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Abstract. A simulated neural network has been connec-
ted to a simulated mechanical environment. The network
is based on a model of the spinal central pattern gener-
ator producing rhythmic swimming movements in the
lamprey and the model is similar to that used in earlier
simulations of fictive swimming. Here, the network has
been extended with a model of how motoneuron activity
is transformed via the muscles to mechanical forces.
Further, these forces are used in a two-dimensional
mechanical model including interaction with the sur-
rounding water, giving the movements of the different
parts of the body. Finally, these movements are fed back
through stretch receptors interacting with the central
pattern generator. The combined model provides a plat-
form for various simulation experiments relating the cur-
rently known neural properties and connectivity to the
behavior of the animal in vivo. By varying a small set of
parameters, corresponding to brainstem input to the
spinal network, a variety of basic locomotor behaviors,
like swimming at different speeds and turning can be
produced. This paper describes the combined model and
its basic properties.

1 Introduction

In order to understand the function of a neural network,
it is generally not sufficient to know the properties of the
neurons and the connectivity in detail. The character of
the input and the output also plays a crucial role. Bio-
logically characterized networks might not operate nat-
urally without the proper environmental input. Further,
this input is often dependent on network output, thus
requiring a model of the environment in which the net-
work operates. Formulating such an environment model,
capable of providing a realistic feedback, becomes essen-
tial when doing computer simulations of this kind of
networks. When the network under study is connected
more or less directly to muscular output and sensory
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input, some representation of the mechanical environ-
ment is needed. This requires modeling muscles and
receptors, including their interaction with the neurons, as
well as the mechanical environment, including relevant
parts of the body (cf. Grillner 1981).

In some experimental preparations, most of the
neural communication with other subsystems can be
disconnected, making it possible to study the behavior of
the neural network in isolation. One such preparation is
the isolated spinal cord of the lamprey, in which the
central pattern generator producing rhythmic locomotor
activity (swimming) can be activated despite the lack of
both brainstem input and sensory feedback (Grillner et al.
1981b; Brodin et al. 1985). During such fictive swimming,
many characteristic features of real swimming may be
preserved, e.g., the possibility to “swim” at different speeds
and the phase shift of motoneuron output between differ-
ent points along the cord (Wallén and Williams 1984).

One approach to realistic simulation of biologically
characterized networks is to restrict the simulations to
such isolated systems. Indeed, computer simulations of
the lamprey central pattern generator have been success-
ful in explaining most observations during fictive swimm-
ing (Wallén et al. 1992; Wadden et al. 1993) in terms of
realistically simulated neurons (Ekeberg et al. 1991;
Brodin et al. 1991) and a synaptic connectivity based on
known connections from paired intracellular recordings
(Grillner et al. 1991). However, restricting the use of
realistic simulations only to model such isolated prepara-
tions is not desirable. For example, in order to relate the
simulated neuronal activity to normal swimming and
also to study the role of the sensory feedback it is neces-
sary to include some representation of the mechanical
environment.

Many general aspects of swimming behavior of
fish have been studied (J. Gray 1933b; Lighthill 1969;
Grillner and Kashin 1976; Webb and Weihs 1983). There
are also similar studies directed more specifically towards
the lamprey in particular (Wallén and Williams 1984;
Williams et al. 1989). The lamprey has a slender body
without paired fins. It swims by propagating an undula-
tory wave with increasing amplitude from head to tail.
These undulations are caused by rhythmic motoneuronal
activity alternating between the two sides of the spinal
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cord (Grillner 1974). The alternations occur later at more
caudal positions along the body, with a lag proportional
to the distance between the points. Thus, a wave of
motoneuronal activity is produced which propagates
caudally during normal swimming. The phase lag be-
tween any pair of points along the cord stays constant
even when the speed of swimming changes.

The aim of the current work has been to construct
a model of the neural control of swimming that is suit-
able for computer simulation. This includes both the
mechanical movements and the neural control system.
Mechanical models in connection with neural models
have earlier been used to study, for example, the neural
control of bipedal walking (Taga et al. 1991) and arm
movements (Kalveram 1991). In those studies, however,
the neural component was based on abstract oscillators
or pattern generators rather than experimentally charac-
terized neural networks. A mechanical model of how
enforced muscle forces give rise to body movements in
the swimming lamprey has also been formulated (Bowtell
and Williams 1991). That study, however, did not include
any forces from the surrounding water.

Here, the neural network model of the spinal central
pattern generator is similar to that used in the simula-
tions of fictive swimming in the lamprey. However, the
model neurons are simpler and the network is also
connected to a simulated mechanical environment. The
neural network model has been extended with a mechan-
ism by which motoneuron activity can be transformed
via the muscles to mechanical forces. These forces are
used in a two-dimensional mechanical model of the body,
taking the interaction with the surrounding water into
account when computing the movements of the different
parts of the body. Finally, these movements are fed back
through stretch receptors interacting with the central
pattern generator.

2 The neural network model

The system simulated consists of two main parts: the
neural network and the mechanical system. The neural
network model is based on earlier simulations using
detailed cell models and an experimentally established
connectivity (cf. Wallén et al. 1992). In the present work,
the individual model neurons have been simplified con-
siderably while the connectivity is maintained.

