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Abstract. We present a theoretical model which is used to explain the
intersegmental coordination of the neural networks responsible for generating
locomotion in the isolated spinal cord of lamprey.

A simplified mathematical model of a limit cycle oscillator is presented
which consists of only a single dependent variable, the phase 6(¢). By coupling N
such oscillators together we are able to generate stable phase locked motions
which correspond to traveling waves in the spinal cord, thus simulating “fictive
swimming”. We are also able to generate irregular “drifting” motions which are
compared to the experimental data obtained from cords with selective surgical
lesions.
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1. Introduction and Summary of Experimental Results

For 20 years it has been known that there are neural networks which can generate
temporally patterned sequences of signals. By definition a pattern generating
network requires neither sensory feedback nor phasic (time-varying) descending
control, although afferent (input) signals may strongly influence the output of the
network. The existence of pattern generators was first documented in a relatively
simple invertebrate nervous system (Wilson, 1961). It is now clear the mammalian
nervous systems also contain neuronal ensembles which can generate quite complex
motor patterns (e.g. locomotion, scratching) in the absence of any phasic sensory
information or supraspinal control (Grillner and Zangger, 1975; Vidal et al., 1979;
Grillner, 1975; Berkenblitt et al., 1978).

Some progress has been made in understanding the cellular organization of
pattern generating networks found in invertebrates (Selverston et al., 1976 ; Poon et
al., 1978; Getting et al., 1980). Models have been proposed to explain how the
networks, as presently understood, could generate their respective patterns (Friesen
and Stent, 1977; Kristan, 1977). Although the models have all had some limitations
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and have upon occasion needed major revisions (cf. Selverston, 1980), they have
oftered a useful framework for discussion of further research. Models have played a
much smaller role in studies of vertebrates’ central pattern generators (CPG’s) since
so little is known of their underlying cellular structure (see however, Berkenblitt et
al., 1978).

In general, the pattern generating networks that are being studied produce
cyclic patterns of muscle activity. In several systems the activity of two muscle
groups simply alternate in time. Even with more complex motor patterns like
mammalian locomotion, functional groups of muscles alternate with only a few
muscles deviating from this simple pattern. The neuronal pattern generators
controlling these movements are often conceptualized as oscillators, or groups of
coupled oscillators. However, little use has been made of oscillator theory to
understand them (see however, Pavlidis and Pinsker, 1977; Glass and Young,
1979).

The lamprey is a primitive vertebrate which has been utilized to facilitate the
study of the vertebrate CPG for locomotion. The spinal cord of the lamprey has
several advantages over those of more highly evolved vertebrates. First, the cord is
thin, transparent and contains relatively few cells while retaining the basic
vertebrate organization (cf. Rovainen, 1979). Second, the spinal cord can be
removed from the animal, placed in a bath containing physiological saline and kept
for up to a week without apparent deterioration (Rovainen, 1979). Under such in
vitro conditions the chemical environment can easily be altered while monitoring
the activity in the ventral roots which carry the motor output of the cord (Fig. 1.1).
Using this procedure it has been shown that adding various neuro-pharmacological
agents to the bath can induce bursts of ventral root (VR) activity with the same
temporal pattern as the activity of the myotomal or body muscles of intact
swimming fish (Cohen and Wallén, 1980; Poon, 1980).
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Fig. 1.1. Schematic diagram of visible tracts in
 J spinal cord and recording arrangement
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Swimming consists of a sequence of traveling waves which pass down the body
and propel the fish through the water. The speed of the fish is a function of the
frequency of the traveling waves. In general, over a wide range of frequencies, there
is variation neither in the amplitude of the waves nor in the changes of shape
undergone by the body. To achieve this movement the electromyographic activity
of the myotomal muscle of a fish exhibits a stereotyped temporal pattern (Grillner
and Kashin, 1976). The VR output pattern underlying the muscle activity is
believed to have three important features: 1) The activity of the two ventral roots of
a single segment strictly alternates in time; 2) the duration of the activity of a VR is a
constant proportion of the period of the cycle (ca. 40%, of the cycle); 3) there is a
delay between the bursts of any two ipsilateral ventral roots and that delay is
proportional to the period. The third feature implies that the delay occupies a
constant phase of the cycle, i.e. there is a constant phase coupling between the two
segments. When these features have been demonstrated we can designate a VR
discharge pattern as “fictive swimming”. This term means that even though the
muscles are removed and there is no movement possible, the neural output of the
cord is equivalent to that of an intact swimming fish.

To date, a fragment of lamprey spinal cord as short as 4 segments has been
observed to generate the swimming pattern as evidenced by recording from its
ventral roots (Cohen and Wallén, 1980). (The total cord consists of about 100
segments.) However, a piece of cord containing ten or more segments generally can
produce a more stable and regular fictive swimming (Fig. 1.2). The ability to
generate the pattern is not a property of any restricted region of the cord. Rather, it
appears to be distributed throughout, as any group of segments can produce the
pattern.

We have attempted to model the system which provides the intersegmental
coordination necessary for maintaining the traveling wave described above. We
begin with a model which retains the major characteristics of our system and which
is amenable to simple mathematical analysis. Although it represents a drastic
simplification of the biology, by adding to or changing elements of this basic model
we can begin to determine how the biological analogue of an element may be
contributing to the pattern. In our discussion, we assume that each segment of the
cord consists of a pair of neural networks which can generate oscillatory activity.
Pairs of oscillators are assumed to be coupled together to form the CPG which then
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Fig. 1.2. Ventral root recordings from an isolated piece of spinal cord. Recordings are from the right and
left roots of segments 7 and 19 (from Cohen and Wallén, 1980)
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generates the complete stable pattern. It is possible that a single oscillator is
composed of a greater number of segments; it is also possible that there are essential
crossed connections between the hemi-segments so that a single oscillator spans the
entire segment. The evidence for our basic assumptions is circumstantial (Cohen
and Wallén, 1980), as the conclusive tests must await a greater understanding of the
cord. However, the form of these assumptions is not critical to the model.

Let us begin by outlining the type of data which our model must encompass. The
results are from experiments on isolated spinal cords of silver lampreys
(Icthyomyzon unicuspis).

