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Abstract. We present a theoretical model which is used to explain the 
intersegmental coordination of the neural networks responsible for generating 
locomotion in the isolated spinal cord of lamprey. 

A simplified mathematical model of a limit cycle oscillator is presented 
which consists of only a single dependent variable, the phase O(t). By coupling N 
such oscillators together we are able to generate stable phase locked motions 
which correspond to traveling waves in the spinal cord, thus simulating "fictive 
swimming". We are also able to generate irregular "drifting" motions which are 
compared to the experimental data obtained from cords with selective surgical 
lesions. 
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1. Introduction and Summary of Experimental Results 

For 20 years it has been known that there are neural networks which can generate 
temporally patterned sequences of signals. By definition a pattern generating 
network requires neither sensory feedback nor phasic (time-varying) descending 
control, although afferent (input) signals may strongly influence the output of the 
network. The existence of pattern generators was first documented in a relatively 
simple invertebrate nervous system (Wilson, 1961). It is now clear the mammalian 
nervous systems also contain neuronal ensembles which can generate quite complex 
motor patterns (e.g. locomotion, scratching) in the absence of any phasic sensory 
information or supraspinal control (Grillner and Zangger, 1975; Vidal et al., 1979; 
Grillner, 1975; Berkenblitt et al., 1978). 

Some progress has been made in understanding the cellular organization of 
pattern generating networks found in invertebrates (Selverston et al., 1976; Poon et 
al., 1978; Getting et al., 1980). Models have been proposed to explain how the 
networks, as presently understood, could generate their respective patterns (Friesen 
and Stent, 1977; Kristan, 1977). Although the models have all had some limitations 
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and have upon occasion needed major revisions (cf. Selverston, 1980), they have 
offered a useful framework for discussion of further research. Models have played a 
much smaller role in studies of vertebrates' central pattern generators (CPG's) since 
so little is known of their underlying cellular structure (see however, Berkenblitt et 
al., 1978). 

In general, the pattern generating networks that are being studied produce 
cyclic patterns of muscle activity. In several systems the activity of two muscle 
groups simply alternate in time. Even with more complex motor patterns like 
mammalian locomotion, functional groups of muscles alternate with only a few 
muscles deviating from this simple pattern. The neuronal pattern generators 
controlling these movements are often conceptualized as oscillators, or groups of 
coupled oscillators. However, little use has been made of oscillator theory to 
understand them (see however, Pavlidis and Pinsker, 1977; Glass and Young, 
1979). 

The lamprey is a primitive vertebrate which has been utilized to facilitate the 
study of the vertebrate CPG for locomotion. The spinal cord of the lamprey has 
several advantages over those of more highly evolved vertebrates. First, the cord is 
thin, transparent and contains relatively few cells while retaining the basic 
vertebrate organization (of. Rovainen, 1979). Second, the spinal cord can be 
removed from the animal, placed in a bath containing physiological saline and kept 
for up to a week without apparent deterioration (Rovainen, 1979). Under such in 
vitro conditions the chemical environment can easily be altered while monitoring 
the activity in the ventral roots which carry the motor output of the cord (Fig. 1.1). 
Using this procedure it has been shown that adding various neuro-pharmacological 
agents to the bath can induce bursts of ventral root (VR) activity with the same 
temporal pattern as the activity of the myotomal or body muscles of intact 
swimming fish (Cohen and Wall6n, 1980; Poon, 1980). 
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Swimming consists of a sequence of traveling waves which pass down the body 
and propel the fish through the water. The speed of the fish is a function of the 
frequency of the traveling waves. In general, over a wide range of frequencies, there 
is variation neither in the amplitude of  the waves nor in the changes of shape 
undergone by the body. To achieve this movement the electromyographic activity 
of  the myotomal muscle of a fish exhibits a stereotyped temporal pattern (Grillner 
and Kashin, 1976). The VR output pattern underlying the muscle activity is 
believed to have three important features: 1) The activity of the two ventral roots of 
a single segment strictly alternates in time; 2) the duration of the activity ofa  VR is a 
constant proportion of the period of the cycle (ca. 40% of the cycle); 3) there is a 
delay between the bursts of any two ipsilateral ventral roots and that delay is 
proportional to the period. The third feature implies that the delay occupies a 
constant phase of the cycle, i.e. there is a constant phase coupling between the two 
segments. When these features have been demonstrated we can designate a VR 
discharge pattern as "fictive swimming". This term means that even though the 
muscles are removed and there is no movement possible, the neural output of the 
cord is equivalent to that of an intact swimming fish. 

To date, a fragment of lamprey spinal cord as short as 4 segments has been 
observed to generate the swimming pattern as evidenced by recording from its 
ventral roots (Cohen and Wall6n, 1980). (The total cord consists of about 100 
segments.) However, a piece of cord containing ten or more segments generally can 
produce a more stable and regular fictive swimming (Fig. 1.2). The ability to 
generate the pattern is not a property of any restricted region of the cord. Rather, it 
appears to be distributed throughout, as any group of segments can produce the 
pattern. 

We have attempted to model the system which provides the intersegmental 
coordination necessary for maintaining the traveling wave described above. We 
begin with a model which retains the major characteristics of our system and which 
is amenable to simple mathematical analysis. Although it represents a drastic 
simplification of the biology, by adding to or changing elements of this basic model 
we can begin to determine how the biological analogue of an element may be 
contributing to the pattern. In our discussion, we assume that each segment of the 
cord consists of a pair of neural networks which can generate oscillatory activity. 
Pairs of oscillators are assumed to be coupled together to form the CPG which then 
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Fig. 1.2. Ventral root recordings from an isolated piece of spinal cord. Recordings are from the right and 
left roots of segments 7 and 19 (from Cohen and Wall6n, 1980) 
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generates the complete stable pattern. It is possible that a single oscillator is 
composed of a greater number of segments; it is also possible that there are essential 
crossed connections between the hemi-segments so that a single oscillator spans the 
entire segment. The evidence for our basic assumptions is circumstantial (Cohen 
and Wall6n, 1980), as the conclusive tests must await a greater understanding of the 
cord. However, the form of these assumptions is not critical to the model. 

Let us begin by outlining the type of data which our model must encompass. The 
results are from experiments on isolated spinal cords of silver lampreys 
( Icthyomyzon unicuspis). 

When viewed under the dissecting microscope, the cord appears to have three 
distinct pairs of bands which form the medial fiber tracts, the gray cellular region, 
and the lateral tracts (Fig. 1.1). Within these three regions small symmetric pairs of 
transverse lesions were made, cutting across part or all of the fiber tracts. 
Recordings from VRs rostral and caudal to the lesion(s) were obtained during 
fictive swimming and compared with recordings made before the lesion. In this way 
it was possible to determine the changes in coordination resulting from disrupting 
the pathways. In some cases as a final control, recordings were made after 
completely severing the cord at the lesion site. 