In the detailed simulations, a five-compartment
model was used for each neuron. Voltage-dependent
sodium, potassium and calcium ion conductances were
calculated using equations of the Hodgkin-Huxley type.
Intracellular calcium pools and calcium dependent
potassium channels were also included. These model
neurons are capable of producing realistic action poten-
tials at various frequencies and also show effects like
spike frequency adaptation (Ekeberg et al. 1990, 1991).
Synaptic connections were modeled as transmembrane
conductances and also included the voltage-sensitive N-
methyl-p-aspartate (NMDA) receptors (Brodin et al. 1991).

Here, a simplified model neuron was constructed to
enable simulation of the rhythm-generating network of

the entire spinal cord. A non-spiking model was chosen,
in which each unit could be regarded as a representative
of a population of functionally similar neurons. The
output of each unit represents the mean firing frequency
of the population. Measurements were made on the
simulated neurons used in our earlier work (Ekeberg et
al. 1991; Wallén et al. 1992) and the results were used
when designing the simplified model. Important proper-
ties like input-output relations and spike frequency ad-
aptation were basically preserved. The special NMDA
properties, known to be important during slow swimm-
ing (Brodin et al. 1985), were not included in order to
keep the model simple.

Simplified model neurons have earlier been used to
study this neural system (Buchanan 1992). In that work,
the model neurons displayed a qualitative behavior like
real neurons, but no attempt was made to tune the model
neuron parameters quantitatively. The model neurons
used here are of similar complexity, but in addition they
have been tuned to match the detailed neuron model
used earlier.

The model neuron used here acts primarily as
a “leaky integrator” with a saturating transfer function
(Fig. 1A). The excitatory and the inhibitory synaptic
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Fig. 1. A Basic mechanisms included in the neuron model. Excitatory
and inhibitory synaptic inputs are added separately and subject to
dendritic time delays. The excitatory input is transformed by the trans-
fer function, while the inhibition is subtracted from the result. Adapta-
tion is included as a delayed negative feedback. B Known connections
between neurons of different types at the segmental level. The function
of the network is briefly as follows: Excitatory interneurons (EIN)
maintain activity ipsilaterally by exciting all the other cells; contra-
lateral inhibitory interneurons (CCIN ) suppress contralateral activity;
lateral inhibitory interneurons (LIN) finally come in and terminate the
ipsilateral activity. Motoneurons (MN) provide the output to the
muscles, and edge cells (EC) are stretch-activated cells that excite the
ipsilateral side and inhibit the contralateral side



inputs are added separately and are both subject to
a dendritic time delay with a time constant tp. The
excitatory input is then transformed by a function which
provides saturation at high levels of excitatory input. The
inhibitory input is subtracted from the result. Spike fre-
quency adaptation is also included as a delayed negative
feedback with another time constant, 1. Negative final
values give an output of zero.

The delayed values for the excitatory synaptic input
(£+), the inhibitory synaptic input (¢ _), and the neuron
output (J) are calculated from first-order differential
equations:
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Here, ¥, and ¥ _ are the sets of incoming excitatory and
inhibitory synapses respectively, w; is the strength of
synapse i, and u; is the output value from the correspond-
ing presynaptic neuron. Now, the output from the model
neuron is given by:

{1 —exp{(®@ — &)} — & — ud if positive
u= . 2
0 otherwise
Here, @ is a threshold for activation, I is a gain constant,
and u controls the level of adaptation. The maximum
output has here been normalized to one by scaling the
synaptic weights appropriately.

The simulated neural network contains neurons of
five different types: motoneurons (MN), excitatory inter-
neurons (EIN), lateral inhibitory interneurons (LIN),
contralateral inhibitory interneurons (CCIN), and
stretch-sensitive edge cells (EC). Except for the sensory
edge cells, populations of neurons are modeled as de-
scribed. The parameters for each model neuron were
tuned to match the response characteristics of the corres-
ponding neuron type from the detailed simulations
(Ekeberg et al. 1991; Wallén et al. 1992). The resulting
values are shown in Table 1.

In the earlier simulations, the neurons modeled in
a realistic fashion were interconnected into a network in
accordance with experimentally established synapses
(Fig. 1B). The synaptic parameters were then tuned to
produce a behavior consistent with that observed
during fictive swimming (Wallén et al. 1992). Here, the
corresponding synapse parameters were used to connect
the simplified neurons in each segment.

The segmental network as shown in Fig. 1B is
repeated along the spinal cord. Here, 100 such segments
are included, giving a total of 1000 neurons (only one EC
on each side needs to be simulated, representing both
excitatory and inhibitory EC). In addition to the segmen-
tal connectivity, the neurons are also connected to neigh-
boring segments along the spinal cord, but the connect-
ivity between segments is not known in detail. Different
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mechanisms have been suggested to explain the constant
phase lag seen between different points along the cord:
locally increased excitability (Matsushima and Grillner
1992) or asymmetrical coupling between segmental oscil-
lators (Williams 1992). The differences between the sug-
gested mechanisms were not addressed here. Rather, an
intermediate position was taken by utilizing both asym-
metrical coupling and locally increased excitability.