When viewed under the dissecting microscope, the cord appears to have three
distinct pairs of bands which form the medial fiber tracts, the gray cellular region,
and the lateral tracts (Fig. 1.1). Within these three regions small symmetric pairs of
transverse lesions were made, cutting across part or all of the fiber tracts.
Recordings from VRs rostral and caudal to the lesion(s) were obtained during
fictive swimming and compared with recordings made before the lesion. In this way
it was possible to determine the changes in coordination resulting from disrupting
the pathways. In some cases as a final control, recordings were made after
completely severing the cord at the lesion site.

It should be noted that any lesion has a two-fold effect. Some fibers are cut,
thereby eliminating their influence. However, the lesion will also unmask the
capacity of those fibers which have been left intact. In addition, factors outside the
range of the experimenter’s control can effect the behavior of the cord.

Often little change was observed after small or even relatively large lesions. This
was true regardless of the site of the lesion. Effects on intersegmental coordination
were manifest only after the cuts extended over half the width of the cord. Such cuts
could include either the complete medial tracts plus part of the medial gray region,
or the complete lateral tracts plus part of the lateral gray region. This implies that
there are numerous distributed fibers capable of maintaining coordination between
segments. However, there is good evidence that the different fiber tracts differ in the
strength and the direction of their coupling fibers; a comprehensive study to
characterize them is in progress. It is possible to induce clear disturbances in the
intersegmental coupling ; we will describe the form these disturbances take to allow
evaluation of the models presented below.

After a lesion was made and before a cord regained stability many transient
phenomena were observed. The most notable example was 2 : 1 bursting of the VRs.
That is, the frequency of the bursting in one of the roots was twice the frequency of
the root across the lesion. Such activity was followed by both roots stabilizing at a
common frequency mid-way between the rates seen during 2 : 1 activity. Bursts of
3:1, 4:1, etc. were also occasionally observed.

When the cut encompassed almost the entire width of the cord the groups of
segments above and below the lesion drifted independently of each other at
different frequencies. However, with lesions stopping short of this point, there was
evidence of residual interactions conveyed via the intact fiber tracts. In one example
(a medial lesion), the frequencies of bursting of the rostral and caudal VRs began
independently, but slowly converged to a common frequency where they remained
with brief episodes of drifting and locking (Fig. 1.4). In another example (a lateral
lesion), the rostral VR was relatively stable while the caudal drifted away and
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returned to the frequency of the rostral VR (Fig. 1.3). In the latter case after cutting
completely through the cord the caudal segments bursted stably at their own
frequency, suggesting that the source of their previous disturbance originated
rostrally. In both these experiments cutting very few additional fibers removed all
interaction. In several other experiments, the regions above and below the cut were
reasonably coordinated up to the final cut which then allowed them to drift apart.
In several instances, after lateral lesions were made, the caudal segments became
less stable than the rostral but their frequencies were the same, making it unclear
whether the coordinating system was responsible for the instability.
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At the completion of each of four experiments, the cords were cut into three 15
segment pieces. VR recordings from the otherwise identical pieces allowed us to
measure the natural frequencies of the three regions. In three of the four cords, the
caudal had the highest frequency, middle next and rostral lowest. In the fourth cord
the order was reversed, and in several less controlled experiments the rostral
segments were also fastest. More experiments are required to determine if these
include the complete range of possibilities.

In this paper we shall concentrate on modelling the more general aspects of
these particular observations.

2. A Mathematical Model for the Central Pattern Generator

We start by recalling the fundamental characteristics of the intact cord which any
model must reproduce:

(a) there is a 180° phase difference between left and right hand roots within
individual segments: such intrasegmental locking is apparently stronger than
intersegmental coupling,

(b) all segments are (to first order) frequency and phase locked, although
variations and “hunting” about equilibrium can occur (Cohen and Wallén, 1980),

(c) there is a phase lag (constant to first order) from head to tail.

On the basis of the experimental evidence summarized in section 1 we make the
following assumptions:

Assumption 1 (oscillators). A neuronal oscillator, or pair of oscillators, is associated
with each segment. Whether it lies physically within a single segment, or involves
essential components which are distributed over several segments, is immaterial to
our argument. Each oscillator, in isolation, with the removal of all nonessential
interneurons linking it to other segments, exhibits an asymptotically stable periodic
oscillation. (Asymptotic stability implies that, after perturbation by external
stimuli, the oscillator returns to its stable bursting after a short transient.)
Individual oscillator frequencies may vary both absolutely and relative to one
another and may be externally influenced (by drug concentration, electrical
stimulation, etc.), but their amplitudes are governed primarily by internal factors.

We shall not speculate here on the internal structure of the oscillators, each of
which may involve several hundred neurons and necessitate a complex circuit
diagram. The description of the neuronal network is under way, but will
undoubtedly require many years of experimental effort. Rather, we shall argue that
simple phenomenological observations lead to a model which is adequate for our
present purpose: that of studying the effects of intersegmental coupling.

Assumption 2 (coupling). Each segmental oscillator or pair of oscillators is coupled
to its immediate neighbors and also possibly to distant oscillators. Each oscillator
may also be connected to a central “control line” involving certain long axons in the
medial tract. (Tonic (constant over time) stimulation of these axons causes uniform
frequency changes along the length of the cord (Cohen and Buchanan, 1980).)

Equipped with these reasonable hypotheses, we now formulate a mathematical
model which takes the form of a set of N coupled limit cycle oscillators.
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The Individual Oscillator or Oscillator Pair

As we have already noted, each oscillator may be distributed over both sides of a
segment or over several segments and therefore may involve several hundred
neurons. Our key observation is that the membrane potentials of several classes of
spinal neurons (Russell and Wallén, 1979; Cohen and Buchanan, 1980), and in
particular the ventral root outputs of individual segments, undergo stable periodic
variations and thus any dynamical system modelling such a segmental oscillator
should have an attracting limit cycle, y (cf. Pinsker and Bell, 1981). Letting
X = x(t) = (x1(2), x,(2), .. ., x,(t)) be an n-vector of the relevant variables, a typical
model might be an ordinary differential equation of the form

X = f(x), @2.1)

where a dot denotes d/dt. The variables x could designate, among other things, the
periodically varying membrane potentials (including both slow changes as well as
action potentials), and the rate of release of neurotransmitter substances. However,
since the nature of the oscillator is still unknown, we have chosen to propose a
model which does not require detailed specification of the variables x.