It should be noted that any lesion has a two-fold effect. Some fibers are cut, 
thereby eliminating their influence. However, the lesion will also unmask the 
capacity of those fibers which have been left intact. In addition, factors outside the 
range of the experimenter's control can effect the behavior of the cord. 

Often little change was observed after small or even relatively large lesions. This 
was true regardless of the site of the lesion. Effects on intersegmental coordination 
were manifest only after the cuts extended over half the width of the cord. Such cuts 
could include either the complete medial tracts plus part of the medial gray region, 
or the complete lateral tracts plus part of the lateral gray region. This implies that 
there are numerous distributed fibers capable of maintaining coordination between 
segments. However, there is good evidence that the different fiber tracts differ in the 
strength and the direction of their coupling fibers; a comprehensive study to 
characterize them is in progress. It is possible to induce clear disturbances in the 
intersegmental coupling; we will describe the form these disturbances take to allow 
evaluation of the models presented below. 

After a lesion was made and before a cord regained stability many transient 
phenomena were observed. The most notable example was 2 : 1 bursting of the VRs. 
That is, the frequency of the bursting in one of the roots was twice the frequency of 
the root across the lesion. Such activity was followed by both roots stabilizing at a 
common frequency mid-way between the rates seen during 2 : 1 activity. Bursts of 
3 : 1, 4: 1, etc. were also occasionally observed. 

When the cut encompassed almost the entire width of the cord the groups of 
segments above and below the lesion drifted independently of each other at 
different frequencies. However, with lesions stopping short of this point, there was 
evidence of residual interactions conveyed via the intact fiber tracts. In one example 
(a medial lesion), the frequencies of bursting of the rostral and caudal VRs began 
independently, but slowly converged to a common frequency where they remained 
with brief episodes of drifting and locking (Fig. 1.4). In another example (a lateral 
lesion), the rostral VR was relatively stable while the caudal drifted away and 
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returned to the frequency of the rostral VR (Fig. 1.3). In the latter case after cutting 
completely through the cord the caudal segments bursted stably at their own 
frequency, suggesting that the source of their previous disturbance originated 
rostrally. In both these experiments cutting very few additional fibers removed all 
interaction. In several other experiments, the regions above and below the cut were 
reasonably coordinated up to the final cut which then allowed them to drift apart. 
In several instances, after lateral lesions were made, the caudal segments became 
less stable than the rostral but their frequencies were the same, making it unclear 
whether the coordinating system was responsible for the instability. 
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At the completion of each of four experiments, the cords were cut into three 15 
segment pieces. VR recordings from the otherwise identical pieces allowed us to 
measure the natural frequencies of the three regions. In three of the four cords, the 
caudal had the highest frequency, middle next and rostral lowest. In the fourth cord 
the order was reversed, and in several less controlled experiments the rostral 
segments were also fastest. More experiments are required to determine if these 
include the complete range of possibilities. 

In this paper we shall concentrate on modelling the more general aspects of 
these particular observations. 

2. A Mathematical Model for the Central Pattern Generator 

We start by recalling the fundamental characteristics of the intact cord which any 
model must reproduce: 

(a) there is a 180 ~ phase difference between left and right hand roots within 
individual segments: such intrasegmental locking is apparently stronger than 
intersegmental coupling, 

(b) all segments are (to first order) frequency and phase locked, although 
variations and "hunting" about equilibrium can occur (Cohen and Wall~n, 1980), 

(c) there is a phase lag (constant to first order) from head to tail. 
On the basis of the experimental evidence summarized in section 1 we make the 

following assumptions: 

Assumption 1 (oscillators). A neuronal oscillator, or pair of oscillators, is associated 
with each segment. Whether it lies physically within a single segment, or involves 
essential components which are distributed over several segments, is immaterial to 
our argument. Each oscillator, in isolation, with the removal of all nonessential 
interneurons linking it to other segments, exhibits an asymptotically stable periodic 
oscillation. (Asymptotic stability implies that, after perturbation by external 
stimuli, the oscillator returns to its stable bursting after a short transient.) 
Individual oscillator frequencies may vary both absolutely and relative to one 
another and may be externally influenced (by drug concentration, electrical 
stimulation, etc.), but their amplitudes are governed primarily by internal factors. 

We shall not speculate here on the internal structure of the oscillators, each of 
which may involve several hundred neurons and necessitate a complex circuit 
diagram. The description of the neuronal network is under way, but will 
undoubtedly require many years of experimental effort. Rather, we shall argue that 
simple phenomenologieal observations lead to a model which is adequate for our 
present purpose: that of studying the effects of intersegmental coupling. 

Assumption 2 (coupling). Each segmental oscillator or pair of oscillators is coupled 
to its immediate neighbors and also possibly to distant oscillators. Each oscillator 
may also be connected to a central "control line" involving certain long axons in the 
medial tract. (Tonic (constant over time) stimulation of these axons causes uniform 
frequency changes along the length of the cord (Cohen and Buchanan, 1980).) 

Equipped with these reasonable hypotheses, we now formulate a mathematical 
model which takes the form of a set of N coupled limit cycle oscillators. 
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The Individual Oscillator or Oscillator Pair 

As we have already noted, each oscillator may be distributed over both sides of a 
segment or over several segments and therefore may involve several hundred 
neurons. Our key observation is that the membrane potentials of several classes of 
spinal neurons (Russell and Wall6n, 1979; Cohen and Buchanan, 1980), and in 
particular the ventral root  outputs of individual segments, undergo stable periodic 
variations and thus any dynamical system modelling such a segmental oscillator 
should have an attracting limit cycle, 7 (cf. Pinsker and Bell, 1981). Letting 
x = X(t) = (Xl( t ) ,  Xz(t  ) . . . .  , x,(t)) be an n-vector of the relevant variables, a typical 
model might be an ordinary differential equation of the form 

/( = f (x ) ,  ( 2 .1 )  

where a dot denotes d/dt. The variables x could designate, among other things, the 
periodically varying membrane potentials (including both slow changes as well as 
action potentials), and the rate of release of neurotransmitter substances. However, 
since the nature of  the oscillator is still unknown, we have chosen to propose a 
model which does not require detailed specification of the variables x. 