The synaptic output from each neuron is distributed
to receiving neurons in nearby segments both caudally
and rostrally, using the same synaptic strength as within
the segment. The extent of this distribution is set individ-
uvally for each type of connection, roughly based on the
known extent of the corresponding projections in the
lamprey. The extents used, in terms of number of seg-
ments, are given in Table 2 together with the other
synaptic parameters.

This network is capable of producing a rhythmic
pattern of activity at various frequencies when tonic
brainstem input is provided. Further, coordinated waves
of activity along the spinal cord are generated, in particu-
lar when the tonic input to the five most rostral segments
is increased. This is in accordance with experimental

Table 1. Neuron parameters

Neuron type e r Tp it Ty
EIN —-0.2 1.8 30 ms 0.3 400 ms
CCIN 0.5 1 20 ms 0.3 200 ms
LIN 8 0.5 50 ms 0 —
MN 0.1 0.3 20 ms 0 —

EIN, Excitatory interneuron; CCIN, contralateral inhibitory inter-
neuron; LIN, lateral inhibitory interneuron; MN, motoneuron

For each neuron type, the parameters used in (1) and (2) are given:
@, firing threshold; I', gain; t5, dendritic time constant; g, adaptation;
T4, time constant of adaptation

Table 2. Synapse parameters

Pre synaptic  Post synaptic Type  Strength  Rostral Caudal
neuron neuron extent extent
EIN EIN Ex 04 2 2
EIN CCIN Ex 3 2 2
EIN LIN Ex 13 5 5
EIN MN Ex 1 5 S
CCIN EIN Inh 2 1 10
CCIN CCIN Inh 2 1 10
CCIN LIN Inh 1 1 10
CCIN MN Inh 2 5 5
LIN CCIN Inh 1 5 5

EC CCIN Inh 0.01 0 0
Brainstem EIN Ex 2 —

Brainstem CCIN Ex 7 — —
Brainstem LIN Ex 5 .- —
Brainstem MN Ex 5 — —

The model neurons are connected according to Fig. 1B but also to the
same neurons in neighboring segments. The “extent” denotes how far
these connections reach (in number of segments) in the rostral and
caudal direction. The connection weight (w;) used in (1) is the “strength”
given here divided by the number of segments it connects to

Ex, Excitatory; Inh, inhibitory
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findings for the isolated spinal cord of the lamprey
(Matsushima and Grillner 1992) as well as with simulation
results using the detailed neuron model (Wadden et al. 1993).

3 The mechanical model

The second main component of the system simulated is
the mechanical model. The actual swimming movements
are calculated using a two dimensional mechanical
model of the body considering also the forces from the
surrounding water. The neural network model interacts
with the mechanical model in two ways: (1) the output of
the model motoneurons controls the spring constants of
the model muscles; (2) information about the curvature of
the body is fed back to the neural network via the
stretch-sensitive EC.

In order to mathematically describe the position and
shape of the body as it varies in time, the projection of the
midline on the horizontal plane is used. The position of
this curve is represented by a chain of N links connected
by N — 1 joints (Fig. 2B). In the simulations presented
here, N was set to 10, implying that each mechanical link
corresponds to 10 neural segments. An alternative view
would be to keep a curve representation of the body.
Such a formulation would lead to partial differential
equations describing the forces and the motion. Here,
however, the formulation as a chain of links was chosen
because of the direct correspondence with the numerical
solution.

The links are numbered from the head to the tail, and
the position of each link i is described by three coordin-
ates x;, ¥;, and ¢;: x; and y; denote the position of the
midpoint of the link, while ¢; denotes the angle from the
x-axis (see Fig. 2A). This set of parameters constitutes
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Fig. 2A, B. Representation of the fish body as a chain of interconnec-
ted links. A The position of each link i is described by the position of its
midpoint (x;, y;), which is also its center of gravity, and its direction ¢;.
B The links and joints are numbered from the head towards the tail

a non-minimal representation of the position of the body,
implying that the mechanical constraints have to be
explicitly stated in order to solve the kinematic equa-
tions. The movement of the links is here constrained by
the joints, forcing them to stay connected. This constraint
can be expressed mathematically as:
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Here, I; is the length of link i.

Each link i is acted upon by three types of forces
(Fig. 3A): muscular torques T; and T;..,, water forces W,
and inner forces from neighboring links F; and F;_,.
Once these different forces are known, the movement
can be calculated by integrating the accelerations from
Newton’s law of motion:

Fi—l,x
mi.)‘}i = I/Vi,y + Fi,y - Fi—l.y

mi'x.:.i = VVi,x + Fi,x -
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Fig. 3. A Forces acting on link i: muscular torques T; and T;_,, water
forces W,, and inner forces from neighboring links F; and F,_,. B The
bending torques on the body are controlled by the activation of muscles
on both sides of the body. The spring constants for the muscles are
changed by the activity in the corresponding MN. This model gives the
possibility for the neural network to vary both the total bending force
and the stiffness locally along the length of the body



Here, m; is the mass and I, the moment of inertia. The
torques and inner forces at the end-points (i = 0 and
i = N) are all zero.