Our first important step, which obviates the need for detailed modelling of the
function f, is to choose a local coordinate system based on the periodic orbit 1,
which forms a closed curve in the state space. Let the phase, 6, running from 0 to 2n
radians, be measured around y starting at the point pey at which bursting
commences, and let the parameterization of y by 0 be chosen such that the speed of
the solution is constant with respect to §. In what follows, remember that 0 is taken
modulo 27, so that 6 = 6, + 2nn and 0 = 0, are equivalent. Let the amplitude
deviation vector r represent the remaining (n — 1) variables transverse to y with
r = 0 corresponding to points on y. Provided that y is smooth, such a local
coordinate system can always be chosen (see Fig. 2.1, in which we display the special
case n = 3).

In terms of this parameterization, (2.1) becomes

i = f,(r, 0), .2)
0 =w + £5(1,0), 2.3)

where £,(0,6) = 0, 13(0,0) = 0 and 7 = 2n/w is the period of the oscillator. The
functions f; and f, are necessarily periodic of period 27 with respect to 0. If we
further assume that the system is structurally stable (cf. Chillingworth, 1976), a
reasonable assumption in view of the persistence of stable bursting under a wide
range of conditions, then it follows that y is a Ayperbolic attractor (Chillingworth,
1976), and all neighboring orbits approach it exponentially fast. Thus, in studying
steady solutions in the absence of external excitation, we need merely consider the
single scalar phase equation

0=aw, 249
with solution
0(t) = 6(0) + wr. (2.5

We next consider the situation which might be expected to exist within a single
segment (or minimal segment set): an opposing pair of strongly coupled oscillators,
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linked such that their outputs x;(¢) and xg(¢) are 180° (i.e. = radians) out of phase.
Taking similar models for each oscillator, we have a coupled pair of equations

XR = fR(XRJ XL)’ (2.6a)
Xy = f(Xg, Xp)- (2.6b)

To each oscillator we could now associate a phase 0z, 8, and a vector rg, r;,
measuring deviation from its limit cycle. However, rather than two independent
frequencies we find evidence of only one, and hence we assume that the constant
phase relationship

00(1) = Or(t) + = 2.7

holds, at least to first order. This in turn implies that the original variables xp and x;,
are also 180° out of phase,

X, (t) = Xg(t + T12), (2.8)

where T is the common period. Thus the variables x; and x; are related and
equations (2.6a, b) can be reduced to single equation, say for x; or for rg and Gy,
and once more we obtain the reduced system (2.2), (2.3).

Phase Variation and Bursting

To relate our simple phase variable model (2.4) to the actual output observed, we
note that, as @ increases, the levels of the dynamic variables x(¢) rise and fall
periodically. In many models of bursting membranes (e.g. Keener et al., in press;
Carpenter, 1979), a slow increase in certain variables leads to a triggering of
repetitive spikes as a set of fast variables change relatively quickly. Typically, all the
time for which the slow (driving) variable exceeds some critical threshold level,
spikes occur. In the present system the state of an oscillator is best reflected by the
rhythmic changes in membrane potential of motoneurons. The output from the
oscillator, as observed in the motoneuron, varies relatively smoothly. If the input
depolarizes the membrane potential beyond threshold, the cell fires a burst of action
potentials (Fig. 1.2). Let us suppose that triggering occurs for § = 0 (at the point p
on y) and ceases for 8 = § (~ 21 x 0.4, from observations). Then a typical slow
variable x(¢) and the spike output appear as shown in Fig. 2.2, In this paper we are
not concerned with spike generation as such, but rather with the phase relationships

Fig. 2.1. The phase space of Eq. (2.1)
in the special case n = 3, for which r is
a 2-vector, r = (ry, 7,)

Fig. 2.2. The oscillator output x(z) and
its relation to the ventral root output
VR. The threshold level is shown as a
2.1 22 dashed line
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between the slow driving signals, and thus we do not further discuss the rapid
potential changes involved in spike generation.

The Chain of Oscillators

Continuing our analysis as above we write N equations of the form (2.1) for the N
oscillators, a typical member of the set being

X; = f(x)) + g;(Xq,.... Xy, 00), j=1,...,N, (2.9)
where g is the coupling function, involving the dynamics of the other N — 1
oscillators, and including a vector of coupling coefficients, a. When a = 0,
g;(X;,...,Xy,0) =0 and we have N independent oscillators, each exhibiting a
stable limit cycle y;.

To proceed, we assume that the coupling is relatively weak, so that |e] is small
and |g| « [f]. In such a case the limit cycles of the uncoupled oscillators are each
slightly perturbed and one can continue to use the phase coordinates 6;, and
amplitude deviations r; to characterize the state of each oscillator. In this way one
obtains sets of equations of the form

B =1, 0) +gu(ry,...,7,04,..., 0y ),
0; = w; + f1206,,0) + gja(ry, .1y, 01, ..., On, 00),
j=12,...,N (2.10)

which of course reduce to (2.2), (2.3) when a = 0. Here the individual uncoupled
oscillators may each have different periods, T; = 2n/w;, as experiments with
completely severed cords indicate. Expanding equations (2.10) about r; =0 in
Taylor series, one eventually obtains approximate phase equations for weakly
coupled oscillators in the form

O.J':wj+hj(61a"-79N,a)a j=17""N (211)

from which all the amplitudes are absent (cf. Holmes, 1980; Rand and Holmes,
1980; Cohen and Neu, 1979; Neu, 1979, 1980a, b; Ermentrout, 1981).

In our case the observation that periodic bursting occurs both in intact and
(moderately) lesioned cords indicates that, uncoupled or even strongly coupled,
each oscillator during steady running is performing a limit cycle oscillation and this
can still be characterized in terms of its phase ;. Since the primary aspect of
coupling is to fix phase relationships we are again led to a phase coupling model of
the form (2.11).

