is possible to entrain 
above but not below the unforced frequency at the rostra1 
end, the theory suggests that f V > 0. For all but some 
special classes of coupling functions, this nonlinearity indi- 
cates that the coupling of the oscillators slows down the 
oscillators, i.e., that the intrinsic frequency of each local 
oscillator (w) is higher than the ensemble frequency of the 
chain (Q). However, there are examples in which this non- 
linearity is consistent with having the intrinsic frequency 
lower than the ensemble frequency (Ermentrout and Ko- 
pell, unpublished observations). 

The theory and results predict d$erences between 
ascending and descending coupling other than strength 

The ascending coupling H+(4) and the descending cou- 
pling H-(4) may be considered as two separate coupling 
systems, which in principle can be entirely unrelated. Each 
alone would produce a traveling wave; H+(4) would pro- 
duce a wave with phase lag &, and H-(4) one with phase 
lag &. If it were the case that ascending and descending 
coupling differed only in strength, i.e., H+(4) were a con- 
stant times H-(4), it would follow from the definitions of 
tiL and & that & = -&. That is, the waves produced by 
either coupling alone have the same wavelength but travel 

Caudal Forcing 

7 

FIG. 7. Natural frequency provides the lower 
bound of the entrainment range for rostra1 forc- 
ing, whereas with caudal forcing entrainment can 
occur both above and below the natural fre- 
quency. Data from experiments listed in Table 1. 
Natural frequency has been subtracted from the 
upper and lower limits of the entrainment range 
and divided by the rest rate. Hence zero repre- 
sents the natural frequency. Each symbol repre- 
sents the mean and standard error of the mean for 
each condition. “All data” represent the average 
of the 3 conditions for either rostra1 or caudal 
forcing. Filled circles, upper end of entrainment 
range; filled triangles, lower end. The difference 
between the lower limit of the entrainment range 
for rostra1 versus caudal forcing is statistically sig- 
nificant (t = 3.35, P = 0.002). 50 rostra1 caudal all 

segments 25 25 data 
50 rostra1 caudal all 

segments 25 25 data 
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in opposite directions. This is true because the two one-way 
coupling functions exert their effects in opposite directions. 

The data described in this paper are not compatible with 
H+(4) a multiple of H-(4), by the following reasoning: if 
the ascending coupling function dominates, the wave is 
determined by &. Because the wave in the lamprey travels 
rostra1 to caudal, we conclude that & < 0. But it follows 
from Kopell and Ermentrout (1990) that if H+(4) is a mul- 
tiple of H-(4) andf”(@) > 0, then & < @R; this contradicts 
4L = -& if & < 0. Therefore H+(4) in our system cannot 
be a multiple of H-(6), i.e., they must differ in some way 
other than strength alone. 

The functions used in Fig. 2 are consistent with the data. 
Note that H-(-4) has a zero crossing 4L that is also nega- 
tive, with $L < @R. Such a function H-(-q!& alone, would 
produce a wave rostra1 to caudal, i.e., in the same direction 
as that induced by H+(4), not the opposite direction. 

DISCUSSION 

Interaction of theory and experiment 

In this paper we have shown that a general mathematical 
framework for coupled oscillators can be tailored by exper- 
imental evidence to create a good model of the lamprey 
spinal locomotor CPG. Each constraint of the model 
within the mathematical framework is supported by the 
anatomy and/or behavior of the spinal cord. The model 
has allowed conclusions to be drawn about intersegmental 
coordination in the lamprey spinal cord, without the ne- 
cessity for detailed knowledge of the cells and their interac- 
tions. 

Experiments such as those reported here yield quantita- 
tive data and are relatively easy to perform but without a 
theoretical framework, it is difficult to see what such data 
may reveal about the underlying neural network. For ex- 
ample, the experiments clearly show that for rostra1 forcing 
the natural frequency of the cord provides the lower limit 
of the entrainment frequency range. This result tells us 
nothing without the mathematical framework, but within 
the framework it tells us that the ascending coupling is 
dominant and sets the intersegmental phase lag. 

The mathematics also places in a more formal context 
results that may appear intuitively reasonable, for example, 
that the greater the number of oscillators in the chain, the 
smaller is the entrainment frequency range. 

In the theoretical framework, the lamprey CPG has been 
modeled as a chain of discrete oscillators. In the vertebrate 
spinal cord, however, there is no anatomic evidence for the 
existence of unit segmental oscillators (as in the leech, for 
example). The ventral roots exit the cord regularly, reflect- 
ing the segmentation of the musculature, but this does not 
reflect segmentation of motoneurons or interneurons 
within the cord. The cells exist instead as rostral-caudal 
columns. Current theoretical work investigates the condi- 
tions under which an unsegmented array of oscillators can 
behave as a discrete chain (Ermentrout and Kopell 1990a). 

In this study we have also assumed that there is only 
nearest-neighbor coupling; this is probably not the case in 
the lamprey (Cohen 1987a; Rovainen 1985). For an un- 
forced chain, inclusion in the mathematical framework of 

multiple coupling over several segments has been shown 
not to change the basic conclusions of the theory (Kopell et 
al. 1990b). The corresponding work remains to be done for 
forced chains. It is also important to discover the effects of 
long-range coupling, i.e., coupling at a distance that is a 
significant fraction of body length. 