Our first important step, which obviates the need for detailed modelling of the 
function f, is to choose a local coordinate system based on the periodic orbit 7, 
which forms a closed curve in the state space. Let thephase, 0, running from 0 to 2~ 
radians, be measured around Y starting at the point P~Y at which bursting 
commences, and let the parameterization of 7 by 0 be chosen such that the speed of  
the solution is constant with respect to 0. In what follows, remember that 0 is taken 
modulo 2re, so that 0 = 00 + 2me and 0 = 00 are equivalent. Let the amplitude 
deviation vector r represent the remaining (n - 1) variables transverse to Y with 
r = 0 corresponding to points on 7. Provided that 7 is smooth, such a local 
coordinate system can always be chosen (see Fig. 2. l, in which we display the special 
case n = 3). 

In terms of this parameterization, (2.1) becomes 

-- fl(r, 0), (2.2) 

0 = co +f2(r ,  0), (2.3) 

where fl(0, 0) = 0, f2(0, 0) -- 0 and T =  2re/co is the period of the oscillator. The 
functions fl and f2 are necessarily periodic of period 2re with respect to 0. If  we 
further assume that the system is structurally stable (cf. Chillingworth, 1976), a 
reasonable assumption in view of the persistence of stable bursting under a wide 
range of  conditions, then it follows that 7 is a hyperbolic attractor (Chillingworth, 
1976), and all neighboring orbits approach it exponentially fast. Thus, in studying 
steady solutions in the absence of external excitation, we need merely consider the 
single scalar phase equation 

0 = co, (2.4) 

with solution 

O(t) = 0(0) + cot. (2.5) 

We next consider the situation which might be expected to exist within a single 
segment (or minimal segment set): an opposing pair of strongly coupled oscillators, 
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linked such that their outputs xL(t) and XR(t ) are 180 ~ (i.e. 7t radians) out of  phase. 
Taking similar models for each oscillator, we have a coupled pair of  equations 

/~R = fR(XR, XL), (2.6a) 

~r = fL(XL, XR). (2.6b) 

To each oscillator we could now associate a phase OR, OL and a vector rR, rL 
measuring deviation from its limit cycle. However, rather than two independent 
frequencies we find evidence of only one, and hence we assume that the constant 
phase relationship 

OL(t) = OR(t) + 7t (2.7) 

holds, at least to first order. This in turn implies that the original variables XR and xL 
are also 180 ~ out of phase, 

xL(t ) = xR(t + T/2), (2.8) 

where T is the common period. Thus the variables x R and xL are related and 
equations (2.6a, b) can be reduced to single equation, say for x R or for rR and OR, 
and once more we obtain the reduced system (2.2), (2.3). 

Phase Variation and Burstin9 

To relate ou r simple phase variable model (2.4) to the actual output observed, we 
note that, as 0 increases, the levels of the dynamic variables x(t) rise and fall 
periodically. In many models of bursting membranes (e.g. Keener et al., in press; 
Carpenter, 1979), a slow increase in certain variables leads to a triggering of 
repetitive spikes as a set of fast variables change relatively quickly. Typically, all the 
time for which the slow (driving) variable exceeds some critical threshold level, 
spikes occur. In the present system the state of an oscillator is best reflected by the 
rhythmic changes in membrane potential of  motoneurons.  The output from the 
oscillator, as observed in the motoneuron,  varies relatively smoothly. If  the input 
depolarizes the membrane potential beyond threshold, the cell fires a burst of action 
potentials (Fig. 1.2). Let us suppose that triggering occurs for 0 = 0 (at the po in tp  
on 7) and ceases for 0 = 0 ( ~  2~z • 0.4, from observations). Then a typical slow 
variable x(t) and the spike output appear as shown in Fig. 2.2. In this paper we are 
not concerned with spike generation as such, but rather with the phase relationships 

e~e=Tr •  t 

2.1 2.2 

Fig. 2.1. The phase space of Eq. (2.1) 
in the special case n = 3, for which r is 
a 2-vector, r = (rl, r2) 

Fig. 2.2. The oscillator output x(t) and 
its relation to the ventral root output 
VR. The threshold level is shown as a 
dashed line 
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between the slow driving signals, and thus we do not further discuss the rapid 
potential changes involved in spike generation. 

The Chain o f  Oscillators 

Continuing our analysis as above we write N equations of the form (2.1) for the N 
oscillators, a typical member of the set being 

/~j = f~(x~) + g / x 1 , . . . ,  xm a), j = 1 , . . . ,  N, (2.9) 

where g is the coupling function, involving the dynamics of the other N -  1 
oscillators, and including a vector of coupling coefficients, a. When a = 0, 
gj(xl . . . . .  xN,0) = 0 and we have N independent oscillators, each exhibiting a 
stable limit cycle Yi. 

To proceed, we assume that the coupling is relatively weak, so that [a] is small 
and Ig[ << Ifl. In such a case the limit cycles of the uncoupled oscillators are each 
slightly perturbed and one can continue to use the phase coordinates 0j, and 
amplitude deviations U to characterize the state of each oscillator. In this way one 
obtains sets of equations of the form 

i'j = f~l(rj, Oj) + gjl(rl . . . .  , rN, 01 . . . .  ,0~, a), 

0j = ~oj + fjz(rj, 0j) + gjz(rl , . . .  ,rN, 01,.- . ,  0N, a), 

j =  1,2 . . . .  ,N  (2.10) 

which of course reduce to (2.2), (2.3) when a = 0. Here the individual uncoupled 
oscillators may each have different periods, Tj--2n/~oj, as experiments with 
completely severed cords indicate. Expanding equations (2.10) about U -- 0 in 
Taylor series, one eventually obtains approximate phase equations for weakly 
coupled oscillators in the form 

Oj = coj + hj(O~ . . . .  ,Oma),  j = 1 , . . . , N  (2.11) 

from which all the amplitudes are absent (cf. Holmes, 1980; Rand and Holmes, 
1980; Cohen and Neu, 1979; Neu, 1979, 1980a, b; Ermentrout, 1981). 

In our case the observation that periodic bursting occurs both in intact and 
(moderately) lesioned cords indicates that, uncoupled or even strongly coupled, 
each oscillator during steady running is performing a limit cycle oscillation and this 
can still be characterized in terms of its phase 0j. Since the primary aspect of 
coupling is to fix phase relationships we are again led to a phase coupling model of 
the form (2.11). 