So far we have reduced a system of N or 2N segmental oscillators, each governed
by a set of differential equations, to a system of N phase equations. We now ask
what form might the functions /4; be expected to take. A linear coupling model
might be a reasonable candidate. For such a model, in terms of the original
variables, the effect of coupling on the ith oscillator by the jth oscillator is
proportional to x;: a system of coupled oscillators would obey

N
x; = fi(x;) + Z AjX;, (2.12)

ji=1

where A;; are matrices of coupling coefficients multiplying the vectors x;.
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It has been shown (Rand and Holmes, 1980; Neu, 1980a, b) that in the case of
weak coupling such a system leads to the following phase equations

N
0=+ Y ow;h(0; — 0), (2.13)
ji=1
where % is a bounded periodic function of its argument.

The simplest periodic function, A(¢) = sin ¢, arises in cases in which the
unperturbed uncoupled limit cycles are sinusoidal. It turns out that this simple
choice leads to a model which readily reproduces many of our experimental
observations, and thus we will pursue it further in the following sections. We cite as
further evidence in its support typical observations which indicate that the slowly
varying intracellular potentials of motoneurons are quasi-sinusoidal in nature
(Cohen and Buchanan, 1980).

It is of interest to compare these assumptions regarding coupling to the results
of phase response curve (PRC) experiments. In these experiments an electrical
stimulus is suddenly applied to one oscillator and its effect on another oscillator is
observed. Typical PRC’s (Pavlidis, 1973; Stein, 1976) show that the effect of a small
disturbance is smallest when the disturbance occurs near f = 0, and is greatest when
it occurs near § = 7, Fig. 2.3. Stimulation experiments on the lamprey spinal cord
also generate data exhibiting the discontinuous ramp function of Fig. 2.3
(unpublished observation, Cohen and Wallén). Now our model has been chosen
such that the effect of an oscillator j on an oscillator i is zero when they are in phase
(¢ = 0) and greatest when they are n/2 out of phase (¢ = + n/2), cf. Fig. 2.3. The
choice 4(¢) = sin ¢ can be thought of as an approximation to the discontinuous
ramp function of Fig. 2.3, representing typical PRC data. (E.g. the PRC function
could be expanded in a Fourier series, since it is necessarily periodic. If the series is
truncated after one term, we obtain the model considered in this paper.)

In this way we arrive at a set of N coupled equations for the phases of the
oscillators:

N
Gi =w; + Z Oj Sin(@i - Hi)' (2.14)
i=1
Here o;; represents the strength of the coupling effect of the jth oscillator on the ith
oscillator, a positive sign indicating excitatory coupling (6; tends to pull §; towards
it) and a negative sign indicating inhibitory coupling (6; tends to push 6; away from
it). A schematic representation of this system is shown in Fig. 2.4.

Fig. 2.3. Comparison of our assumed
coupling function h(¢p) = sin ¢ (shown
dashed) with typical PRC data (shown
solid)

Fig. 2.4. Schematic representation of
2.3 2.4 the system of Eq. (2.14)
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In Egs. (2.14) the relative magnitudes of w; and «;; are assumed to be such that
6,(r) is a monotone increasing function of ¢ for all initial conditions, i.e. such that §;
never vanishes. This means that the uncoupled motion around the limit cycle y is
preserved under the coupling in the sense that no motion can stop and reverse the
direction of its flow around y.

In the next section we show that simple models of the type derived above
provide reasonable descriptions of much of the observed behavior of both intact
and lesioned cords.

3. Analysis of the Mathematical Model

We first consider some simple models, the solutions of which provide traveling
waves with phase lags between segments such as those observed in the intact fish.
We find that such solutions can arise in the case of nearest neighbor coupling with
detuning of oscillators, as well as in the case of long distance coupling combined
with nearest neighbor coupling. We then consider the loss of coupling and the onset
of drift in order to relate our model to the lesion experiments.

Nearest Neighbor Coupling

The simplest model is one in which each oscillator is coupled only to its nearest
neighbors and (2.14) takes the form

0, = vy + ay,sin(0, — 6;),

0 = wy + ayy sin(By — 6,) + a3 sin(B3 — 6,),
01' = Wj + %ji—1 Sin(0j_1 - 01) + O i+1 Sin(0j+1 - Bj),

Oy = ooy + oy n—1Sin(Oy— 1 — O). (3.1

Letting ¢p; = 6; — 6,., and Q; = w; — w;+, and subtracting pairwise, we obtain a
set of N — 1 equations for the phase differences ¢, j=1,...,N — L.

1 =2 — (212 + %21) 8N Py + a3 8I0 ¢,
$r = Q; + oy Sin ¢y — (a3 + 032) SN 3 + 013450 @3,

d)j = Qj + 0 j~1 sin ¢j—1 — ((Xj,j-q»l + Olj+1,j) sin ¢j -+ 0 j+1 sin ¢)j+ 1s

q:"N—1 =Qn 1+ a1 N2 singy_, — (av—1,8 + tw,v-1)SINPy_ 1. (3.2)

If we further assume that all upward coupling strengths «; ; ;. ; are equal to &, and all
downward strengths «; ;_, are equal to a,, this becomes

¢ =Q + BS, (3.3)
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where
ol sin ¢ (1
o= : |, S= : Q=) | (3.4)
On-1 sin ¢y _ Qy-y
are N — 1 vectors and
— (g + o) Oty

2] - (ad + au) ‘xu (35)

ag  — (g + o)

is a tri-diagonal (N — 1) x (N — 1) matrix. We shall be especially interested in 1 : 1
phase locked solutions of (3.1), in which all oscillators exhibit the same frequency.
Henceforth such solutions will simply be called “phase locked”, and “drifting” will
denote the absence of 1:1 phase locking, which does not preclude m/n phase
locking for m, n+# 1. (Here we do not wish to consider these more delicate
situations, cf. Ermentrout, 1981.) If any phase locked solutions exist they are given
by the equilibria of (3.3), the roots of

S=—B"lQ, (3.6)

Clearly no such solutions exist if any element of B~ 1Q has magnitude greater than
one.