In the theory there is a requirement for the coupling 
functions to be monotonically increasing within the oper- 
ating range of 4. [A monotonic decrease in H-(-4) over a 
range & to $2 is equivalent to a monotonic increase in 
H-(@) over the range -& to -&.I Such a condition also 
exists in phase-response curve (PRC) theory (Perkel et al. 
1964), which deals with one-way coupling only and is 
closely related to a special case of the general mathematical 
framework considered here. PRC theory has been success- 
fully applied to the metachronal waves of crayfish swim- 
merets, for example (Stein 1976). PRC theory cannot be 
used in the lamprey because it is clear that the coupling is 
both ascending and descending. Because it is known that 
mechanical entrainment occurs locally (McClellan and 
Sigvardt 1988), the ability to entrain the entire spinal cord 
by mechanical forcing at either end implies that both as- 
cending and descending coupling exist. Further indirect 
evidence of the bidirectionality of the coupling has been 
reported (Cohen 1987a; Dale 1986; Rovainen 1985). 

The general model of intersegmental coordination pre- 
sented here should be useful for gaining insights into the 
mechanisms underlying intersegmental coordination in 
other systems that can be modeled as chains of oscillators 
such as the crayfish swimmeret system (Stein 1976) leech 
heartbeat (Calabrese and Peterson 1983), leech swimming 
(Pearce and Friesen 1988), and the oscillators coordinating 
the hip, knee, and ankle during vertebrate locomotion 
(Grillner 1985). 

Leech swimming, like lamprey swimming, results from a 
rostral-caudal wave of activation along the length of the 
cord. However, unlike lamprey swimming, the phase lags 
are not constant along the cord. Pearce and Friesen (1988) 
have recently developed a model for the production of in- 
tersegmental coordination during swimming in the leech. 
Although the model is a numerical simulation and, there- 
fore, not directly comparable to the one presented here, it 
incorporates some of the same features: 1) the oscillators 
are described in terms of frequency and phase; 2) both 
ascending and descending coupling signals are incorpo- 
rated; 3) the assumption used by Pearce and Friesen (1988) 
of multiple coupling pulses active during a particular por- 
tion of the cycle is equivalent to the method of averaging 
used in our model; 4) models of experiments involving 
changes in coupling strength result in phase transitions 
similar to those found both in our experimental and theo- 
retical work (Sigvardt and Kopell, unpublished observa- 
tions). 

The coordination of the rear-to-front peristaltic form of 
the leech heartbeat relies at least in part on inhibitory post- 
synaptic potentials (IPSPs) from unidentified heart inter- 
neurons [HN(X)] cells that arrive in rostral-caudal order 
onto the excitatory neurons to the heart muscle (Calabrese 
and Peterson 1983). However, neither quantitative analysis 
of phasing nor modeling of how this phasing may result 
from known connections has been done. 
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Coupling functions govern intersegmental delay and 
ensemble frequency 

Indirect evidence has been provided for ascending and 
descending propriospinal interneurons capable of inducing 
or entraining oscillations at a distance (Cohen 1987a; Dale 
1986; McClellan and Sigvardt 1988; Rovainen 1985). 
However, there is otherwise no experimental data con- 
cerning mechanisms for intersegmental coupling in the 
lamprey. In the mathematical framework the constraints 
on the coupling functions are those that result in activity 
with stable, nonzero phase coupling between oscillators; 
i.e., stable lamprey swimming. These constraints then tell 
us how the intersegmental coordinating system could be 
designed to produce stable swimming. 

The observation that the spinal cord can be entrained 
within a substantial range of frequencies by forcing at ei- 
ther the rostra1 or the caudal end provides a significant 
mathematical constraint on the system. Not all chains of 
oscillators behave in this way. In particular, if hypothesis v) 
is violated, the range of entrainment is vanishingly small 
for forcing at one of the ends of the cord. Examples of 
systems in which v) is violated may be constructed using 
coupling in which H+(4) and H-(4) are “tuned” to have 
(&) = (&), so that both H+(4) and H-(4) give the same 
traveling wave (Kopell et al. 1990a). Systems satisfying our 
hypotheses can be entrained over a substantial range of 
frequencies by forcing at either end. 

In the absence of forcing, the system operates at a phase 
lag near the zero crossing of the dominant coupling func- 
tion. “Dominance” of ascending coupling does not imply 
that the coupling signals in the ascending direction are 
stronger. Indeed, the functions H+(4) and H-(4) need not 
be related at all, so we cannot speak of their relative ampli- 
tudes. [In the special case that H+($) is a multiple of H-(4), 
the coupling with the larger amplitude is dominant. We 
have argued above that this special case is not relevant.] 
However, it was shown by Kopell, Ermentrout, and Wil- 
liams (1990a) that there is a simple characterization of 
dominance in terms of the effect of the coupling on the 
emergent frequency of the network, as we shall now de- 
scribe. 