So far we have reduced a system of N or 2N segmental oscillators, each governed 
by a set of differential equations, to a system of N phase equations. We now ask 
what form might the functions hj be expected to take. A linear coupling model 
might be a reasonable candidate. For such a model, in terms of the original 
variables, the effect of coupling on the ith oscillator by the j th  oscillator is 
proportional to x j: a system of coupled oscillators would obey 

N 
Xi : f/(xi) "~ 2 A i j x j  , (2.12) 

j=l 

where Aij are matrices of coupling coefficients multiplying the vectors xj. 
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It has been shown (Rand and Holmes, 1980; Neu, 1980a, b) that in the case of 
weak coupling such a system leads to the following phase equations 

N 

Oi = O~i 4- ~ ~ijh(Oj - Oi), (2.13) 
j = l  

where h is a bounded periodic function of its argument. 
The simplest periodic function, h(~b)= sin ~b, arises in cases in which the 

unperturbed uncoupled limit cycles are sinusoidal. It turns out that this simple 
choice leads to a model which readily reproduces many of our experimental 
observations, and thus we will pursue it further in the following sections. We cite as 
further evidence in its support typical observations which indicate that the slowly 
varying intracellular potentials of motoneurons are quasi-sinusoidal in nature 
(Cohen and Buchanan, 1980). 

It is of interest to compare these assumptions regarding coupling to the results 
of phase response curve (PRC) experiments. In these experiments an electrical 
stimulus is suddenly applied to one oscillator and its effect on another oscillator is 
observed. Typical PRC's (Pavlidis, 1973 ; Stein, 1976) show that the effect of a small 
disturbance is smallest when the disturbance occurs near 0 = 0, and is greatest when 
it occurs near 0 = re, Fig. 2.3. Stimulation experiments on the lamprey spinal cord 
also generate data exhibiting the discontinuous ramp function of Fig. 2.3 
(unpublished observation, Cohen and Wal16n). Now our model has been chosen 
such that the effect of an oscillatorj on an oscillator i is zero when they are in phase 
(q~ = 0) and greatest when they are r~/2 out of phase (~b = _+ re/2), cf. Fig. 2.3. The 
choice h(qS) = sin ~b can be thought of as an approximation to the discontinuous 
ramp function of Fig. 2.3, representing typical PRC data. (E.g. the PRC function 
could be expanded in a Fourier series, since it is necessarily periodic. If the series is 
truncated after one term, we obtain the model considered in this paper.) 

In this way we arrive at a set of N coupled equations for the phases of the 
oscillators: 

N 

Oi = o)i + ~ ~U sin(0~ - Oi). (2.14) 
j = l  

Here ct u represents the strength of the coupling effect of the j th  oscillator on the ith 
oscillator, a positive sign indicating excitatory coupling (0j tends to pull 0i towards 
it) and a negative sign indicating inhibitory coupling (0j tends to push 0~ away from 
it). A schematic representation of this system is shown in Fig. 2.4. 

phase 
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Fig. 2.3. Comparison of our assumed 
coupling function h(r = sin r (shown 
dashed) with typical PRC data (shown 
solid) 

Fig. 2.4. Schematic representation of 
the system of Eq. (2.14) 
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In Eqs. (2.14) the relative magni tudes  of  col and ~ij are assumed to be such that  
Oi(t) is a m o n o t o n e  increasing funct ion of  t for  all initial conditions,  i.e. such that  0~ 
never vanishes. This means  that  the uncoupled  mot ion  a round  the limit cycle 7 is 
preserved under  the coupl ing in the sense that  no mot ion  can stop and reverse the 
direction of  its flow a round  7. 

In the next section we show that  simple models  of  the type derived above 
provide  reasonable  descriptions of  much  of  the observed behavior  of  both  intact  
and lesioned cords.  

3. Analysis of  the Mathematical Model 

We first consider some simple models ,  the solutions of  which provide  traveling 
waves with phase  lags between segments such as those observed in the intact  fish. 
We find that  such solutions can arise in the case of  nearest  neighbor  coupl ing with 
detuning of  oscillators, as well as in the case of  long distance coupling combined  
with nearest  ne ighbor  coupling. We then consider the loss o f  coupling and the onset 
o f  drift  in order  to relate our  model  to the lesion experiments.  

Neares t  Ne ighbor  Coupling 

The simplest model  is one in which each oscillator is coupled only to its nearest  
neighbors  and  (2.14) takes the fo rm 

01 = col + ~12 sin(02 - 00 ,  

02 ~--" CO2 -~ 521 sin(01 - 02) + 523 sin(03 - 02) , 

Oj = coy + 5j , j -1  sin(0j_l - Oj) + 5j,j+l sin(0~+l - Oj), 

ON = con + ~N,N-1 sin(0u- 1 -- 0s). (3.1) 

Lett ing qSj = Oj - Oj+ 1 and f2j = coj - ~oj+ 1 and subtract ing pairwise, we obtain  a 
set o f  N - 1 equat ions for  the phase  differences qSj, j = 1 , . . . ,  N - 1. 

q~l = 01 - (512 + 521)sin ~bl + ~23 sin q52, 

q~2 = g22 + ~zl sin r - (523 + 532) sin ~b2 + 534 sin ~b3, 

Cj = Oj + ~j , j -1 sin ~bj_ 1 - (sj , j+l + ctj+l,j) sin ~bj + ~j,j+l sin ~bj+ 1, 

q~N-1 = f2u-1 + 5N-1,N-2 sin~bN-2 -- (~N-1,N + 5N,N-1)sin~bu-1. (3.2) 

I f  we further  assume that  all upward  coupl ing strengths 5j,j + ~ are equal  to ~, and  all 
downward  strengths ~j,j_ ~ are equal  to an, this becomes 

= I~ + BS, (3.3) 
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where 1] 
d0= 

are N -  1 vectors  and 

L (ad + a~) 
B = ad 

[ 1 S =  " , f ~ =  �9 , 

sin4~n- 1 LoN-1J 
(3.4) 

" 1 
- ( a d +  a~) a,, 

~d - - ( a d + a , ,  

(3.5) 

is a t r i -diagonal  (N - 1) x (N - 1) matr ix .  We shall be especially interested in 1 : 1 
phase locked solutions of  (3.1), in which all oscillators exhibit the same frequency. 
Hencefor th  such solutions will s imply be called "phase  locked" ,  and "dr i f t ing"  will 
denote  the absence o f  1:1  phase  locking, which does not  preclude m/n phase 
locking for  rn, n ~ 1. (Here  we do not  wish to consider these more  delicate 
situations, cf. Erment rou t ,  1981.) I f  any phase  locked solutions exist they are given 
by  the equilibria of  (3.3), the roots  o f  

S = - B -  1~,  (3.6) 

Clearly no such solutions exist if any  element of  B -  t s  has magni tude  greater  than  
one. 