As an example, for a system of two oscillators one obtains the single phase
difference equation for ¢ = 6; — 0,

¢ =0Q— (2 + w)sing, | (3.7)
which has phase locked solutions if and only if
2] < fors + - (3.8)

Linearization reveals that there is one degenerate (semi-stable) solution ¢, = n/2

(resp. 3m/2) for |Q| = |oy + a,| and a pair of solutions, one stable and the other

unstable, for |Q] < |a; + a,|. Thus, as the coupling strength |, + o, decreases

relative to the detuning Q = w,; — w, a bifurcation occurs in which the stable phase

locked solution coalesces with the unstable one and vanishes, cf. Fig. 3.1. We shall

subsequently study the dynamics of transient (non-steady) solutions near this point.
For three oscillators equation (3.6) becomes

FARMIESENN S
sing, | o + og0, + 2] oy ag + o, {1 Q21 ’
which reduces to

Fig. 3.1. The disappearance of phase locked solutions as |a, + o,|
decreases relative to |Q|. (In this Fig. Q and o4 + «, have been

D
S U
O Q Q taken positive.) a, b, ¢ correspond respectively to Q2| less than,
equal to, and greater than |, + «,|. S =stable, U = unstable,
a b ¢

D = degenerate. See Rand and Holmes, 1980
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sin ¢y = 2Q; + 2,)/3a, sin ¢, = (Qy + 26,)/3a (3.10)
if o, = ay = a. Thus stable phase locking occurs if and only if
max{2Q; + Q,}, |2, + 29|} < |3«. 3.11)

Computations for longer chains of oscillators rapidly become awkward and a
better approach is to insert the observed phase locked and lagged solution into (3.3)
or (3.6) and thus calculate appropriate parameter values for its realization. In this
way we find that a conmstant identical segment to segment phase lag of
0; — 0;+1 = ¢; = 0, characteristic of a uniform traveling wave, is easily achieved by
detuning the rostral (6,) and caudal (fy) oscillators only. We require

Qi+ [—(w+ o) +o,]4=0,
Q; + [og — (otg + o) + a2, ]4 = 0,

Qv 1+ [og— (og +a,)]4=0, (3.12)
where 4 = siné > 0. This implies that Q; =0forj=2,...,N — 2 and Q, = 0,4,
Qn_q = aud, or

W= for all j# 1N,

w; = + o4g8in6 > w,

oy = — 0,5 < ©. (3.13)

Here the overall frequency w, is also the common natural (isolated) frequency of the
central portion of the cord, while the caudal oscillator is tuned down and the rostral
oscillator tuned up. Here we assume that the coupling a,, o, > 0 is excitatory.

To study the stability of this solution we linearize (3.3) about the fixed point
¢; = siné to obtain

£ =BY¢,

where B' = Bcos d. If, as is the case in our observations, § is a small angle, so that
0 < cosd < 1,it can be shown that all eigenvalues of B’ have negative real parts and
thus that the uniform phase lagged solution is asymptotically stable. There are, of
course many other solutions, since there are two roots of each equation sin¢; = 4,
leading to a total of 2¥~! phase locked solutions. However, linearizations and
calculations such as that above reveal that all the other solutions are unstable.

We conclude that, if nearest neighbor coupling predominates, and the rostral
oscillator runs appreciably faster, and the caudal oscillator appreciably slower than
the central portion of the cord, then stable traveling wave solutions result. We note
that since each of the 2¥ ~ ! phase locked periodic orbits corresponds to a hyperbolic
fixed point, the system is structurally stable (Chillingworth, 1976) and hence can be
expected to persist under small perturbations, such as the addition of weak long
distance coupling and slightly irregular frequency modulation. Of course, if the
detuning is irregular, with a general tendency for frequency decrease from head to
tail, then less uniform phase lags are produced. We note that if all the
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oscillators are identical (@; = 0, V;) then no phase lag is possible and the only stable
solution is ¢; = 0 for all j. Similarly if the caudal oscillator is tuned up and the
rostral oscillator tuned down then a traveling wave propagates from tail to head.

An alternate approach to assuming a constant phase lag J is to take each
oscillator’s frequency w; to be smaller than its predecessor’s, w;_;, by a fixed
amount g,

W; = Wj-1 — & _]=2,,N
ie.
wj=w1—(j_l)8’ j=1a"'aNs

whereupon a nonuniform phase locked solution can be found (if ¢ is small enough),
i.e. the phase difference ¢; = 6; — 6;., will depend on the position j. This may be
demonstrated in the case of N oscillators with equal coupling o;; = (i.e.
o, = oy = ain Eq. (3.9)), as follows: We invert the (N—1) x (N — 1) matrix B of Eq.
3.5),

obtaining a symmetric inverse B~! with elements
B, =B Yy Lj=1,...,N—1,

where
_ JWN — i) s
B )= Y, (@27
Then substituting into (3.6) with the N — 1 vector
1
1
Q=¢ 1
1
we find
: & J . .
Slnd>,-=—§(N—j), j=1L...,N-1 (3.14)
o

In order for there to exist roots ¢; we require that

8

8<Fd.
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Fig. 3.2. Plot of ¢, versus j for a system of 10 i
oscillators with Q = (g, ¢, ..., &) 123456789

Equation (3.14) may be displayed by plotting ¢; against j. For example in the
case of N = 10 oscillators, Fig. 3.2 shows such plots for various values of &/a.

By using Eq. (3.14) we may calculate the phase angle §; for each oscillator,
j=2,...,N, relative to the (arbitrary) phase angle 8, of oscillator 1:

j—1

0j=91—z¢k, _]:2,,N
k=1

In order to conveniently display these results, we will plot sin f; against j. For
example, in the case of N = 10 oscillators, Fig. 3.3 shows such plots for various
values of ¢/a when #; = 0. Although these graphs remind us of the shape of a
swimming fish, biomechanical factors could complicate the precise relationship
between the activity of the motoneurons and the overall shape of the fish.