3.1 Body parameters

In order to use (4), values for the masses and the moments
of inertia for all the links are needed. These are estimated
from the shape and density of the corresponding part of
the body. Since the neural network model was derived
from experiments on the lamprey, the body was also
chosen to correspond roughly to the lamprey in size and
shape. The method is general enough to be applicable to
many other species. We will use the term “fish” below to
denote our model animal, though the lamprey strictly
speaking is a cyclostome.

The body shape chosen is 30 cm long and has no
pronounced fins. The cross sections are elliptical with
a height of 3cm. In a typical fish, the height would
decrease caudally, but fins and the flattened shape could
compensate somewhat for this effect (cf. below). Here, the
same height has been used along the entire body. In the
rostral part, the width is 2 cm but after about one third of
its length, the width decreases linearly towards the tail.

Since the mean density of a fish is the same as that of
water, it is reasonable to estimate the mass of each link
from the volume of a corresponding piece of the body.
This gives the values found in Table 3. The moment of
inertia for a link is estimated from that of an elliptical
cylinder:

w2 2
I=m(—lg+‘1—2->

where m is the mass, w the width, and ! the length of the
cylinder (see, e.g., D. E. Gray 1972). Inserting values
corresponding to the shape of the body gives the values
found in Table 3.

3.2 Water forces

The hydrodynamic aspects of swimming have been de-
scribed in various models (Wu 1971; Blake 1983; Yates
1983). Forces acting on the body from the surrounding

Table 3. Mechanical properties of the links

Link L(m) m;(g) I (gmm) 4, (Ns*/m?®) 4 (Ns?/m?)
1 3 4.5 450 0.045 0.030
2 3 45 450 0.045 0.020
3 3 4.5 450 0.045 0.010
4 3 4.5 450 0.045 0
S 3 38 . 356 0.045 0
6 3 3.15 2715 0.045 0
7 3 2.5 204 0.045 0
8 3 18 14.2 0.045 0
9 3 1.1 8.6 0.045 0

10 3 045 34 0.045 0

For each link, the length (/;), mass (m;), and moment of inertia (I;) are
given along with the estimated water resistance coefficients 4, and
Ay for the flow perpendicular and parallel to the body, respectively
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water depend on the speed of the body relative to the
water. At very low speeds the viscous forces are impor-
tant, while at higher speeds inertial effects play the
dominating role. Here, we assume that the inertial forces
dominate (high Reynolds numbers). In principle, it would
be possible to simulate the complete three-dimensional
flow around the fish body, which would give the forces on
the body. This kind of simulation, however, is very time
consuming. Reasonable approximations for the forces
can be obtained by viewing the surrounding water as
stationary and considering the forces on each link from
its speed alone (cf. Taylor 1952).

Movement of any object through a stationary fluid
causes an increase in pressure in front of the object and
a decrease behind it. This makes the fluid in front move
away and return again behind the object. The different
pressures on the two sides also give a net drag force on
the object, counteracting the movement. This force is
proportional to the square of the speed and can be
calculated from:

W = pv? ; C (%)
where p is the density of the fluid, v is the speed of the
object, A is the area perpendicular to the movement,
and C is the drag coefficient given by the shape of the
object (see, e.g., Blevins 1984). For water we have
p = 1000 kg/m>. Here, A will be used as an abbreviation
for pAC/2. For simplicity, we will assume that the pres-
sure differences resulting from movements along the
body are added linearly to those from movements per-
pendicular to the body. Thus, movements in these two
directions are handled separately and the resulting forces
are added to give the combined effect. The sizes of the
parallel force component (W), and the perpendicular
force component (#, ) are rewritten as:

I'V" = Uﬁl“ WJ_ = UJZ.A.J_ (6)

where v is the parallel component and v, the perpen-
dicular component of the velocity v and 4, and 4, are the
corresponding A factors, estimated from (5).

Movements perpendicular to the body axis are the
most important ones for propulsion. Since the cross
sections are elliptical, it is reasonable to use data for drag
forces on an elliptical cylinder in a moving fluid. When
the ellipse is not too eccentric, the drag coefficient, C, is
close to 1. Near the tail the flattened shape should really
call for a higher C value. On the other hand, the height of
a real fish usually decreases, compensating for this effect.
Because of the approximate nature of these values, the
value C = 1 has been used along the entire body. Note
that since this fish-like body lacks a large tail fin, the
movements are expected to be of the anguilliform (eel-
like) type (see, e.g., J. Gray 1933b, 1968; Blake 1983).

For movements parallel to the body axis, forces are
harder to estimate properly since they depend on how the
shape of the cross section varies along the body. Explora-
tive simulations have shown that the size of these forces
does not influence the resulting swimming very much.
We have assumed that these forces are negligible except
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for the first three links where the cross-sectional area
changes most dramatically. The values used for 4 given
in Table 3 are estimated values based on the area of the
cross section.

3.3 Muscles

The motoneurons of the network drive the various
muscles, which in turn produce forces that cause move-
ments of the body. The relevant muscles are located on
the two sides of the body with their axis of contraction
being mainly parallel to the main axis of the body. In
reality, these muscles are not directly connected to the
skeleton, but we will still assume that the length of the
muscle fibers varies linearly with the local curvature of
the body.