As an example,  for  a system of  two oscillators one obtains  the single phase  
difference equat ion  for  q~ = 0t - 02 

q~ = f2 - (ad + a , )s in  ~b, (3.7) 

which has phase  locked solutions if and only if 

If~l < la~ + aul. (3.8) 

Linearizat ion reveals tha t  there is one degenerate  (semi-stable) solution q~l = n/2 
(resp. 3rt/2) for  If2[ = lad + au[ and a pair  o f  solutions, one stable and the other  
unstable,  for  If2[ < lad + aul. Thus,  as the coupl ing strength lad + a,I decreases 
relative to the detuning f2 = ~Ol - o92 a bifurcation occurs in which the stable phase  
locked solution coalesces with the unstable  one and vanishes,  cf. Fig. 3.1. We shall 
subsequently s tudy the dynamics  of  t ransient  (non-steady) solutions near  this point.  

Fo r  three oscillators equat ion (3.6) becomes 

[ s i n 4 1 7  = _1 2 [a, + au a. ] I o l ] ,  (3.9) 

ksinq~2J ~J + a,a~ + a. a~ a~ + a.JLod 
which reduces to 

D 

a b c 

Fig. 3.1. The disappearance of phase locked solutions as laa + %1 
decreases relative to I~1. (In this Fig. f2 and C~d + ~, have been 
taken positive.) a, b, c correspond respectively to If~l less than, 
equal to, and greater than Icon + ~.[. S = stable, U = unstable, 
D = degenerate. See Rand and Holmes, 1980 
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sin 051 = (201 + O2)/3cq sin 052 = (O1 + 202)/3e (3.10) 

if an = "d = ~- Thus stable phase locking occurs if and only if 

max{12f21 + f22[, If21 + 2021} < 13~l. (3.11) 

Computat ions for longer chains of  oscillators rapidly become awkward and a 
better approach is to insert the observed phase locked and lagged solution into (3.3) 
or (3.6) and thus calculate appropriate parameter  values for its realization. In this 
way we find that a c o n s t a n t  identical segment to segment phase lag of  
Oj - Oi+ ~ = 05~ = 6 ,  characteristic of  a uniform traveling wave, is easily achieved by 
detuning the rostral (01) and caudal (ON) oscillators only. We require 

~21 + [ -  (c~e + ~.) + c~.]A = 0, 

Oj + E~e - ( ~  + c~.) + a . ]A = 0, 

f2N-1 + [ed - (c~e + eu)]A = 0, (3.12) 

where A = sin 6 > 0. This implies that f2j = 0 for j = 2 , . . . ,  N - 2 and f21 -- edA, 
O N -  1 = c~uA, or 

m s = co for all j r 1, N, 

col = co + ~esin6 > co, 

con = co - ~, sin 6 < co. (3.13) 

Here the overall frequency co, is also the common natural (isolated) frequency of the 
central portion of the cord, while the caudal oscillator is tuned down and the rostral 
oscillator tuned up. Here we assume that the coupling ca, e, > 0 is excitatory. 

To study the stability of  this solution we linearize (3.3) about the fixed point 
05i = sin 6 to obtain 

6 = B'r 

where B' = Bcos 6. If, as is the case in our observations, 6 is a small angle, so that 
0 < cos 6 < 1, it can be shown that all eigenvalues of  B' have negative real parts and 
thus that the uniform phase lagged solution is asymptotically stable. There are, of  
course many  other solutions, since there are two roots of  each equation sin 05j = A, 
leading to a total of  2 N- ~ phase locked solutions. However, linearizations and 
calculations such as that above reveal that all the other solutions are unstable. 

We conclude that, if nearest neighbor coupling predominates, and the rostral 
oscillator runs appreciably faster, and the caudal oscillator appreciably slower than 
the central portion of the cord, then stable traveling wave solutions result. We note 
that since each of the 2 N- i phase locked periodic orbits corresponds to a hyperbolic 
fixed point, the system is structurally stable (Chillingworth, 1 976) and hence can be 
expected to persist under small perturbations, such as the addition of weak long 
distance coupling and slightly irregular frequency modulation. Of  course, if the 
detuning is irregular, with a general tendency for frequency decrease from head to 
tail, then tess uniform phase lags are produced. We note that if all the 
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oscillators are identical (~?s = 0, Vs) then no phase lag is possible and the only stable 
solution is qSs - 0 for all j. Similarly if the caudal oscillator is tuned up and the 
rostral oscillator tuned down then a traveling wave propagates from tail to head. 

An alternate approach to assuming a constant phase lag 6 is to take each 
oscillator's frequency coj to be smaller than its predecessor's, coj-1, by a fixed 
amount ~, 

cos = coS-1 - ~, j = 2 , . . . , N  

i.e. 

mS = col - ( J -  1)e, j =  1 , . . . , N ,  

whereupon a nonuniform phase locked solution can be found (if e is small enough), 
i.e. the phase difference q~s = 0s - 0s+ 1 will depend on the positionj. This may be 
demonstrated in the case of N oscillators with equal coupling ~ii = ~ (i.e. 
~, = ~ -- ~ in Eq. (3.5)), as follows: We invert the ( N -  1) x ( N -  1) matrix B of Eq. 
(3.5), 

I - 2  1 1 1 - 2  1 
B = ~  "'" 

1 - 2  1 
1 - 2  

obtaining a symmetric inverse B-*  with elements 

where 

( B -  1)i s = ( B -  1)si, i , j  = 1 , . . . ,  N - 1, 

j ( N -  i) 
B 1 (i>~j). 

( - ) i s  = - N 

Then substituting into (3.6) with the N - 1 vector 

we find 

j = l  . . . .  , N - 1 .  (3.14) 

In order for there to exist roots ~b~ we require that 

8 
e ~ - ~ .  
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Fig. 3.2. Plot of  ~bj versus j for a system of  I0 
oscillators with O = (e, e . . . .  , ~) 

8~176176 

o~ . . . . . . . .  j 
1 2 3 4 5 6 7 8 9  

80~ O~ 
6004 
4004 / 
2 0 : {  " . 

O I  . . . . . . . .  J 
I 2 5 4 5 6 7 8 9  

Equation (3.14) may be displayed by plotting q~j against j. For example in the 
case of N = 10 oscillators, Fig. 3.2 shows such plots for various values of e/~. 

By using Eq. (3.14) we may calculate the phase angle Oj for each oscillator, 
j = 2 , . . . ,  N, relative to the (arbitrary) phase angle 01 of oscillator 1 : 

j - 1  

0 j = 0 1 -  Z ~bk, j = 2  . . . .  ,N. 
k = l  

In order to conveniently display these results, we will plot sin 0j against j. For 
example, in the case of N = 10 oscillators, Fig. 3.3 shows such plots for various 
values of e/a when 01 = 0. Although these graphs remind us of the shape of a 
swimming fish, biomechanical factors could complicate the precise relationship 
between the activity of the motoneurons and the overall shape of the fish. 