We note that Grasman and Jansen, 1980, and Linkens, 1974, 1976, found
similar traveling wave solutions in one and two dimensional arrays of coupled
relaxation and van der Pol oscillators.

We end by noting that occasionally a central segment was observed to take the
lead. The present model easily accounts for this by assuming that one oscillator (say
the kth), is tuned appreciably above the others, so that

W > W =W ="""=Wg-1 =Wgs1= """ =W, =W

and thus ©;=0, j=1,...,k-2,k+1,...,N—1, while Q,_, <0<,
Performing an analysis similar to that above we find that a traveling wave
propagates both rostrally and caudally from the kth segment. These same
conclusions would also hold in the case that N — 1 of the oscillators have nearly
(but not exactly) the same frequencies ;.

Fig. 3.3. Plot of sin §; versus jfor a system of 10
oscillators with @ = (g, ¢,...,¢). Here ; has
been taken as zero i
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Three and N Oscillators With Long Distance Coupling

The study of general coupled systems of the form (2.13) is intractible analytically
and computer solutions must be sought. It is therefore worth carrying out studies of
special cases such as those above and the present one. Here we take three oscillators,
with identical nearest neighbor coupling coefficients «, and distant coupling
between oscillators 1 and 3, Fig. 3.4.

The appropriate differential equations are

0, = w; + asin(@, — 8,) + Bsin(0; — 6,),
0, = w; + asin(0; — 0,) + asin(@; — 6,),
03 = w3 + asin(@, — 0;) + Bsin(0, — 03). (3.15)

We first note that, if a phase locked solution exists, then §, = §, = §5 and the
frequency (@) of this solution, obtained after a little algebraic manipulation, is
Wy t+owy +w
=278, (3.16)
3

i.e. the symmetric coupling does not weight any particular oscillator (compare Eq.
(3.15) with Eq. (2.14) above). We nextlet ¢y = 8, — 0,, ¢, = 6, — 0, and subtract
the components of (3.15) pairwise to obtain

by = Q; — 2asin ¢, + asing, — Bsin(d; + ¢,)
by =Q, + asing; — 2usin g, — Bsin(¢d; + ¢,). (3.17)

To seek solutions we first set Q; = Q, =0 (v, = w, = w3, identical oscil-
lators). In this case (3.17) has either four or six fixed points, see Table 1. For this
tabulation we again assume that o > 0 (excitatory nearest neighbor coupling), but

Fig. 3.4. Schematic representation of three oscillators
with nearest neighbor and long distance coupling

Table 1. Phase locked solutions of Eq. (3.17) with Q, = Q, =0

1Bl < a/2 (0, 0) —sink; (=, 0), (0, ) —saddles; (r, m)—source

B> a2 (0,0) —sink; (n,0), (0, 7), (n, ©)— saddles; <cos‘ t (—«) cos™! <—;§>) —sources

o

28 /)

! (:_oc) ,cos™? (_—a>) —sinks
28 28

B< —af2 (0,0), (x,0), (0, =) —saddles; (i, ) — sources; (cos‘
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that f§ can take either sign. Since the analysis is similar to the cases given above we
do not give the details, other than to note that the symmetry of (3.17) with
2 = Q, = Oimplies that the line ¢, = ¢, is invariant and that the additional pairs
of fixed points appearing for |§| > «/2 are found by setting ¢; = ¢, = ¢ and
seeking solutions of

— 2osin¢ + asing — fsin2¢ =0
or
sin ¢p(2fcos ¢ + a) = 0. (3.18)

We see that, if f < — «/2, corresponding to relatively strong, inhibitory
coupling between oscillators 1 and 3, then two stable solutions corresponding to
phase lagged (forward) and phase leading (backward) traveling waves appear, with
¢;=0;— 0,1 = cos™(— a/2), while the in phase solution (¢; = 0) becomes
unstable. Uniform detuning Q; = Q, = @ # 0 shifts these solutions as indicated in
the bifurcation diagram of Fig. 3.5.

Passing to the case of NV oscillators with only the first and last coupled at long
distance, again with strength f, and the central ones coupled to nearest neighbors
alone, we obtain, for the case of identical oscillators (Q; = 0)

N-1

— 2us8in ¢y + asin ¢, ——[)’Siﬂ( Y ¢k>=0
k=1

asing; ; —2using; + asing;; =0,

N-1
ocsin¢N_2—2asin¢N_1-[£sin<Z ¢k>=0. 3.19)

Thus we find that traveling wave solutions with phase lag ¢; = ¢, representing both
forward and backward going waves, are possible for values of a, # for which

Bsin[(N—1)¢] + asing =0

has nontrivial solutions.

In particular, from Fig. 3.5, the model exhibits, for all Q, stable forward running
phase locked solutions when the long distance coupling is inhibitory and
sufficiently strong for a given excitatory nearest neighbor coupling (— § > o > 0).

Fig. 3.5. Bifurcation diagram showing the
variation of  equilibrium solutions
¢ = ¢y = ¢, of Eq. (3.17) with B. Solid lines
are stable, dashed lines are unstable
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Thus even when the caudal oscillator runs fastest, stable forward running phase
locked motions are possible, in accordance with some of our observations. But note
that these motions coexist with stable backward running waves, which have not
been observed in the isolated cord, although they are exhibited by intact fish.

We conclude that chains of identical oscillators with nearest neighbor coupling
plus direct rostral-caudal inhibitory coupling can also exhibit traveling waves of the
type observed, although such stable waves appear in pairs, with both forward and
backward going waves. We remark that while lampreys are known to have the
ability to swim backwards, in almost all cases of stable fictive swimming observed in
our in vitro preparations forward traveling waves with the rostral part leading are
observed. Frequently in the fictively swimming dogfish (Grillner, 1975) and
occasionally in an isolated lamprey spinal cord, one of the central oscillators will
take the lead, a phenomenon for which this model with long distance coupling
cannot account (although the model with nearest neighbor coupling, Eq. (3.12), can
exhibit this behavior).