As a rule, muscles are modeled by including both an
elastic and a viscous component (e.g., Lacquaniti and
Soechting 1986). The elastic component can be viewed as
a spring where the spring constant is used to set the force
produced in a steady-state condition. The viscous com-
ponent of the force is proportional to the speed of the
movement. For simplicity, elastic and viscous forces from
non-muscular parts of the body like the skin are included
in the muscle model.

The motoneuronal output can be assumed to linearly
control the forces generated by the muscles (cf. Tax and
Denier van der Gon 1991). This corresponds to a linear
relationship between motoneuronal activity and the
muscular spring constant.

The local curvature in the chain model corresponds
to the difference in angle between two consecutive links
(Fig. 3B). The linear relationships assumed make it pos-
sible to express the torque acting at a particular joint as
a linear function of the motoneuron activity on the two
sides (M, and My):

Ti=aMyp — Mg)+ B(M + Mg + 7)(@i+1 — @)
+ 6(@iv1 — @) (7

(see Appendix A for details). Four parameters are intro-
duced: « is the gain of the muscles, § is the stiffness gain,
y is the tonic stiffness, and ¢ is the damping coefficient.
Here, the same set of parameter values has been used
throughout the body: o«=3Nmm; B=03Nmm;
y = 10; 6 = 30 Nmmms. For a more detailed analysis,
values measured at different points along the body would
be desirable.

It should be noted that this arrangement makes it
possible for the neural network not only to control the
static torque (by setting M, — M), but also to control
the stiffness of the body (by setting M, + Mp).

3.4 Stretch receptors

Changes in body curvature are known to influence the
activity of the locomotor central pattern generator. In the
lamprey, the receptors have been identified as stretch-
activated EC located at the lateral margin within the
spinal cord (Grillner et al. 1981a; Viana Di Prisco et al.
1990). When the body is bent, EC on the stretched side

become active. Inhibitory EC will then inhibit activity on
the contracted side, while excitatory EC promote activity
on the stretched side (cf. Fig. 1B).

The activity level of an EC is roughly proportional
to the curvature of the body at the site of the cell (Grillner
et al. 1982). The proportionality constant by itself is
irrelevant and has been set to one. The strength values for
the synapses from the EC are not known. Different
settings have been tested but further work is needed
to analyze the functional importance of each of these
connections. In the simulations presented here, the
only synapse used is the inhibitory input to CCIN (see
Table 2). The output of an EC on the right side of the
body is computed as:

2

i — Qi rE h i~ Qi

fe {(w; (p'“)l,-+l,~+1 when ¢; > @;44 ®
0 otherwise

The output of an EC on the left side is computed in
a corresponding way.

3.5 Inner forces

In Newton’s law of motion (4), the forces from the water
can be estimated from (6), while the muscular torques are
given by (7). The only forces left unknown are the inner
forces F; , and F; ,. These forces act to enforce the mech-
anical constraint that the links must stay connected dur-
ing the motion as expressed by (3). Equations (3) and (4)
constitute a differential-algebraic equation system of the
type generally encountered for mechanical multibody
problems formulated using a non-minimal set of co-
ordinates.

The kinematic constraints (3) can be written in com-
pact form (see Appendix B for details):

gp)=0 )
where g(p) is a 2(N — 1) column vector.

The motion (4) can also be expressed in compact form
(see Appendix B):

p=v MV=w+9PS (10)

where p is a 3N column vector composed of the position
coordinates of all the links; v is the corresponding speeds;
w is the external forces (water forces and muscle torques);
A is the 3N x3N diagonal mass matrix; and f is
a 2(N — 1) column vector containing the unknown inner
forces. The matrix %(p) is actually the transpose of the
jacobian of g(p). This is a consequence of the fact that the
inner forces are introduced by the constraints. During the
computation of f, the position p is assumed to be con-
stant. Therefore, the arguments to g and 4 are left out in
the equations below.

Differentiating (9) twice with respect to time gives an
equation which can be written as (see Appendix B):

4Ty =1 11
Inserting the expression for v from (10) into (11) gives:
GTH W+ ED) =1



which can be restated as a system of linear equations in T:
&M G =79 M W (12)

Note that .# is a constant diagonal matrix so the calcu-
lation of .# ™! is trivial. Solving (12) will give the inner
forces f which were the only missing components to
calculate the accelerations from (10).

3.6 Numerical methods

The differential equations used in the neural model (1) are
straightforward to integrate by any suitable numerical
method. For simplicity, the Euler method was used with
a step length of 10 ms.

Solving the equations describing the mechanical
system is a bit more complicated. First, the inner forces
f are solved from the linear equation system (12) using
gaussian elimination and pairwise pivoting between
x and y coordinate directions. Since the left-hand side
matrix (47.# ~ %) is a band matrix of width 6, solution is
fairly quick even for large N’s.

The movement of the body is now calculated by
integrating (10). With the current parameter settings, this
equation system turns out to be stiff. The stiffness arises
especially from the damping characteristics of the model
muscles but also from the spring stiffness and the
counteracting forces from the water. Stiffness of this type
prevents large integration steps to be taken using an
ordinary (explicit) numerical method because of numer-
ical instability. The examples shown here were run with
a step length of 1 ms where the simulations were numer-
ically stable using the Euler method. By using another
numerical formulation where the stiffness introduced by
the muscle torques were handled implicitly, the step
length could be increased to about 5 ms. It is likely that
an iterative implicit method would make it possible to
take even longer steps.