We note that Grasman and Jansen, 1980, and Linkens, 1974, 1976, found 
similar traveling wave solutions in one and two dimensional arrays of coupled 
relaxation and van der Pol oscillators. 

We end by noting that occasionally a central segment was observed to take the 
lead. The present model easily accounts for this by assuming that one oscillator (say 
the kth), is tuned appreciably above the others, so that 

( O  k ~ (2)  1 ~ 0 )  2 ~ " ' " ~ ( , O k -  1 ~ ( . O k +  1 ~ " ' " ~ 0 )  n ~--- (2)  

and thus Y2j=0, j = l , . . . , k - 2 , k + l , . . . , N - 1 ,  while O k - l < 0 < O k .  
Performing an analysis similar to that above we find that a traveling wave 
propagates both rostrally and caudally from the kth segment. These same 
conclusions would also hold in the case that N - 1 of the oscillators have nearly 
(but not exactly) the same frequencies e)i. 

Fig. 3.3. Plot of  sin Oj versusj  for a system of 10 
oscillators with f2 = (e, e , . . . ,  e). Here 0~ has 
been taken as zero 

' 4sinej 

.01 

///" 
(/ t ~-o.o8 

i 
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Three and N Oscillators With Long Distance Coupling 

The study of  general coupled systems of  the fo rm (2.13) is intractible analytically 
and  compute r  solutions must  be sought.  I t  is therefore wor th  carrying out  studies of  
special cases such as those above and the present  one. Here  we take three oscillators, 
with identical nearest  ne ighbor  coupl ing coefficients ~, and  distant coupling /3 
between oscillators 1 and  3, Fig. 3.4. 

The  appropr ia te  differential equat ions are 

01 = o91 + ~ sin(02 - 01) + fl sin(0a - 01), 

02 = ~o2 + ~ sin(01 - 02) + ct sin(03 - 02), 

03 = 093 + ~sin(02 - 0a) +/~sin(01 - 0a). (3.15) 

We first note  that,  if a please locked solution exists, then 01 = ~)2 = Oa and the 
f requency (&) of  this solution, obta ined  after a little algebraic manipula t ion ,  is 

o91 + 0)2 + ~o3 
e3 = ; (3.16) 

3 

i.e. the symmetr ic  coupl ing does not  weight any part icular  oscillator (compare  Eq. 
(3.15) with Eq. (2.14) above).  We next let ~bl = 01 - 02, ~b2 = 02 - 03 and subtract  
the componen t s  of  (3.15) pairwise to obta in  

q~l = O1 - 2c~sin ~1 + ~sinq52 - flsin(~bl + ~b2) 

~ :  = 02 + ~sinq51 - 2~ sin ~b2 - fl sin(q51 + q~2). (3.17) 

To  seek solutions we first set t21 = f22 = 0 (oh = ~2 = co3, identical oscil- 
lators). In  this case (3.17) has either four  or six fixed points,  see Table  1. F o r  this 
tabula t ion we again assume that  ~ > 0 (excitatory nearest  ne ighbor  coupling),  but  

B ~ , B  

(x t lct Fig. 3.4. Schematic representation of three oscillators 
_ ~  with nearest neighbor and long distance coupling 

Table 1. Phase locked solutions of Eq. (3.17) with 121 = 02 = 0 

I/~1 < ~/2 (0,0)-sink; (n,0), (0,~)-saddles; (~,n)-source 

/~ > ~/2 (0,0)-sink; (zt,0), (0, z), (z, n) - saddles ; cos ~ -  ,cos -a -sources 

fl< -~ /2  (0, 0), (n, 0,, (0, 7t)- saddles; (rt, 70- sources; (cos-1 ( - ~ ) ,  cos - ( ~ - ) ) -  sinks 
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that  fl can take either sign. Since the analysis is similar to the cases given above we 
do not  give the details, other  than to note  that  the symmetry of  (3.17) with 
f21 - O2 = 0 implies that  the line ~b~ = q52 is invariant  and that  the additional pairs 
of  fixed points appearing for I/?1 > ~/2 are found by setting q51 = ~b2 = q~ and 
seeking solutions of  

- 2~ sin ~b + ~ sin ~b - fl sin 2q5 = 0 

o r  

sin ~b(2flcos ~b + ~) = O. (3.18) 

We see that,  if /? < - c r  corresponding to relatively strong, inhibitory 
coupling between oscillators l and 3, then two stable solutions corresponding to 
phase lagged (forward) and phase leading (backward) traveling waves appear,  with 
Oj = Oj - Oj+l = c o s - l (  - ~/2/?), while the in phase solution (~bj = 0) becomes 
unstable. Uni fo rm detuning f21 --- 02 = f2 r 0 shifts these solutions as indicated in 
the bifurcation diagram of  Fig. 3.5. 

Passing to the case of  N oscillators with only the first and last coupled at long 
distance, again with strength fl, and the central ones coupled to nearest neighbors 
alone, we obtain, for  the case of  identical oscillators (f2j = 0) 

(N- I - 2~sinq~l + asinr - flsin ~, = 0, 
k =  

sin ~bj_ 1 - -  2~ sin ~bj + ~ sin ~bj + i = O, 

sin ~bN- 2 -- 2c~ sin q5 N_ 1 -- fl sin q~k = 0. (3.19) 
k =  

Thus we find that  traveling wave solutions with phase lag qSj = ~, representing both  
forward and backward going waves, are possible for values o f  c~, fl for  which 

/?s inE(N-  1)q~] + ct sin qS = 0 

has nontrivial  solutions�9 
In particular,  f rom Fig. 3.5, the model  exhibits, for  all f2, stable forward running 

phase locked solutions when the long distance coupling is inhibi tory and 
sufficiently strong for a given excitatory nearest neighbor coupling ( - / ?  >> ~ > 0). 

Fig. 3.5. Bifurcation diagram showing the 
variation of equilibrium solutions 
q5 = 01 = q~2 of Eq. (3.17) with ft. Solidlines 
are stable, dashed lines are unstable 

~ \  noo 1~~ 
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Thus even when the caudal oscillator runs fastest, stable forward running phase 
locked motions are possible, in accordance with some of our observations. But note 
that these motions coexist with stable backward running waves, which have not 
been observed in the isolated cord, although they are exhibited by intact fish. 

