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Abstract. A simulated neural network has been connec- 
ted to a simulated mechanical environment. The network 
is based on a model of the spinal central pattern gener- 
ator producing rhythmic swimming movements in the 
lamprey and the model is similar to that used in earlier 
simulations of fictive swimming. Here, the network has 
been extended with a model of how motoneuron activity 
is transformed via the muscles to mechanical forces. 
Further, these forces are used in a two-dimensional 
mechanical model including interaction with the sur- 
rounding water, giving the movements of the different 
parts of the body. Finally, these movements are fed back 
through stretch receptors interacting with the central 
pattern generator. The combined model provides a plat- 
form for various simulation experiments relating the cur- 
rently known neural properties and connectivity to the 
behavior of the animal in vivo. By varying a small set of 
parameters, corresponding to brainstem input to the 
spinal network, a variety of basic locomotor behaviors, 
like swimming at different speeds and turning can be 
produced. This paper describes the combined model and 
its basic properties. 

1 Introduction 

In order to understand the function of a neural network, 
it is generally not sufficient to know the properties of the 
neurons and the connectivity in detail. The character of 
the input and the output also plays a crucial role. Bio- 
logically characterized networks might not operate nat- 
urally without the proper environmental input. Further, 
this input is often dependent on network output, thus 
requiring a model of the environment in which the net- 
work operates. Formulating such an environment model, 
capable of providing a realistic feedback, becomes essen- 
tial when doing computer simulations of this kind of 
networks. When the network under study is connected 
more or less directly to muscular output and sensory 
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input, some representation of the mechanical environ- 
ment is needed. This requires modeling muscles and 
receptors, including their interaction with the neurons, as 
well as the mechanical environment, including relevant 
parts of the body (cf. Grillner 1981). 

In some experimental preparations, most of the 
neural communication with other subsystems can be 
disconnected, making it possible to study the behavior of 
the neural network in isolation. One such preparation is 
the isolated spinal cord of the lamprey, in which the 
central pattern generator producing rhythmic locomotor 
activity (swimming) can be activated despite the lack of 
both brainstem input and sensory feedback (Grillner et al. 
1981b; Brodin et al. 1985). During such fictive swimming, 
many characteristic features of real swimming may be 
preserved, e.g., the possibility to "swim" at different speeds 
and the phase shift of motoneuron output between differ- 
ent points along the cord (Wall6n and Williams 1984). 

One approach to realistic simulation of biologically 
characterized networks is to restrict the simulations to 
such isolated systems. Indeed, computer simulations of 
the lamprey central pattern generator have been success- 
ful in explaining most observations during fictive swimm- 
ing (Wall6n et al. 1992; Wadden et al. 1993) in terms of 
realistically simulated neurons (Ekeberg et al. 1991; 
Brodin et al. 1991) and a synaptic connectivity based on 
known connections from paired intracellular recordings 
(Grillner et al. 1991). However, restricting the use of 
realistic simulations only to model such isolated prepara- 
tions is not desirable. For example, in order to relate the 
simulated neuronal activity to normal swimming and 
also to study the role of the sensory feedback it is neces- 
sary to include some representation of the mechanical 
environment. 

Many general aspects of swimming behavior of 
fish have been studied (J. Gray 1933b; Lighthill 1969; 
Grillner and Kashin 1976; Webb and Weihs 1983). There 
are also similar studies directed more specifically towards 
the lamprey in particular (Wall6n and Williams 1984; 
Williams et al. 1989). The lamprey has a slender body 
without paired fins. It swims by propagating an undula- 
tory wave with increasing amplitude from head to tail. 
These undulations are caused by rhythmic motoneuronal 
activity alternating between the two sides of the spinal 
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cord (Grillner 1974). The alternations occur later at more 
caudal positions along the body, with a lag proportional 
to the distance between the points. Thus, a wave of 
motoneuronal  activity is produced which propagates 
caudally during normal  swimming. The phase lag be- 
tween any pair of points along the cord stays constant 
even when the speed of swimming changes. 

The aim of the current work has been to construct 
a model of the neural control of swimming that is suit- 
able for computer  simulation. This includes both the 
mechanical movements  and the neural control system. 
Mechanical models in connection with neural models 
have earlier been used to study, for example, the neural 
control of bipedal walking (Taga et al. 1991) and arm 
movements  (Kalveram 1991). In those studies, however, 
the neural component  was based on abstract oscillators 
or pattern generators rather than experimentally charac- 
terized neural networks. A mechanical model of how 
enforced muscle forces give rise to body movements in 
the swimming lamprey has also been formulated (Bowtell 
and Williams 1991). That  study, however, did not include 
any forces from the surrounding water. 

Here, the neural network model of the spinal central 
pattern generator is similar to that used in the simula- 
tions of fictive swimming in the lamprey. However, the 
model neurons are simpler and the network is also 
connected to a simulated mechanical environment. The 
neural network model has been extended with a mechan- 
ism by which motoneuron  activity can be transformed 
via the muscles to mechanical forces. These forces are 
used in a two-dimensional mechanical model of the body, 
taking the interaction with the surrounding water into 
account when computing the movements  of the different 
parts of the body. Finally, these movements  are fed back 
through stretch receptors interacting with the central 
pattern generator. 

2 The neural network model 

The system simulated consists of two main parts: the 
neural network and the mechanical system. The neural 
network model is based on earlier simulations using 
detailed cell models and an experimentally established 
connectivity (cf. Wall6n et al. 1992). In the present work, 
the individual model neurons have been simplified con- 
siderably while the connectivity is maintained. 