Simulations running on a Decsystem 5000/200 work-
station using a step length of 1 ms for the mechanical
system and 10 ms for the neural system are able to run at
about one fifth of real time (with graphical output dis-
abled). The speed is limited primarily by the mechanical
simulation but also for practical purposes by the graphi-
cal output.

Only the second derivatives of the kinematic
constraints (3) were used when solving the equations.
Mathematically, this is perfectly correct as long as the
initial values conform to (3). However, the numerical
solution can run into severe problems when the numer-
ical errors make the state variables violate the original
constraints. This effect has been_ thoroughly analyzed
recently (Alishenas 1992; see also Olafsson and Alishenas
1992). A technique called stabilization through projection
was suggested to continuously adjust the system to con-
form to the constraints. The adjustment is done by pro-
jecting the position and/or speed values down to the
subspace formed by the kinematic constraints. Alishenas
found that stabilization of the speed variables was critical
while the adjustment of positions was less important.
Here, the speeds are adjusted using this projection tech-
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nique, while the positions are adjusted by using simple
repositioning.

Speed stabilization through projection according to
Alishenas (1992) is done by solving X from:

(&M G)% = G

where ¥ are the numerically obtained approximate values
for the speeds v. Note that the left-hand side of the
equation system is the same as in (12) which has already
been computed. The new stabilized speed values are now
obtained from:

V=V— .4 1(%x)

This stabilization need not be applied after each time
step. Here, stabilization was done after every tenth integ-
ration step.

4 Simulation of propulsion and turning

In order to test to what extent the model captures various
properties of normal swimming behavior, a number of
simulations were done. Here, only a limited number of
basic simulation results are presented, representing the
general capabilities of the model. A more detailed
analysis of the simulation results will be presented in
a separate paper.

4.1 Propulsion

When a tonic, symmetric, excitatory input is applied to
the simulated neural network, alternating activity on the
left and right side of the spinal cord will appear. A rela-
tively low level of excitation is first chosen (0.15, arbitrary
units). By further increasing the tonic level by 70% on the
first five segments, coordinated waves of activity start
traveling down the spinal cord (Fig. 4 A1-5). This is in
accordance with the earlier simulations of fictive swimm-
ing where more detailed neuron models were used
(Wallén et al. 1992; Wadden et al. 1993). The resulting
length of these neural waves is slightly shorter than the
length of the spinal cord. This relationship is directly
related to the phase lag between the segments, and can be
controlled by changing the amount of extra excitation
given to the first segments.

The neural waves include activity of the MN which
causes time-varying forces to be exerted by the model
muscles. In the mechanical model, these coordinated
waves of muscle forces are transformed to body undula-
tions, making the fish swim forwards (Fig. 4 B1-5). At
this level of excitation, the resulting speed through water
is about 0.4 m/s.

A number of characteristic features of anguilliform
swimming can be observed. Firstly, the amplitude of
the undulations increases from head to tail, which is in
agreement with natural anguilliform swimming (J. Gray
1933b). Note that this is not caused by any increasing
level of output from the neural circuitry but is a pure
consequence of the mechanical arrangement. Secondly,
the mechanical wave of the body is faster than the speed
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Fig. 4A, B. Steady-state swimming induced by low tonic excitation to
the neural network. A1-8 The neuronal activity; B1-5 the correspond-
ing position of the body. The interval between successive frames is
50 ms. In each frame A1-S§, the neuronal activity is drawn in the
following order from the top: right EC, MN, LIN, EIN, CCIN, left
CCIN, EIN, LIN, MN, EC. Rostral is left and caudal is right. Grid lines
below the body in B1-§ are separated by 2 cm. Here, the stimulation
level is 0.15 (arbitrary units) resulting in oscillations at 2.3 Hz and
a speed through water of 0.4 m/s

through water. This can be observed by noting that the
points of maximum body curvature move backwards in
relation to the grid lines (Fig. 4 B1-5), and is a well-
known property of most undulatory modes of swimming
(Lighthill 1969).

Increasing the level of excitation increases the fre-
quency of the oscillations. If the extra excitation to the
first five segments is kept at 70%, the phase relations
along the body will stay approximately the same when
the excitation level is changed. Figure 5 shows the result
when the level is set at 0.4 (arbitrary units). The higher
frequency in combination with the constant phase rela-
tions makes the waves of neural activity move faster
along the spinal cord. Consequently, the speed of swimm-
ing increases. Here it reaches a value of 0.73 m/s. The
higher level of excitation also increases the amplitude of
the neural activity, especially in the MN. This gives the
increased muscular force needed to maintain the higher

Fig. 5A, B. Steady-state swimming with a higher level of tonic excita-
tion. Stimulation level is 0.4 (arbitrary units) resulting in oscillations at
4 Hz and a speed of 0.73 m/s

speed, and, as a consequence, the undulations become
more pronounced.