Since the effect of the dominant coupling on the ensem- 
ble frequency is near zero at the resultant phase lag, the 
ensemble frequency is approximately equal to the intrinsic 
frequency plus the effect of the nondominant coupling at 
that phase lag (see Eqs. 5 and 6). Using H+(4) and H-(6) as 
possible dominant couplings, we then get two possible en- 
semble frequencies. The actual dominant coupling turns 
out to be the one for which the ensemble frequency is the 
closer of the two possibilities to the intrinsic frequency. It 
then follows that the dominant coupling sets the interseg- 
mental phase lag, whereas the nondominant coupling de- 
termines how much the ensemble frequency differs from 
the intrinsic frequency. 

The dominance of ascending intersegmental coupling 
may reflect a greater need for mechanical feedback near the 
caudal end. In the lamprey, the mechanical wave arises 
near the head and travels toward the tail so that errors in 
the relative timing between activation and movement 
would grow progressively worse in the more caudal regions 
in the absence of feedback. By this reasoning, it is more 

important for feedback from caudal regions to have an 
entrainment range that goes both above and below the rest 
rate. The dominance of ascending over descending cou- 
pling provides this. 

To have a traveling wave, the phase lag as set by the 
ascending coupling function must not be zero. According 
to the theory, therefore, the zero crossing (&), must not be 
at the origin. This property can, therefore, be considered a 
constraint on evolution for the production of non- 
synchronous coupling by neural networks. 

The lamprey can swim over a range of swimming speeds 
(corresponding to a range of frequencies). The rostral-cau- 
da1 delay in activation increases in proportion to the cycle 
length so that the intersegmental phase lag is independent 
of frequency. In the mathematical framework the coupling 
functions were assumed to be dependent only on phase 
difference (&, independent of either the intrinsic frequency 
O, or the ensemble frequency Q. In consequence, the inter- 
segmental phase lags are also independent of frequency, as 
in the swimming lamprey. This contrasts with phase lags 
produced by synaptic or conduction delays that do not 
scale with frequency. For phase constant swimming, the 
ascending and descending interneuronal coupling systems 
must therefore be designed to produce this frequency inde- 
pendence. 

Strategies for modeling neural systems 
Traditional neurophysiological techniques, such as sin- 

gle-cell or multiple-cell recordings and anatomic and phar- 
macologic studies, can provide detailed information about 
the properties of cells and their connections. However, for 
multicellular networks, the amount of detail and its normal 
variability are so great that the detail can obscure the es- 
sential features of the system that underlie its function. To 
deduce the relationship between the structure and the 
function of the particular neural network, a theoretical 
framework is essential. Such a theoretical framework or 
model allows one to organize the large quantities of infor- 
mation and separate the patterns of structure that are es- 
sential to the network’s function from those that may vary 
without functional significance. 

Such modeling activities can be approached in many 
complementary ways, none of which alone is wholly ade- 
quate. One method is to build “realistic” models, which 
incorporate as much detail as is known and to guess other 
parameters. One drawback of this data-dominated strategy 
is that the equations can then approach in complexity the 
original system. Furthermore, the result need not yield 
much insight into the mechanisms of the emergent behav- 
ior. At the other extreme are very abstract methodologies 
that begin with many simplifying and/or generalizing as- 
sumptions. The resulting models are removed from the 
original biological setting to render them mathematically 
pliant. As a result it is often hard to compare the predic- 
tions with experiment. Although such models may offer 
insight into how the function might be performed, it is 
usually impossible to assert that this is how it is performed 
in the biological system. 

We have adopted an intermediate strategy: investigate a 
large collection of possible models that taken together form 
a theoretical framework. Within this general framework, 
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we have tried to make onlv those simnlifications that can neurones in the spinal cord of the lamprey. Brain Res. 235: 169-173, 

be justified on biological grounds andlhave then deduced, 1982a. 

by analytical means, which details are important in gener- GRILLNER, S., MCCLELLAN, A., SIGVARDT, K. A., WALL~N, P., AND 

ating the known biological behavior. Such interplay be- 
WILLIAMS, T. On the neural generation of “fictive locomotion” in a 
lower vertebrate nervous system, in vitro. In: Brain Stem Control of 

tween theory and experiment is bidirectional: data collec- Spinal Mechanisms, edited by Bengt Sjolund and Anders Bjorklund, 
tion can be restricted to parameters that have been shown New York: Elsevier, 1982b, p. 273-295. 

to be functionally relevant, and theoretical analysis can be HIRSCH, M. W. AND SMALE, S. Dtjerential Equations, Dynamical Sys- 

directed toward revealing experimental methods for testing 
terns, and Linear Algebra. New York: Academic, 1974. 

K 
alternative assumptions. When theory and experiment are 

OPELL, N. AND ERMENTROUT, G. B. Symmetry and phaselocking in 
chains of weakly coupled oscillators. Comm. Pure Appl. Math. 39: 

related in this interactive, mutually constraining way, those 
features of the neural network that are vital to its function 
may be more easily revealed. 
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