In the detailed simulations, a five-compartment 
model was used for each neuron. Voltage-dependent 
sodium, potassium and calcium ion conductances were 
calculated using equations of the Hodgkin-Huxley type. 
Intracellular calcium pools and calcium dependent 
potassium channels were also included. These model 
neurons are capable of producing realistic action poten- 
tials at various frequencies and also show effects like 
spike frequency adaptat ion (Ekeberg et al. 1990, 1991). 
Synaptic connections were modeled as t ransmembrane 
conductances and also included the voltage-sensitive N- 
methyl-D-aspartate (NMDA) receptors (Brodin et al. 1991). 

Here, a simplified model neuron was constructed to 
enable simulation of the rhythm-generating network of 

the entire spinal cord. A non-spiking model was chosen, 
in which each unit could be regarded as a representative 
of a population of functionally similar neurons. The 
output of each unit represents the mean firing frequency 
of the population. Measurements were made on the 
simulated neurons used in our earlier work (Ekeberg et 
al. 1991; Wall6n et al. 1992) and the results were used 
when designing the simplified model. Important  proper- 
ties like input-output relations and spike frequency ad- 
aptation were basically preserved. The special N M D A  
properties, known to be important  during slow swimm- 
ing (Brodin et al. 1985), were not included in order to 
keep the model simple. 

Simplified model neurons have earlier been used to 
study this neural system (Buchanan 1992). In that work, 
the model neurons displayed a qualitative behavior like 
real neurons, but no attempt was made to tune the model 
neuron parameters quantitatively. The model neurons 
used here are of similar complexity, but in addition they 
have been tuned to match the detailed neuron model 
used earlier. 

The model neuron used here acts primarily as 
a "leaky integrator" with a saturating transfer function 
(Fig. 1A). The excitatory and the inhibitory synaptic 

A Exciation   
Inhibition 

Adaptation 

B 

Fig. 1. A Basic mechanisms included in the neuron model. Excitatory 
and inhibitory synaptic inputs are added separately and subject to 
dendritic time delays. The excitatory input is transformed by the trans- 
fer function, while the inhibition is subtracted from the result. Adapta- 
tion is included as a delayed negative feedback. B Known connections 
between neurons of different types at the segmental level. The function 
of the network is briefly as follows: Excitatory interneurons (EIN) 
maintain activity ipsilaterally by exciting all the other cells; contra- 
lateral inhibitory interneurons (CCIN) suppress contralateral activity; 
lateral inhibitory interneurons (LIN) finally come in and terminate the 
ipsilateral activity. Motoneurons (MN) provide the output to the 
muscles, and edge cells (EC) are stretch-activated cells that excite the 
ipsilateral side and inhibit the contralateral side 
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inputs are added separately and are bo th  subject to 
a dendritic time delay with a time constant  zo. The 
excitatory input  is then t ransformed by a function which 
provides saturat ion at high levels of  excitatory input. The 
inhibitory input  is subtracted from the result. Spike fre- 
quency adapta t ion  is also included as a delayed negative 
feedback with another  time constant ,  rA. Negative final 
values give an output  of  zero. 

The delayed values for the excitatory synaptic input 
(~ + ), the inhibitory synaptic input (~_), and the neuron 
output  (0) are calculated from first-order differential 
equations: 

- -  U i W  i - -  ~ +  

T D  i + 

- -  U i W  i - -  ~_ ~ 
- T D  i - 

= I (u - 0) (i) 

Here, ~ + and }P_ are the sets of incoming excitatory and 
inhibitory synapses respectively, w~ is the strength of 
synapse i, and u~ is the output value from the correspond- 
ing presynaptic neuron. Now, the output from the model 
neuron is given by: 

f l 0 - e x p { ( O - ~ + ) F } - ~ _ - # 0  if positive 
u = otherwise (2) 

Here, O is a threshold for activation, F is a gain constant,  
and /~ controls  the level of  adaptat ion.  The max imum 
outpu t  has here been normalized to one by scaling the 
synaptic weights appropriately.  

The simulated neural ne twork  contains neurons of 
five different types: mo toneurons  (MN), excitatory inter- 
neurons (EIN), lateral inhibi tory interneurons (LIN), 
contralateral  inhibitory interneurons (CCIN), and 
stretch-sensitive edge cells (EC). Except  for the sensory 
edge cells, populat ions  of  neurons are modeled as de- 
scribed. The parameters  for each model  neuron  were 
tuned to match  the response characteristics of  the corres- 
pond ing  neuron type from the detailed simulations 
(Ekeberg et al. 1991; Wall6n et al. 1992). The resulting 
values are shown in Table 1. 

In  the earlier simulations, the neurons modeled in 
a realistic fashion were interconnected into a network in 
accordance  with experimentally established synapses 
(Fig. 1B). The synaptic parameters  were then tuned to 
produce  a behavior  consistent with that  observed 
dur ing fictive swimming (Wall6n et al. 1992). Here, the 
corresponding synapse parameters  were used to connect  
the simplified neurons in each segment. 

The segmental network as shown in Fig. 1B is 
repeated along the spinal cord. Here, 100 such segments 
are included, giving a total of  1000 neurons (only one EC 
on each side needs to be simulated, representing both  
excitatory and inhibitory EC). In addit ion to the segmen- 
tal connectivity, the neurons are also connected to neigh- 
bor ing segments along the spinal cord, but  the connect-  
ivity between segments is not  known in detail. Different 

mechanisms have been suggested to explain the constant  
phase lag seen between different points  a long the cord: 
locally increased excitability (Matsushima and Grillner 
1992) or  asymmetrical  coupling between segmental  oscil- 
lators (Williams 1992). The differences between the sug- 
gested mechanisms were not  addressed here. Rather,  an 
intermediate posit ion was taken by utilizing both  asym- 
metrical coupl ing and locally increased excitability. 