We conclude that chains of identical oscillators with nearest neighbor coupling 
plus direct rostral-caudal inhibitory coupling can also exhibit traveling waves of the 
type observed, although such stable waves appear in pairs, with both forward and 
backward going waves. We remark that while lampreys are known to have the 
ability to swim backwards, in almost all eases of stable fictive swimming observed in 
our in vitro.preparations forward traveling waves with the rostral part leading are 
observed. Frequently in the fictively swimming dogfish (Grillner, 1975) and 
occasionally in an isolated lamprey spinal cord, one of the central oscillators will 
take the lead, a phenomenon for which this model with long distance coupling 
cannot account (although the model with nearest neighbor coupling, Eq. (3.12), can 
exhibit this behavior). 

Transients, Loss of Locking and Drifting with Weak Coupling 

An alternative approach to considering the phase locked solutions of N coupled 
oscillators is to consider the general (not necessarily phase locked) behavior of a 
smaller system of, say, two oscillators. In applying this kind of study to the fish we 
must think of "lumping" the many oscillators found in the spinal cord into two 
groups, each with an average or representative frequency and phase. This approach 
will be particularly useful in studying the model's predictions regarding the effects 
of lesions made surgically on a living spinal cord, in which case the two groups of 
oscillators may be naturally identified with those segments located above and below 
the lesion site. The effect of the lesion will then be to change the nature of the 
coupling between the two groups of oscillators. In this application we assume that 
each group of oscillators stays nearly phase locked relative to the other members of 
the same group, but that due to the lesion the rostral and caudal groups of 
oscillators can become uncoupled to an extent dependent upon the nature of the 
lesion. 

The differential equations describing a system of two oscillators are (Fig. 3.6) 

01 = o91 + ~u sin(0z - 01), 

02 = co2 + an sin(01 - 0 2 ) .  

Subtracting Eq. (3.21) from (3.20), we again obtain Eq. (3.7) 

4 = f2 - ksin q~, 

(3.20) 

(3.21) 

(3.7) 

Fig. 3.6. Schematic representation of  a system of two oscillators 
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where 

q5 = 01 --  02 = phase difference, 
O = COx - CO2 = frequency difference, 

k = cq + ea = net coupling. 

As discussed above (Eq. (3.8)), this system exhibits a stable phase locked 
solution if Ik] i> IO1, i.e. if the net coupling k is strong enough (Fig. 3.1). 

However, if the net coupling k is weak, Ik] < 101, e.g. due to a lesion, then no 
phase locked solutions occur. Rather each of the two oscillators "drifts" in a 
manner which can be investigated by solving Eqs. (3.20), (3.21) exactly, as follows: 
First we solve (3.7) by separating variables, 

t = Q - ksin~b - P arctan tan~- + constant, (3.22) 

where p2 = 02 _ k 2. 
Solving (3.22) for the phase difference q~(t), we find 

~b = 2 arctan u, (3.23) 
where 

k P t a n ( O t + c )  
u = h + O  \ 2  ' 
C = arbitrary constant. 

In order to solve for the phases Oi(t) of the two oscillators, we select C so that at 
t = 0, q~(0) = 01(0) - 02(0), 

C=arctan[-k+~tan(Ol(O)-O2(O))lp ~ (3.24) 

and substitute (3.23) into (3.20), (3.21). Integrating (3.20), (3.21) from 0 to t gives 

f, 01(0 = COxt + Ol(O) - c~u sin cb(t)dt, 
o 

f, 0 2 ( t )  = COil -k 02(0)  + aa sin(a(t)dt. (3.25) 
0 

It remains to evaluate the integral in Eqs. (3.25): 

f 2u sinc~(t)dt = IT-TTTy..2 dt, from (3.23), 
3 1 + u  

f 2u dt - 1 + u ~ dudU' by the chain rule, 

_ 4 0 f  udu p2 (1 + u2)(1 + f 2 ) '  from (3.22), 

- k 1 - ~ u  2 +  l + f  2' 
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where f = ( f l u  - k ) / p .  The evaluation of these last integrals gives 

ft 0 ~-~ 2 {k ~ (~ C)} 0 1 ( 0 )  - 0 2 ( 0 )  
sin ~b(t) d t  = ~ t - ~ arctan ~ + tan + + k (3.26) 

Substitution of (3.26), (3.24) into (3.25) completely specifies 0~(t), i = 1,2. 
These results of our model concerning drifting in a system of two oscillators may 

be considered by graphically displaying the periods of oscillation associated with 
Eq. (3.25). For this purpose we will plot period (i.e. time between successive 
occurrences of 0j = 0) against time for each oscillator. For illustration we shall 
choose T1 = 1, T2 = 1.5 to be the periods of the completely uncoupled oscillators 
(i.e., o91 = 2z, 092 = 4rc/3). 

In the phase locked case, Eq. (3.8), the steady state behavior involves both 
oscillators running at the same frequency, r - e , f 2 / k  = ~o2 + c~df2/k, cf. Eqs: 
(3.20), (3.21), Fig. 3.7. In the case of zero coupling, e, = ~ = 0, the two oscillators 
run independently at their respective uncoupled frequencies col, e)2, Fig. 3.8. 

The minimum value of le, + edl required for phase locking turns out to be 
2.094 . . . .  

lO~u -~  5~d[ = O = (D 1 - -  (D 2 = 2rc/3 = 2.094 . . . .  

If the coupling is decreased from this value to zero, the behavior of the successive 
periods of each of the oscillators exhibits certain general characteristics, Figs. 
3.9 - 3.14. E.g. for ~, = ~d = 1.04 both oscillators exhibit nearly the same frequency 
of oscillation for most of the time, with regular deviations to uncoupled frequencies 
(Fig. 3.9). When ~, and c~, are decreased to 1, the proportion of time for which both 
oscillators have nearly the same frequency is diminished (Fig. 3.10). This illustrates 

5 3 

o 
$ 
e ~  

2.5 

2 

1.5 

I 

0.5 

2.5 

2 

.o 1.5 

phase locked o.5 uncoupled 

0 I0 20 :30 40 50 60 70 0 I0 20 30 40 50 60 70 
3.7 t ime 3.8 t ime 

Fig. 3.7. Behavior of  two oscillator model: period versus time plot for phase locked case, ~, = c~, 
Icr ad] > 27z/3. Both oscillators are frequency locked with period 6/5 

Fig. 3.8. Behavior of  two oscillator model: period versus time plot for uncoupled case, cr = c~e = 0. Both 
oscillators run independently with periods 1,3/2 respectively. In Figs. 3.8 - 3.14 oscillator no. 1 is shown 
dashed and oscillator no. 2 is shown solid 
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Fig. 3.9. Behavior of  two oscillator model: period versus time plot for drifting (but nearly phase locked) 

case, ~, = ~d = 1.04 

Fig. 3.10. Behavior of  two oscillator model: period versus time plot for drifting case, ~, = eta = 1 
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Fig. 3.11. Behavior of  two oscillator model: period versus time plot for drifting case, a. = c~e = 0.5 

Fig. 3.12. Behavior of  two oscillator model: period versus time plot for drifting case, c~, = ~a = 0.1 

the nature of  the loss of  phase locking due to a decrease in coupling (e.g. due to a 
lesion). For e, = c~d = 0.5 the oscillators are largely uncoupled, their periods 
varying somewhat about  their respective uncoupled values (Fig. 3.11). Decreasing 
the coupling to e, = ed = 0.1 further extends this trend (Fig. 3.12). 