The input from the stretch receptors (top and bottom
traces in Fig. 5 A1-5) is out of phase with the mo-
toneuronal activity by about 90°. The stretch receptors
are maximally active at the time when the network is
switching from contralateral to ipsilateral activity. This
makes their input suited for terminating the contralateral
activity at a time coordinated with the actual movement
of the body. Thus, stretch receptor input may act as yet
another burst-terminating factor in addition to those
intrinsic to the neural network (cf. Wallén et al. 1992).

4.2 Turning

By making the tonic stimulation asymmetric it is possible
to induce a turn (Fig. 6). An asymmetric component has
here been added on top of the tonic level used in Fig. 5 by
increasing the level by 0.3 on the right-hand side of the
spinal cord and decreasing it by the same amount on the
other. The neural network continues to produce waves of
activity alternating between the two sides (Fig. 6 A1-5).
The frequency and length of the bursts is about the same
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Fig. 6A, B. Steady-state swimming with asymmetric tonic excitation.
The left side is stimulated with a level of 0.1 and the right with 0.7,
producing a turn to the right

as before. The main difference is that the amplitude of the
neural activity has become asymmetrical. The MN out-
put on the right side is much larger than on the left. Note
also that most LIN on the left side are silent.

In the mechanical system (Fig. 6 B1-5) the asymmetry
in MN output amplitude gives the body a point of extra
high curvature that propagates backwards along the
body. This is consistent with observations on how real
fish make turns (J. Gray 1933a). In Fig. 6, the asymmetri-
cal stimulation was added immediately before the record-
ing was made. If this asymmetrical stimulation is main-
tained, the fish will continue to swim in a circle.

5 Discussion

The combined neural and mechanical model presented in
this paper has been constructed out of simplified compo-
nents. Still, the behavior of the mode! is in many respects
comparable with the basic swimming patterns seen for
real animals.
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The neural network model is based on an earlier
more realistic model but uses much simpler neuronal
elements. In particular, the individual spikes of the neur-
ons are not represented. Further, the NMDA pacemaker
properties are not included, which makes it impossible to
produce very slow rhythms. However, the network used
is capable of producing rhythmicity at different frequen-
cies, and the intersegmental coupling makes it possible to
generate natural waves of activity controllable by a small
number of input parameters.

The mechanical model includes simplifications both
with regard to the biological relevance of the parameters
and equations used to describe the body and with regard
to the forces from the surrounding water. For example,
muscle activity produces a torque not only locally but,
rather, over some distance along the body. However, the
simplifications serve to remove less relevant details, mak-
ing the model easier to understand and analyze. When-
ever the model is found not to behave like the biological
counterparts in important aspects, these simplifications
have to be reconsidered. If additions to the model are
found necessary, these will not only make the model
more realistic. More importantly, findings of this kind
may also add to the knowledge of the swimming process
as such.

The swimming produced by the model presented here
is of the anguilliform type. In order to apply the model to
other types of swimming, some modifications have to be
carried out. At present, the strength and stiffness of the
muscles are constant throughout the body. This might be
a reasonable approximation for an eel-like fish, but for
other species the amount of muscles available at different
points varies considerably.

Further, during anguilliform swimming, the entire
body is moved back and forth in the transverse direction
in order to produce the counteracting forces from the
water needed for propulsion. For many other types of
swimming, the effects of the paired pectoral fins and the
unpaired dorsal and tail fins are much more important
(cf. J. Gray 1968). Fins acting mainly by increasing the
cross-sectional area exposed to the water are easily in-
cluded in the current model by using a larger value for
A, at the site of the fin. However, when the fins produce
substantial wakes, the view of the water as locally sta-
tionary is no longer valid and a more sophisticated water
model might be needed. In general, when a certain species
of fish is to be simulated, measured values for both water
forces and muscle parameters would be desirable.

The role of the stretch sensitive edge cells has not
been investigated extensively in this study. The strengths
and relative importance of the different connections from
these cells are not known in detail. In the simulations
presented here, a relatively weak inhibitory connection to
the CCIN is included which helps terminate the activity
in synchrony with the mechanical undulations. To inves-
tigate the role of the EC and their different connections,
further simulation studies are needed. A combined neural
and mechanical model, such as the one presented here,
should be a suitable platform for this task.

It is interesting to note that the neural network has
the ability to control not only the forces bending the
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body but also the tonic stiffness level. From (7), one can
see that the bending forces are set by the difference in
motoneuronal output from the two sides, while the stiff-
ness is controlled by their sum. During fast swimming,
the activity level of the MN is high, which also makes the
body stiffer. This stiffness increases the intrinsic mechan-
ical frequency of the body to better match the higher
output frequency of the neural pattern generator. To
further investigate the significance of such a resonance
between the neural and the mechanical oscillations dur-
ing swimming, muscle and body parameters based on
quantitative measurements on a real fish should be used.

6 Conclusions

Computer simulation techniques make it possible to syn-
thesize pieces of detailed knowledge from various sources
and explore the consequences. Here, experimental data
from neurophysiology, biophysical properties of muscles,
and hydromechanical properties of water have been com-
bined to study the behavior of swimming. By selecting or
constructing models at an appropriate level of simplifica-
tion for each component and using simulation techniques
developed for constrained multibody dynamics, a model
of fish swimming has been constructed and simulated.
The combined neuro-mechanical model has proven
capable of producing realistic swimming movements. By
varying only the tonic level of excitation, corresponding
to brainstem input to the neural network, swimming at
different speeds and also turning can be produced. The
behavior during other types of stimulation can be ana-
lyzed using the same model.