The synaptic output  f rom each neuron  is distributed 
to receiving neurons in nearby segments bo th  caudally 
and rostrally, using the same synaptic strength as within 
the segment. The extent of  this distr ibution is set individ- 
ually for each type of  connect ion,  roughly  based on the 
known extent of  the cor responding  projections in the 
lamprey. The extents used, in terms of  number  of  seg- 
ments, are given in Table 2 together  with the other  
synaptic parameters.  

This network is capable of  producing  a rhythmic  
pat tern of  activity at various frequencies when tonic 
brainstem input  is provided. Further,  coord ina ted  waves 
of  activity along the spinal cord are generated, in particu- 
lar when the tonic input to the five most  rostral segments 
is increased. This is in accordance  with experimental 

Table 1. Neuron parameters 

Neuron type O F zo # ~a 

EIN -0.2 1.8 30 ms 0.3 400 ms 
CCIN 0.5 1 20 ms 0.3 200 ms 
LIN 8 0.5 50 ms 0 - -  
MN 0.1 0.3 20 ms 0 - -  

EIN, Excitatory interneuron; CCIN, contralateral inhibitory inter- 
neuron; LIN, lateral inhibitory interneuron; MN, motoneuron 
For each neuron type, the parameters used in (1) and (2) are given: 
O, firing threshold; F, gain; zD, dendritic time constant;/~, adaptation; 
ZA, time constant of adaptation 

Table 2. Synapse parameters 

Pre synaptic Post synaptic Type Strength Rostral Caudal 
neuron neuron extent extent 

EIN EIN Ex 0.4 2 2 
EIN CCIN Ex 3 2 2 
EIN LIN Ex 13 5 5 
EIN MN Ex 1 5 5 

CCIN EIN Inh 2 1 10 
CCIN CCIN Inh 2 1 10 
CCIN LIN Inh 1 1 10 
CCIN MN Inh 2 5 5 

LIN CCIN Inh 1 5 5 

EC CCIN Inh 0.01 0 0 

Brainstem EIN Ex 2 - -  
Brainstem CCIN Ex 7 - -  - -  
Brainstem LIN Ex 5 - -  - -  
Brainstem MN Ex 5 - -  - -  

The model neurons are connected according to Fig. 1B but also to the 
same neurons in neighboring segments. The "extent" denotes how far 
these connections reach (in number of segments) in the rostral and 
caudal direction. The connection weight (w~) used in (1) is the "strength" 
given here divided by the number of segments it connects to 
Ex, Excitatory; Inh, inhibitory 



366 

findings for the isolated spinal cord of the lamprey 
(Matsushima and Grillner 1992) as well as with simulation 
results using the detailed neuron model (Wadden et al. 1993). 

3 The mechanical model 

The second main component  of the system simulated is 
the mechanical model. The actual swimming movements 
are calculated using a two dimensional mechanical 
model of the body considering also the forces from the 
surrounding water. The neural network model interacts 
with the mechanical model in two ways: (1) the output of 
the model motoneurons  controls the spring constants of 
the model muscles; (2) information about  the curvature of 
the body is fed back to the neural network via the 
stretch-sensitive EC. 

In order to mathematically describe the position and 
shape of the body as it varies in time, the projection of the 
midline on the horizontal plane is used. The position of 
this curve is represented by a chain of N links connected 
by N -  1 joints (Fig. 2B). In the simulations presented 
here, N was set to 10, implying that each mechanical link 
corresponds to 10 neural segments. An alternative view 
would be to keep a curve representation of the body. 
Such a formulation would lead to partial differential 
equations describing the forces and the motion. Here, 
however, the formulation as a chain of links was chosen 
because of the direct correspondence with the numerical 
solution. 

The links are numbered from the head to the tail, and 
the position of each link i is described by three coordin- 
ates x~, yi, and q~: x~ and yi denote the position of the 
midpoint of the link, while q~ denotes the angle from the 
x-axis (see Fig. 2A). This set of parameters constitutes 

A 
,Y 

Y i  

Head 
~ ~  /q)i T a i l  

ixi  X 
p- 

a non-minimal representation of the position of the body, 
implying that the mechanical constraints have to be 
explicitly stated in order to solve the kinematic equa- 
tions. The movement of the links is here constrained by 
the joints, forcing them to stay connected. This constraint 
can be expressed mathematically as: 

li li 
+2 cos tpl + xi + ~cos~oi = xi+~ - -  

I i l_~ . 
Yi + ~ sin tpl = Yi+l  --  sm ~0i+ 1 

where i E { 1 . . . . .  N - 1 } (3) 

Here, li is the length of link i. 
Each link i is acted upon by three types of forces 

(Fig. 3A): muscular torques Ti and Ti- 1, water forces Ig'~i, 
and inner forces from neighboring links ~ and F~_ 1. 
Once these different forces are known, the movement  
can be calculated by integrating the accelerations from 
Newton's law of motion: 

mini  = Wi,~ + Fi, x - -  F i - 1 ,  x 

mi.gi = Wi, r + Fi,  r - -  F i - l , y  

li . 

li 
+ ( E l -  1., + Fi,r) ~ cos ~ol 

where i e { 1 . . . . .  N } (4) 

A 
~Y 

B 
Link numbering 

Joint numbering 

I N-I 

Fig. 2A, B. Representation of the fish body as a chain of interconnec- 
ted links. A The position of each link i is described by the position of its 
midpoint (xi, yl), which is also its center of gravity, and its direction q~. 
B The links and joints are numbered from the head towards the tail 

B 

Fig. 3. A Forces acting on link i: muscular torques T~ and T~_ 1, water 
forces I~, and inner forces from neighboring links/~ and/~_ 1- B The 
bending torques on the body are controlled by the activation of muscles 
on both sides of the body. The spring constants for the muscles are 
changed by the activity in the corresponding MN. This model gives the 
possibility for the neural network to vary both the total bending force 
and the stiffness locally along the length of the body 



Here, ml is the mass and li the moment of inertia. The 
torques and inner forces at the end-points (i = 0 and 
i = N) are all zero. 