Similar results hold for zero and negative values of  the coupling coefficients e,, 
~d. See Fig. 3.13 for which e, = 0, ed = 1.5. This represents the case of  one-way 
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Fig. 3.13. Behavior  of  two osci l la tor  mode l :  per iod versus  t ime p lo t  for case of  one-way coupl ing,  ~, = 0, 

c~ d = 1.5 

Fig. 3.14. Behavior  of  two osci l la tor  mode l :  per iod  versus t ime  p lo t  for dr i f t ing case wi th  unequa l  
coupl ing,  ~, = - 0.5, c~d = 1 

coupling in which the driving oscillator (here no. 1) fails to entrain the other. Figure 
3.14 displays the case ~, = - 0.5, ~ = 1 in which oscillator no. 1 has an excitatory 
effect on oscillator no. 2, while oscillator no. 2 has an inhibitory effect on oscillator 
no. 1. 

4. Discussion 

Comparison of Experimental Lesion Results with Transient Model Behavior 

In Fig. 1.3 we see that following a lesion of the lateral tracts, the caudal segments 
exhibited a great degree of instability while the rostral segments were relatively 
unaffected. Comparison of Fig. 1.3 with Figs. 3 .7 -3 .14  suggests similarities 
between the lesioned cord in this example and the simplified two oscillator model 
described above with ~, = 0, ~d = 1.5 (i.e., one way coupling, Figs. 3.13, 3.14). This 
in turn suggests that coordinating fibers which primarily descended head to tail 
remained in the uncut medial tracts. In the second experiment illustrated which 
spared the lateral tracts (Fig. 1.4) rostral and caudal segments exhibited compara- 
ble disturbances. Comparison with the two oscillator model suggests that this type 
of lesion might correspond to a decrease in both ~, and ~a, from values sufficiently 
large to cause phase locking in the intact cord, Eq. (3.8), to smaller values associated 
with transient behavior (cf. Fig. 3.11, ~, = ~d = 0.5). Thus we would expect to find 
both descending and ascending fibers in the lateral tracts. 

The experimental and model systems clearly differ in several respects. For  
example, in both experiments illustrated the periods of the cord varied more 
chaotically in the experiment than in the model; furthermore, the simplified two 
oscillator model does not exhibit the 2 : 1 and 3 : 1 subharmonic locking which has 
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been observed. In the two oscillator model discussed above, nearest neighbor 
coupling has been assumed and, as shown in section 3, the forward going traveling 
wave of normal fictive swimming results from that model if and only if the rostral 
oscillators run faster than the caudal oscillators. Since some cord fragments exhibit 
the opposite tendency, this model cannot encompass all our data. However, the 3 
oscillator chain with ascending (long-distance) inhibitory coupling can exhibit 
forward going waves when either rostral or caudal oscillators are fastest. This is, of 
course, a generalization of the simple nearest-neighbor model and more complex, 
multi-oscillator generalizations may yield more realistic behavior. 

In principle, the properties of the long distance (inhibitory) coupling fibers can 
be tested experimentally by attempting to locate and cut, or block pharmacologi- 
cally the relevan~ fibers. The model predicts a change in phase lag (as fl varies in Fig. 
3.5, for example), which should be observable. Similarly, it may be possible to 
construct a more complete coupling matrix ~ij (cf. Eq. (2.13)) for a multi-oscillator 
model by careful experimental measurements involving the stimulation of a given 
identified fiber and the response of a given segmental oscillator. 

Frequency Control 

One factor which we have so far neglected in our model is frequency control. As 
mentioned in the introduction, the speed with which the fish travels through the 
water is a function of the frequency of the traveling waves which pass down the 
fish's body. The question arises, how does the system effect a change in the speed of 
swimming (i.e., a change in the frequency of the traveling waves)? We must reject 
the notion that the brain emits a variable frequency signal which drives the chain of 
segmental oscillators. However appealing from the point of view of traditional 
engineering vibration problems, this is ruled out by the observation that following 
removal of the lamprey's brain the oscillators burst rhythmically and become 
entrained, exhibiting essentially normal phase locked behavior. The frequency of 
the bursting can then be altered by adjusting the concentration of the stimulating 
drug in the bath (Pooh, 1980). Presumably, the drug in the bath is mimicking the 
action of some substance released from nerve fibers along the length of the cord; 
whether such a substance acts as a classic neurotransmitter to speed segmental 
oscillators or as a neuromodulator (cf. Dismukes, 1979) can at present only be 
speculation. 

Such chemical control is consistent with the view that the frequency control is 
effected locally by altering the frequency coi of each of the individual segmental 
oscillator pairs. In this view, it would be plausible that the decision to change 
swimming speed could be made in the brain with some of the tracts of the cord 
transmitting the signal which causes the release of the active compound. Some such 
control must exist, but the question remains as to the location of the fibers which 
control frequency, how they function and how they themselves are controlled. 

Conclusions 

In the models described above, several organizational schemes for the CPG are 
outlined. All have deficiencies at present but they permit some statements regarding 
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central pattern generators in general. The first point of interest is that in all our 
models bidirectional coupling between the oscillators can generate a stable 
traveling wave. More striking is that in our simplest model, a single set of fibers is 
sufficient for the coordinating system to maintain proper phase coupling when the 
fish swims either forwards or backwards; it is necessary simply to retune the end 
oscillators (see section 3 above). Although the situation in the lamprey is more 
complex, this elegant mechanism could well apply in simpler 2 oscillator systems. 
One need not posit any complicated arrangement for reversing the direction of 
propagation; some control center could easily retune the oscillators when 
necessary. Whether other systems of multiple coupled oscillators such as that of the 
leech (Friesen and Stent, 1977) utilize this type of control mechanism is unknown, 
but could be tested. 

It remains unclear how the lamprey cord is structured. First, more data are 
required to characterize more fully the function and anatomy of the cord. Second, 
we plan to add elements to the model which would control the frequency and to test 
other forms of coupling either separately or in combination with the present types. 
It is not possible to prove that a model is "correct", but with such models as ours it 
should be possible to test assumptions and formulations which in turn should 
suggest further experiments and refinements of our concepts. 
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