Transients, Loss of Locking and Drifting with Weak Coupling

An alternative approach to considering the phase locked solutions of N coupled
oscillators is to consider the general (not necessarily phase locked) behavior of a
smaller system of, say, two oscillators. In applying this kind of study to the fish we
must think of “lumping” the many oscillators found in the spinal cord into two
groups, each with an average or representative frequency and phase. This approach
will be particularly useful in studying the model’s predictions regarding the effects
of lesions made surgically on a living spinal cord, in which case the two groups of
oscillators may be naturally identified with those segments located above and below
the lesion site. The effect of the lesion will then be to change the nature of the
coupling between the two groups of oscillators. In this application we assume that
each group of oscillators stays nearly phase locked relative to the other members of
the same group, but that due to the lesion the rostral and caudal groups of
oscillators can become uncoupled to an extent dependent upon the nature of the
lesion.

The differential equations describing a system of two oscillators are (Fig. 3.6)

0, = w, + o,sin(@, — 8,), (3.20)
0, = w, + agsin(@; — 65). (3.21)

Subtracting Eq. (3.21) from (3.20), we again obtain Eq. (3.7)
¢ =Q —ksing, (3.7)

@ Fig. 3.6. Schematic representation of a system of two oscillators
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where
¢ = 6; — 0, = phase difference,
Q = w; — w, = frequency difference,
k = a, + o4 = net coupling.
As discussed above (Eq. (3.8)), this system exhibits a stable phase locked
solution if || = ||, i.e. if the net coupling k is strong enough (Fig. 3.1).
However, if the net coupling & is weak, |k| < ||, e.g. due to a lesion, then no
phase locked solutions occur. Rather each of the two oscillators “drifts” in a

manner which can be investigated by solving Eqgs. (3.20), (3.21) exactly, as follows:
First we solve (3.7) by separating variables,

d¢ 2 Q ¢ k
t={————= —arctan{ —tan— — — | + constant, (3.22)
Q—ksing p p 2 p

where p? = Q% — k2.
Solving (3.22) for the phase difference ¢(z), we find

¢ = 2arctanu, (3.23)
where
k p pt
=—+ —tan|— + C),
u=o +Q an<2 + )

C = arbitrary constant.
In order to solve for the phases ,(¢) of the two oscillators, we select C so that at

1 =10, $(0) = 6,(0) — 62(0),

C = arctan |:— ﬁ + 8tan (93@_—92—(0—)~>} (3.24)
p P 2

and substitute (3.23) into (3.20), (3.21). Integrating (3.20), (3.21) from 0 to ¢ gives

0:(t) = w1 + 0,(0) — «, f sin ¢(¢) dt,
0

02(t) = wat + 05(0) + ocdjt sin ¢(t) dt. (3.25)
0

It remains to evaluate the integral in Egs. (3.25):

2
j sin (1) dt = J 1 +”u2 dr,  from (3.23),

24 by the chain rul
= | — —du, chain rule,
1+u2duu v the

_4e J o ude o om (322),
p* ) (A +ud)(1 +1?)
ZJ‘ du 20( df

R +_ —
kJ1+u2 " pk )1+ /2
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where f'= (Qu — k)/p. The evaluation of these last integrals gives

t Q 2 k t 0,(0) — 0,(0
Jo sin ¢(t) dt = Et — %arctan {5 + gtan (% + C)} + &k—& (3.26)

Substitution of (3.26), (3.24) into (3.25) completely specifies 8,(¢), i = 1, 2.

These results of our model concerning drifting in a system of two oscillators may
be considered by graphically displaying the periods of oscillation associated with
Eq. (3.25). For this purpose we will plot period (i.e. time between successive
occurrences of §; = 0) against time for each oscillator. For illustration we shall
choose Ty = 1, T, = 1.5 to be the periods of the completely uncoupled oscillators
(i.e., oy = 2m, w, = 47/3).

In the phase locked case, Eq. (3.8), the steady state behavior involves both
oscillators running at the same frequency, w; — %,Q/k = w, + a,R2/k, cf. Egs.
~ (3.20), (3.21), Fig. 3.7. In the case of zero coupling, o, = o, = 0, the two oscillators
run independently at their respective uncoupled frequencies w,, w,, Fig. 3.8.

The minimum value of |x, + &, required for phase locking turns out to be
2.094...,

|au+txd|=.§2=a)1—w2=2n/3:2.094....

If the coupling is decreased from this value to zero, the behavior of the successive
periods of each of the oscillators exhibits certain general characteristics, Figs.
3.9-3.14. E.g. for o, = o; = 1.04 both oscillators exhibit nearly the same frequency
of oscillation for most of the time, with regular deviations to uncoupled frequencies
(Fig. 3.9). When «, and «, are decreased to 1, the proportion of time for which both
oscillators have nearly the same frequency is diminished (Fig. 3.10). This illustrates

3[ 3
2.5} 25}
2 2
3 3
@ [}
Q_ .......................................................... Q.
| | b
0.5} phase locked 0.5 uncoupled
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
3.7 time 3.8 time

Fig. 3.7. Behavior of two oscillator model: period versus time plot for phase locked case, o, = oy,
o, + 4] > 2m/3. Both oscillators are frequency locked with period 6/5

Fig. 3.8. Behavior of two oscillator model: period versus time plot for uncoupled case, o, = o, = 0. Both
ascillators run independently with periods 1, 3/2 respectively. In Figs. 3.8 — 3.14 oscillator no. 1 is shown
dashed and oscillator no. 2 is shown solid '
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Fig. 3.9. Behavior of two oscillator model: period versus time plot for drifting (but nearly phase locked)
case, o, = oy = 1.04

Fig. 3.10. Behavior of two oscillator model: period versus time plot for drifting case, o, = 0y = 1

3 3[
2.5 25
2 2
° ©
g g
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0.5 Oy = Olg = 0.5 05t Oy = 0lg = 0.l
0O 10 20 30 40 50 &0 70 0O 10 20 30 40 50 60 70O
3.11 time T 312 time

Fig. 3.11. Behavior of two oscillator model: period versus time plot for drifting case, a, = ay = 0.5

Fig. 3.12. Behavior of two oscillator model: period versus time plot for drifting case, &, = ¢y = 0.1

the nature of the loss of phase locking due to a decrease in coupling (e.g. due to a
lesion). For o, = az = 0.5 the oscillators are largely uncoupled, their periods
varying somewhat about their respective uncoupled values (Fig. 3.11). Decreasing
the coupling to a, = a, = 0.1 further extends this trend (Fig. 3.12).