3.1 Body parameters 

In order to use (4), values for the masses and the moments 
of inertia for all the links are needed. These are estimated 
from the shape and density of the corresponding part of 
the body. Since the neural network model was derived 
from experiments on the lamprey, the body was also 
chosen to correspond roughly to the lamprey in size and 
shape. The method is general enough to be applicable to 
many other species. We will use the term "fish" below to 
denote our model animal, though the lamprey strictly 
speaking is a cyclostome. 

The body shape chosen is 30 cm long and has no 
pronounced fins. The cross sections are elliptical with 
a height of 3 cm. In a typical fish, the height would 
decrease caudally, but fins and the flattened shape could 
compensate somewhat for this effect (cf. below). Here, the 
same height has been used along the entire body. In the 
rostral part, the width is 2 cm but after about one third of 
its length, the width decreases linearly towards the tail. 

Since the mean density of a fish is the same as that of 
water, it is reasonable to estimate the mass of each link 
from the volume of a corresponding piece of the body. 
This gives the values found in Table 3. The moment of 
inertia for a link is estimated from that of an elliptical 
cylinder: 

I=,,, ig+i  

where m is the mass, w the width, and I the length of the 
cylinder (see, e.g., D. E. Gray 1972). Inserting values 
corresponding to the shape of the body gives the values 
found in Table 3. 

3.2 Water forces 

The hydrodynamic aspects of swimming have been de- 
scribed in various models (Wu 1971; Blake 1983; Yates 
1983). Forces acting on the body from the surrounding 

Table 3. Mechanical properties of the links 

Link li (cm) ml (g) li (gram) ).• (Ns2/m 2) All (Ns2/m 2) 

1 3 4.5 45.0 0.045 0.030 
2 3 4.5 45.0 0.045 0.020 
3 3 4.5 45.0 0.045 0.010 
4 3 4.5 45.0 0.045 0 
5 3 3.8 35.6 0.045 0 
6 3 3.15 27.5 0.045 0 
7 3 2.5 20.4 0.045 0 
8 3 1.8 14.2 0.045 0 
9 3 1.1 8.6 0.045 0 

10 3 0.45 3.4 0.045 0 

For each link, the length (1~), mass (mi), and moment  of inertia (Ii) are 
given along with the estimated water resistance coefficients 2• and 
211 for the flow perpendicular and parallel to the body, respectively 
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water depend on the speed of the body relative to the 
water. At very low speeds the viscous forces are impor- 
tant, while at higher speeds inertial effects play the 
dominating role. Here, we assume that the inertial forces 
dominate (high Reynolds numbers). In principle, it would 
be possible to simulate the complete three-dimensional 
flow around the fish body, which would give the forces on 
the body. This kind of simulation, however, is very time 
consuming. Reasonable approximations for the forces 
can be obtained by viewing the surrounding water as 
stationary and considering the forces on each link from 
its speed alone (cf. Taylor 1952). 

Movement of any object through a stationary fluid 
causes an increase in pressure in front of the object and 
a decrease behind it. This makes the fluid in front move 
away and return again behind the object. The different 
pressures on the two sides also give a net drag force on 
the object, counteracting the movement. This force is 
proportional to the square of the speed and can be 
calculated from: 

A 
w = pv 2 ~- C (5) 

where p is the density of the fluid, v is the speed of the 
object, A is the area perpendicular to the movement, 
and C is the drag coefficient given by the shape of the 
object (see, e.g., Blevins 1984). For water we have 
p = 1000 kg/m 3. Here, 2 will be used as an abbreviation 
for pAC/2. For simplicity, we will assume that the pres- 
sure differences resulting from movements along the 
body are added linearly to those from movements per- 
pendicular to the body. Thus, movements in these two 
directions are handled separately and the resulting forces 
are added to give the combined effect. The sizes of the 
parallel force component (WEI), and the perpendicular 
force component (W• are rewritten as: 

W n = v~211 W• = v~.2• (6) 

where vii is the parallel component and v• the perpen- 
dicular component of the velocity v and 211 and 2• are the 
corresponding 2 factors, estimated from (5). 

Movements perpendicular to the body axis are the 
most important ones for propulsion. Since the cross 
sections are elliptical, it is reasonable to use data for drag 
forces on an elliptical cylinder in a moving fluid. When 
the ellipse is not too eccentric, the drag coefficient, C, is 
close to 1. Near the tail the flattened shape should really 
call for a higher C value. On the other hand, the height of 
a real fish usually decreases, compensating for this effect. 
Because of the approximate nature of these values, the 
value C = 1 has been used along the entire body. Note 
that since this fish-like body lacks a large tail fin, the 
movements are expected to be of the anguilliform (eel- 
like) type (see, e.g., J. Gray 1933b, 1968; Blake 1983). 

For movements parallel to the body axis, forces are 
harder to estimate properly since they depend on how the 
shape of the cross section varies along the body. Explora- 
tive simulations have shown that the size of these forces 
does not influence the resulting swimming very much. 
We have assumed that these forces are negligible except 
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for the first three links where the cross-sectional area 
changes most dramatically. The values used for 2tl given 
in Table 3 are estimated values based on the area of the 
cross section. 

3.3 Muscles  

The motoneurons of the network drive the various 
muscles, which in turn produce forces that cause move- 
ments of the body. The relevant muscles are located on 
the two sides of the body with their axis of contraction 
being mainly parallel to the main axis of the body. In 
reality, these muscles are not directly connected to the 
skeleton, but we will still assume that the length of the 
muscle fibers varies linearly with the local curvature of 
the body. 

As a rule, muscles are modeled by including both an 
elastic and a viscous component (e.g., Lacquaniti and 
Soechting 1986). The elastic component can be viewed as 
a spring where the spring constant is used to set the force 
produced in a steady-state condition. The viscous com- 
ponent of the force is proportional to the speed of the 
movement. For  simplicity, elastic and viscous forces from 
non-muscular parts of the body like the skin are included 
in the muscle model. 

The motoneuronal  output can be assumed to linearly 
control the forces generated by the muscles (cf. Tax and 
Denier van der Gon  1991). This corresponds to a linear 
relationship between motoneuronal  activity and the 
muscular spring constant. 

The local curvature in the chain model corresponds 
to the difference in angle between two consecutive links 
(Fig. 3B). The linear relationships assumed make it pos- 
sible to express the torque acting at a particular joint as 
a linear function of the motoneuron activity on the two 
sides (ML and MR): 

Ti = ~(ML -- MR)  + fl(ML + M a  + 7)(~oi+ l -- tpi) 

"{- ~(( /9 i+  1 - -  ~bi) ( 7 )  

(see Appendix A for details). Four  parameters are intro- 
duced: ~ is the gain of the muscles, fl is the stiffness gain, 
? is the tonic stiffness, and 6 is the damping coefficient. 
Here, the same set of parameter values has been used 
throughout the body: ~ = 3 N m m ;  f l = 0 . 3 N m m ;  
? = 10; 6 = 3 0 N m m m s .  For  a more detailed analysis, 
values measured at different points along the body would 
be desirable. 

It should be noted that this arrangement makes it 
possible for the neural network not only to control the 
static torque (by setting ML -- MR), but also to control 
the stiffness of the body (by setting ML + MR). 

3.4 Stretch receptors 

Changes in body curvature are known to influence the 
activity of the locomotor  central pattern generator. In the 
lamprey, the receptors have been identified as stretch- 
activated EC located at the lateral margin within the 
spinal cord (Grillner et al. 1981a; Viana Di Prisco et al. 
1990). When the body is bent, EC on the stretched side 

become active. Inhibitory EC will then inhibit activity on 
the contracted side, while excitatory EC promote activity 
on the stretched side (cf. Fig. 1B). 

The activity level of an EC is roughly proportional 
to the curvature of the body at the site of the cell (Grillner 
et al. 1982). The proportionality constant by itself is 
irrelevant and has been set to one. The strength values for 
the synapses from the EC are not known. Different 
settings have been tested but further work is needed 
to analyze the functional importance of each of these 
connections. In the simulations presented here, the 
only synapse used is the inhibitory input to CCIN (see 
Table 2). The output of an EC on the right side of the 
body is computed as: 

- g 0 i + l ) - -  when ~0 i > q)i+l 
f = Ii + li + 1 (8) 

otherwise 

The output of an EC on the left side is computed in 
a corresponding way. 

3.5 Inner forces  

In Newton's law of motion (4), the forces from the water 
can be estimated from (6), while the muscular torques are 
given by (7). The only forces left unknown are the inner 
forces F~.x and Fi, r. These forces act to enforce the mech- 
anical constraint that the links must stay connected dur- 
ing the motion as expressed by (3). Equations (3) and (4) 
constitute a differential-algebraic equation system of the 
type generally encountered for mechanical multibody 
problems formulated using a non-minimal set of co- 
ordinates. 

The kinematic constraints (3) can be written in com- 
pact form (see Appendix B for details): 

g(~) = 0 (9) 

where fg(p) is a 2(N - 1) column vector. 
The motion (4) can also be expressed in compact form 

(see Appendix B): 

b = i ~ = ,  + ~(~) i  (I0) 

where 0 is a 3N column vector composed of the position 
coordinates of all the links; i is the corresponding speeds; 

is the external forces (water forces and muscle torques); 
~r is the 3N • 3N diagonal mass matrix; and f is 
a 2(N - 1) column vector containing the unknown inner 
forces. The matrix re(p) is actually the transpose of the 
jacobian of g(p). This is a consequence of the fact that the 
inner forces are introduced by the constraints. During the 
computation of f, the position p is assumed to be con- 
stant. Therefore, the arguments to f~ and c~ are left out in 
the equations below. 

Differentiating (9) twice with respect to time gives an 
equation which can be written as (see Appendix B): 

~Ti = ~ ( i i )  

Inserting the expression for i from (10) into (11) gives: 



which can be restated as a system of linear equations in f: 

(12) 

Note that ~ is a constant diagonal matrix so the calcu- 
lation of ./t'- 1 is trivial. Solving (12) will give the inner 
forces f which were the only missing components to 
calculate the accelerations from (10). 

3.6 Numerical methods 

The differential equations used in the neural model (1) are 
straightforward to integrate by any suitable numerical 
method. For simplicity, the Euler method was used with 
a step length of 10 ms. 

Solving the equations describing the mechanical 
system is a bit more complicated. First, the inner forces 

are solved from the linear equation system (12) using 
gaussian elimination and pairwise pivoting between 
x and y coordinate directions. Since the left-hand side 
matrix ((gr/r 1~) is a band matrix of width 6, solution is 
fairly quick even for large N's. 

The movement of the body is now calculated by 
integrating (10). With the current parameter settings, this 
equation system turns out to be stiff. The stiffness arises 
especially from the damping characteristics of the model 
muscles but also from the spring stiffness and the 
counteracting forces from the water. Stiffness of this type 
prevents large integration steps to be taken using an 
ordinary (explicit) numerical method because of numer- 
ical instability. The examples shown here were run with 
a step length of 1 ms where the simulations were numer- 
ically stable using the Euler method. By using another 
numerical formulation where the stiffness introduced by 
the muscle torques were handled implicitly, the step 
length could be increased to about 5 ms. It is likely that 
an iterative implicit method would make it possible to 
take even longer steps. 