Similar results hold for zero and negative values of the coupling coefficients «,,
a,. See Fig. 3.13 for which «, = 0, a; = 1.5. This represents the case of one-way
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Fig. 3.13. Behavior of two oscillator model: period versus time plot for case of one-way coupling, &, = 0,
oy = 1.5

Fig. 3.14. Behavior of two oscillator model: period versus time plot for drifting case with unequal
coupling, o, = — 0.5, a5 =1

coupling in which the driving oscillator (here no. 1) fails to entrain the other. Figure
3.14 displays the case a, = — 0.5, «; = 1 in which oscillator no. 1 has an excitatory
effect on oscillator no. 2, while oscillator no. 2 has an inhibitory effect on oscillator
no. 1.

4. Discussion

Comparison of Experimental Lesion Results with Transient Model Behavior

In Fig. 1.3 we see that following a lesion of the lateral tracts, the caudal segments
exhibited a great degree of instability while the rostral segments were relatively
unaffected. Comparison of Fig. 1.3 with Figs. 3.7—3.14 suggests similarities
between the lesioned cord in this example and the simplified two oscillator model
described above with &, = 0, a; = 1.5 (i.e., one way coupling, Figs. 3.13, 3.14). This
in turn suggests that coordinating fibers which primarily descended head to tail
remained in the uncut medial tracts. In the second experiment illustrated which
spared the lateral tracts (Fig. 1.4) rostral and caudal segments exhibited compara-
ble disturbances. Comparison with the two oscillator model suggests that this type
of lesion might correspond to a decrease in both «, and o, from values sufficiently
large to cause phase locking in the intact cord, Eq. (3.8), to smaller values associated
with transient behavior (cf. Fig. 3.11, «, = a; = 0.5). Thus we would expect to find
both descending and ascending fibers in the lateral tracts.

The experimental and model systems clearly differ in several respects. For
example, in both experiments illustrated the periods of the cord varied more
chaotically in the experiment than in the model; furthermore, the simplified two
osciliator model does not exhibit the 2: 1 and 3 : 1 subharmonic locking which has
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been observed. In the two oscillator model discussed above, nearest neighbor
coupling has been assumed and, as shown in section 3, the forward going traveling
wave of normal fictive swimming results from that model if and only if the rostral
oscillators run faster than the caudal oscillators. Since some cord fragments exhibit
the opposite tendency, this model cannot encompass all our data. However, the 3
oscillator chain with ascending (long-distance) inhibitory coupling can exhibit
forward going waves when either rostral or caudal oscillators are fastest. This is, of
course, a generalization of the simple nearest-neighbor model and more complex,
multi-oscillator generalizations may yield more realistic behavior.

In principle, the properties of the long distance (inhibitory) coupling fibers can
be tested experimentally by attempting to locate and cut, or block pharmacologi-
cally the relevant fibers. The model predicts a change in phase lag (as  varies in Fig.
3.5, for example), which should be observable. Similarly, it may be possible to
construct a more complete coupling matrix a;; (cf. Eq. (2.13)) for a multi-oscillator
model by careful experimental measurements involving the stimulation of a given
identified fiber and the response of a given segmental oscillator.

Frequency Control

One factor which we have so far neglected in our model is frequency control. As
mentioned in the introduction, the speed with which the fish travels through the
water is a function of the frequency of the traveling waves which pass down the
fish’s body. The question arises, how does the system effect a change in the speed of
swimming (i.e., a change in the frequency of the traveling waves)? We must reject
the notion that the brain emits a variable frequency signal which drives the chain of
segmental oscillators. However appealing from the point of view of traditional
engineering vibration problems, this is ruled out by the observation that following
removal of the lamprey’s brain the oscillators burst rhythmically and become
entrained, exhibiting essentially normal phase locked behavior. The frequency of
the bursting can then be altered by adjusting the concentration of the stimulating
drug in the bath (Poon, 1980). Presumably, the drug in the bath is mimicking the
action of some substance released from nerve fibers along the length of the cord;
whether such a substance acts as a classic neurotransmitter to speed segmental
oscillators or as a neuromodulator (c¢f. Dismukes, 1979) can at present only be
speculation.

Such chemical control is consistent with the view that the frequency control is
effected locally by altering the frequency w, of each of the individual segmental
oscillator pairs. In this view, it would be plausible that the decision to change
swimming speed could be made in the brain with some of the tracts of the cord
transmitting the signal which causes the release of the active compound. Some such
control must exist, but the question remains as to the location of the fibers which
control frequency, how they function and how they themselves are controlled.

Conclusions

In the models described above, several organizational schemes for the CPG are
outlined. All have deficiencies at present but they permit some statements regarding



368 A. H. Cohen et al.

central pattern generators in general. The first point of interest is that in all our
models bidirectional coupling between the oscillators can generate a stable
traveling wave. More striking is that in our simplest model, a single set of fibers is
sufficient for the coordinating system to maintain proper phase coupling when the
fish swims either forwards or backwards; it is necessary simply to retune the end
oscillators (see section 3 above). Although the situation in the lamprey is more
complex, this elegant mechanism could well apply in simpler 2 oscillator systems.
One need not posit any complicated arrangement for reversing the direction of
propagation; some control center could easily retune the oscillators when
necessary. Whether other systems of multiple coupled oscillators such as that of the
leech (Friesen and Stent, 1977) utilize this type of control mechanism is unknown,
but could be tested.

It remains unclear how the lamprey cord is structured. First, more data are
required to characterize more fully the function and anatomy of the cord. Second,
we plan to add elements to the model which would control the frequency and to test
other forms of coupling either separately or in combination with the present types.
It is not possible to prove that a model is ““correct”, but with such models as ours it
should be possible to test assumptions and formulations which in turn should
suggest further experiments and refinements of our concepts.
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