Simulations running on a Decsystem 5000/200 work- 
station using a step length of 1 ms for the mechanical 
system and 10 ms for the neural system are able to run at 
about one fifth of real time (with graphical output dis- 
abled). The speed is limited primarily by the mechanical 
simulation but also for practical purposes by the graphi- 
cal output. 

Only the second derivatives of the kinematic 
constraints (3) were used when solving the equations. 
Mathematically, this is perfectly correct as long as the 
initial values conform to (3). However, the numerical 
solution can run into severe problems when the numer- 
ical errors make the state variables violate the original 
constraints. This effect has been thoroughly analyzed 
recently (Alishenas 1992; see also Olafsson and Alishenas 
1992). A technique called stabilization through projection 
was suggested to continuously adjust the system to con- 
form to the constraints. The adjustment is done by pro- 
jecting the position and/or speed values down to the 
subspace formed by the kinematic constraints. Alishenas 
found that stabilization of the speed variables was critical 
while the adjustment of positions was less important. 
Here, the speeds are adjusted using this projection tech- 
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nique, while the positions are adjusted by using simple 
repositioning. 

Speed stabilization through projection according to 
Alishenas (1992) is done by solving s from: 

(f~r g -  lc~) i = (~r~ 

where ~ are the numerically obtained approximate values 
for the speeds ~. Note that the left-hand side of the 
equation system is the same as in (12) which has already 
been computed. The new stabilized speed values are now 
obtained from: 

This stabilization need not be applied after each time 
step. Here, stabilization was done after every tenth integ- 
ration step. 

4 Simulation of propulsion and turning 

In order to test to what extent the model captures various 
properties of normal swimming behavior, a number of 
simulations were done. Here, only a limited number of 
basic simulation results are presented, representing the 
general capabilities of the model. A more detailed 
analysis of the simulation results will be presented in 
a separate paper. 

4.1 Propulsion 

When a tonic, symmetric, excitatory input is applied to 
the simulated neural network, alternating activity on the 
left and right side of the spinal cord will appear. A rela- 
tively low level of excitation is first chosen (0.15, arbitrary 
units). By further increasing the tonic level by 70% on the 
first five segments, coordinated waves of activity start 
traveling down the spinal cord (Fig. 4 A1-5). This is in 
accordance with the earlier simulations of fictive swimm- 
ing where more detailed neuron models were used 
(Wallrn et al. 1992; Wadden et al. 1993). The resulting 
length of these neural waves is slightly shorter than the 
length of the spinal cord. This relationship is directly 
related to the phase lag between the segments, and can be 
controlled by changing the amount of extra excitation 
given to the first segments. 

The neural waves include activity of the MN which 
causes time-varying forces to be exerted by the model 
muscles. In the mechanical model, these coordinated 
waves of muscle forces are transformed to body undula- 
tions, making the fish swim forwards (Fig. 4 B1-5). At 
this level of excitation, the resulting speed through water 
is about 0.4 m/s. 

A number of characteristic features of anguilliform 
swimming can be observed. Firstly, the amplitude of 
the undulations increases from head to tail, which is in 
agreement with natural anguilliform swimming (J. Gray 
1933b). Note that this is not caused by any increasing 
level of output from the neural circuitry but is a pure 
consequence of the mechanical arrangement. Secondly, 
the mechanical wave of the body is faster than the speed 
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through water. This can be observed by noting that the 
points of maximum body curvature move backwards in 
relation to the grid lines (Fig. 4 B1-5), and is a well- 
known property of most undulatory modes of swimming 
(LighthiU 1969). 

Increasing the level of excitation increases the fre- 
quency of the oscillations. If the extra excitation to the 
first five segments is kept at 70%, the phase relations 
along the body will stay approximately the same when 
the excitation level is changed. Figure 5 shows the result 
when the level is set at 0.4 (arbitrary units). The higher 
frequency in combination with the constant phase rela- 
tions makes the waves of neural activity move faster 
along the spinal cord. Consequently, the speed of swimm- 
ing increases. Here it reaches a value of 0.73 m/s. The 
higher level of excitation also increases the amplitude of 
the neural activity, especially in the MN. This gives the 
increased muscular force needed to maintain the higher 
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speed, and, as a consequence, the undulations become 
more pronounced. 

The input from the stretch receptors (top and bottom 
traces in Fig. 5 A1-5) is out of phase with the mo- 
toneuronal activity by about 90 ~ The stretch receptors 
are maximally active at the time when the network is 
switching from contralateral to ipsilateral activity. This 
makes their input suited for terminating the contralateral 
activity at a time coordinated with the actual movement 
of the body. Thus, stretch receptor input may act as yet 
another burst-terminating factor in addition to those 
intrinsic to the neural network (cf. Wall6n et al. 1992). 

4.2 Turnin# 

By making the tonic stimulation asymmetric it is possible 
to induce a turn (Fig. 6). An asymmetric component has 
here been added on top of the tonic level used in Fig. 5 by 
increasing the level by 0.3 on the right-hand side of the 
spinal cord and decreasing it by the same amount on the 
other. The neural network continues to produce waves of 
activity alternating between the two sides (Fig. 6 A1-5). 
The frequency and length of the bursts is about the same 
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as before. The main difference is that the amplitude of the 
neural activity has become asymmetrical. The MN out- 
put on the right side is much larger than on the left. Note 
also that most LIN on the left side are silent. 

In the mechanical system (Fig. 6 B 1-5) the asymmetry 
in MN output amplitude gives the body a point of extra 
high curvature that propagates backwards along the 
body. This is consistent with observations on how real 
fish make turns (J. Gray 1933a). In Fig. 6, the asymmetri- 
cal stimulation was added immediately before the record- 
ing was made. If this asymmetrical stimulation is main- 
tained, the fish will continue to swim in a circle. 

5 Discussion 

The combined neural and mechanical model presented in 
this paper has been constructed out of simplified compo- 
nents. Still, the behavior of the model is in many respects 
comparable with the basic swimming patterns seen for 
real animals. 

The neural network model is based on an earlier 
more realistic model but uses much simpler neuronal 
elements. In particular, the individual spikes of the neur- 
ons are not represented. Further, the NMDA pacemaker 
properties are not included, which makes it impossible to 
produce very slow rhythms. However, the network used 
is capable of producing rhythmicity at different frequen- 
cies, and the intersegmental coupling makes it possible to 
generate natural waves of activity controllable by a small 
number of input parameters. 

The mechanical model includes simplifications both 
with regard to the biological relevance of the parameters 
and equations used to describe the body and with regard 
to the forces from the surrounding water. For example, 
muscle activity produces a torque not only locally but, 
rather, over some distance along the body. However, the 
simplifications serve to remove less relevant details, mak- 
ing the model easier to understand and analyze. When- 
ever the model is found not to behave like the biological 
counterparts in important aspects, these simplifications 
have to be reconsidered. If additions to the model are 
found necessary, these will not only make the model 
more realistic. More importantly, findings of this kind 
may also add to the knowledge of the swimming process 
as such. 

The swimming produced by the model presented here 
is of the anguilliform type. In order to apply the model to 
other types of swimming, some modifications have to be 
carried out. At present, the strength and stiffness of the 
muscles are constant throughout the body. This might be 
a reasonable approximation for an eel-like fish, but for 
other species the amount of muscles available at different 
points varies considerably. 

Further, during anguilliform swimming, the entire 
body is moved back and forth in the transverse direction 
in order to produce the counteracting forces from the 
water needed for propulsion. For many other types of 
swimming, the effects of the paired pectoral fins and the 
unpaired dorsal and tail fins are much more important 
(el. J. Gray 1968). Fins acting mainly by increasing the 
cross-sectional area exposed to the water are easily in- 
eluded in the current model by using a larger value for 
2. at the site of the fin. However, when the fins produce 
substantial wakes, the view of the water as locally sta- 
tionary is no longer valid and a more sophisticated water 
model might be needed. In general, when a certain species 
of fish is to be simulated, measured values for both water 
forces and muscle parameters would be desirable. 

The role of the stretch sensitive edge cells has not 
been investigated extensively in this study. The strengths 
and relative importance of the different connections from 
these cells are not known in detail. In the simulations 
presented here, a relatively weak inhibitory connection to 
the CCIN is included which helps terminate the activity 
in synchrony with the mechanical undulations. To inves- 
tigate the role of the EC and their different connections, 
further simulation studies are needed. A combined neural 
and mechanical model, such as the one presented here, 
should be a suitable platform for this task. 

It is interesting to note that the neural network has 
the ability to control not only the forces bending the 
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body but also the tonic stiffness level. From (7), one can 
see that the bending forces are set by the difference in 
motoneuronal output from the two sides, while the stiff- 
ness is controlled by their sum. During fast swimming, 
the activity level of the MN is high, which also makes the 
body stiffer. This stiffness increases the intrinsic mechan- 
ical frequency of the body to better match the higher 
output frequency of the neural pattern generator. To 
further investigate the significance of such a resonance 
between the neural and the mechanical oscillations dur- 
ing swimming, muscle and body parameters based on 
quantitative measurements on a real fish should be used. 

6 Conclusions 

Computer simulation techniques make it possible to syn- 
thesize pieces of detailed knowledge from various sources 
and explore the consequences. Here, experimental data 
from neurophysiology, biophysical properties of muscles, 
and hydromechanical properties of water have been com- 
bined to study the behavior of swimming. By selecting or 
constructing models at an appropriate level of simplifica- 
tion for each component and using simulation techniques 
developed for constrained multibody dynamics, a model 
of fish swimming has been constructed and simulated. 
The combined neuro-mechanical model has proven 
capable of producing realistic swimming movements. By 
varying only the tonic level of excitation, corresponding 
to brainstem input to the neural network, swimming at 
different speeds and also turning can be produced. The 
behavior during other types of stimulation can be ana- 
lyzed using the same model. 

All the components have been simplified from more 
detailed knowledge. This model should therefore serve 
as a suitable platform for testing more detailed models 
of any of the components. In particular, the effects of 
various properties of the edge cells could be tested. Sim- 
ilarly, the consequences of fins and other changes to the 
body shape could be investigated by modifications and 
additions to these parts of this model. 

Models of such a complex system as the neural 
control of vertebrate locomotion can be formulated at 
various levels of abstraction. While models including all 
known details are appealing for their completeness, their 
complexity and the lack of correspondingly exact para- 
meter values limit their usefulness. On the other hand, 
models at a purely behavioral level can be hard to relate 
to known facts about the neurons and their connectivity. 
Here, an intermediate position has been taken by grad- 
ually simplifying a detailed model of the neuronal system 
while extending it with a mechanical environment. Be- 
cause the components of the model can all be traced back 
to their physiological counterparts, new findings can 
readily be incorporated and tested for their influence on 
behavior. Interaction between biological and simulation 
experiments has been essential when developing this 
model and will continue to be so to extend its applica- 
bility. 
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Appendix A: Derivation of the muscular torques 

This appendix explains how the expression for the mus- 
cular torques (7) follows from the assumptions made in 
the text. Firstly, we assume that the length of the muscle 
fibers (LL and LR) varies linearly with the curvature of the 
body, for joint i represented by (~01+l - ~0i): 

LL = kl  + (q~i+ l - tpi)k2 

LR = kl  - -  ( ~ i + l  - -  qgi)k2 

(kl, k2 . . . .  denote arbitrary constants). Secondly, we as- 
sume that the muscles act as linear springs and dampers. 
Thus, the resulting forces from the left and right side 
muscles can be written: 

IlL = LL ~ L -Jr" ]-,L k3 -I- k4 

I~R = LR~R + LRk3 + k4 

where the dot means time derivative. Thirdly, we have 
assumed that the spring constants of the muscles (~L and 
~R) are linearly dependent on the activation of the corres- 
ponding motoneurons (ML and MR): 

~L = MLk5 + k6 

~R = MRk5  + k6 

Since the muscle length varies linearly with the angle 
difference, it follows that the resulting torque also varies 
linearly with the forces. Therefore, the resulting torque 
from the two counteracting muscles can be expressed as: 

T = ( ] . L  L - 12R)k7 

By inserting the expressions for #z, #R, LL, and La, 
we get: 

T =  ((k~ + (tPi+ t - tp~)k2)(MLk5 + k6) 

+ (kl + ( ( / 9 i +  1 - -  dpi)k2)k3 + k4 

- (k~ - (q~+~ - q~ )k2 ) (Msk5  + k6) 

- (kx - ((oi+ 1 - (oi)kz)k3 - k4)k7 

which can be rewritten as: 

T =  k l k s k T ( M  L -- MR)  

( + k2ksk7  ML + MR + ](r -- (Pl) 

+ k2k3kT((Oi+l - (oi) 



By renaming the constant  expressions klksk7- . - ,~ ,  
k2ksk7 ~ fl, 2k6/k5 --* y, and k2k3k7 ---} 3, we arrive at the 
final expression: 

T = or(Mr. - MR) + fl(ML + MR + Y)(tPi+l -- qh) 

-[- ~ ( (0 i+1  - -  (0i) 

Appendix  B: M a t r i x  representat ion 

This appendix defines the matrices and vectors used in 
the main text to describe the mechanical  system and 
compute  the inner forces�9 

The posit ion and shape of  the entire body  is described 
by a 3N column vector ~, and the speed of  mot ion  is 
given by a corresponding speed vector ~: 

= [-Xl, Yl, tPl, X2, Y2, tP2, �9 �9 �9 , XN, YN, r T 

~l = ~ = [-fgl, Y l ,  (01, fg2" Y2, (02 . . . . .  JgN, YN, (ON] T 

The water forces and the muscle torques are combined in 
another  3N column vector if, and the inner forces are 
collected in a 2(N - 1) co lumn vector f :  

Vq --'~ [ W l , x ,  W l , y ,  7"1, W2,x, W 2 , y ,  T2 - -  7"1 . . . . .  

WN,~, WN,,, - T~,-~] ~ 

= [-FI,~, Fl,y, F2,x, F2,y . . . . .  FN-I ,x ,  FN-I,y'] T 

The constra int  equat ions (3) can be written in vector 
form as: fg(g) = 0, where f~(~) is the following 2(N - 1) 
co lumn vector: 

~(~)  = 

- 11 12 
X 1 + "~ COS~01 - -  X 2 "]- ~ COS (p2 

Yl + sinq~l - Y2 +-~sin~02 

12 13 
X 2 "]- ~ COS (P2 - -  X3 "[- "~ COS (P3 

Y2 + sinq~2 - Y3 + ~ sinq~3 
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f~(p), a 3N x 2 ( N -  1) matrix, is the t ranspose of  the 
jacobian of g(~): 

1 

~r = 

0 

0 1 

It 11 
- ~  sin rpl ~ cos r 

- 1  0 

0 - 1  

12 . 12 
- ~ -  sm ~02 ~ cos ~02 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

0 1 

12 
COS (102 - ~ sin go2 ... 

- 1  0 ... 

0 - 1  ..- 

13 . 
-- -~ sm q)3 cos ~o3 "'" 

�9 , . 

The mass matrix (a 3N x 3N matrix is simply: 

m l  

0 

0 

~ / =  0 

0 

0 

0 0 0 0 0 .-. 

ml 0 0 0 0 -.. 

0 I1 0 0 0 ... 

0 0 m 2 0 0 .... 

0 0 0 m2 0 ... 

o o o o 12 ... 
: ." �9 . . ... 

The second derivative (with respect to time) of  the me- 
chanical constraint  equat ion (9) is: 

It (02 ~ cos ~1 - / k l  ~ sin qh - 

11 
J~l + (01~ cosgol - (02-~ sin 

 2 sin,  
):2 + (02 ~ cos tp2 - (022 sin 

12 _~ 
tpt -- x2 -- (02-~sinq~2 -- (022 costp2 

12 12 
~01 - -  JJ2 "~ (02-2COS (P2 - -  (02 ~ s i n  rp 2 

13 �9 213 
tp2 -- xa -- (03 ~ sin ~oa -- q~a -~ cos ~03 

13 13 
~02 -- J~3 + (03~COS ~03 -- 02~sin~03 

= ~  
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This can be rewrit ten as: 

11 - 12  �9 
-1 0 - ~ s l n ~ 0 1  - 1  0 -~-sm~02 "" 

11 12 
0 1 -~ cos tpt 0 - 1  ~ cos ~02 ... 

12 . 
0 0 0 1 0 - - s m  (P2 

2 

12 
0 0 0 0 1 ~ COS (P2 "'" 

. . : �9 . .. ".. 

x1 

Yl 

~Ol 

X 2 ~--- 

Y2 
q~2 

- 211 ~b 2-~cos - ~bt ~ cos ~01 + ~o2 

~b2 ~ sin tpl + ~b2 ~ sin tp2 

r cos~o3 

212 ~b3 2 ~ sin ~b 2 "~ s in  ~O 2 "1- ~3  

which can be identified as ffr~ = $ with n defined as the 
right hand  side above. 
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