All the components have been simplified from more
detailed knowledge. This model should therefore serve
as a suitable platform for testing more detailed models
of any of the components. In particular, the effects of
various properties of the edge cells could be tested. Sim-
ilarly, the consequences of fins and other changes to the
body shape could be investigated by modifications and
additions to these parts of this model.

Models of such a complex system as the neural
control of vertebrate locomotion can be formulated at
various levels of abstraction. While models including all
known details are appealing for their completeness, their
complexity and the lack of correspondingly exact para-
meter values limit their usefulness. On the other hand,
models at a purely behavioral level can be hard to relate
to known facts about the neurons and their connectivity.
Here, an intermediate position has been taken by grad-
ually simplifying a detailed model of the neuronal system
while extending it with a mechanical environment. Be-
cause the components of the model can all be traced back
to their physiological counterparts, new findings can
readily be incorporated and tested for their influence on
behavior. Interaction between biological and simulation
experiments has been essential when developing this
model and will continue to be so to extend its applica-
bility.
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Appendix A: Derivation of the muscular torques

This appendix explains how the expression for the mus-
cular torques (7) follows from the assumptions made in
the text. Firstly, we assume that the length of the muscle
fibers (L, and Lg) varies linearly with the curvature of the
body, for joint i represented by (¢;+1 — @;):

Ly =ky +(@i+1 — @)k
Lg=ky —(@i+1 — @i)k2

(ky, k4, . . . denote arbitrary constants). Secondly, we as-
sume that the muscles act as linear springs and dampers.
Thus, the resulting forces from the left and right side
muscles can be written:

up =L + LLk3 + ka4
Ur = Lglr + kas + ky

where the dot means time derivative. Thirdly, we have
assumed that the spring constants of the muscles (£, and
&g) are linearly dependent on the activation of the corres-
ponding motoneurons (M, and Mg):

L= Mpks + ke
$r = Mgks + k¢

Since the muscle length varies linearly with the angle
difference, it follows that the resulting torque also varies
linearly with the forces. Therefore, the resulting torque
from the two counteracting muscles can be expressed as:

T = (uL — pr)ks

By inserting the expressions for p;, pg, L, and Lg,
we get.

T =((ky + (@i+1 — 9:)k2)(M ks + ke)
+ (ks + (Piv1 — Pi)ka)ks + kg
— (k1 — (@iv1 — @i)k2)(Mgks + ke)
— (ki = (@iv1 — @i)k2)ks — ka)k;
which can be rewritten as:
T=kiksk;(M;, — Mg)

2k
+ kyksk, (ML + Mg + f)(fpiﬂ - ;)
5

+ kyksks(@iv1 — 1)



By renaming the constant expressions kjksk;— o,
kyksk,— B,2ke/ks — vy, and k, k1k; — 6, we arrive at the
final expression:

Mg)+ B(My + Mg+ Y} (@iv1 — @1)
+ 3(Piv1— @)

T=d(ML—

Appendix B: Matrix representation

This appendix defines the matrices and vectors used in
the main text to describe the mechanical system and
compute the inner forces.

The position and shape of the entire body is described
by a 3N column vector p, and the speed of motion is
given by a corresponding speed vector ¥:

p= [xla Vi, @1, X2, Y2, P2, . . -, XN; VN> (pN]T

V= l—) = [xl’ }']1’ (i’la J&27 .).’2’ ¢2’ e ey -).CN7 J.)Na ¢N]T
The water forces and the muscle torques are combined in
another 3N column vector w, and the inner forces are

collected in a 2(N — 1) column vector f:
W= [Wl,x’ Wl,y; Tl’ W2,x9 WZ,y, T2 - Tla LIRS
WN,xs WN,ys _TN—I]T

‘f- = [Fl,xa Fl,ya Fz,x’ Fz,ya “eey FN—l,xa FN—l,y]T

The constramt equations (3) can be written in vector
form as: g(p) = 0, where g(p) is the following 2(N — 1)
column vector:

ll lz
X1+ Ecoscpl - X3 +§COS(p2

I . I, .
Vit sing =y, + 2 sing,

2

) [
g(p) =| x; +52005(P2—x3+53008q)3

L . I3
V2 +“5251U(P2 ya+ > sin @3

l

o h
. 1 .
- @1 2 s, — (Pl 2
I
Vi+ 615 > cosp; —
L, 22
(Pzzsmfpz (Pz

N S . b
Y2+ @2 5005902 ¢3=
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%(p), a 3IN x2(N — 1) matrix, is the transpose of the
Jacobian of g(p):

4(p)= (@@)

op
1 0 0 0 }
0 1 0 0
. L
——sin@, Ecosq)1 0 0
-1 0 1 0
0 —1 0 1
4 =
L I,
— =8N @, Ecosq);_ —sin @, Ecosq)z
0 0 -1 0
0 0 0 -1
ls
0 0 — =sin @, 5cos<p3

(m;, 0 0 0 0 0 |

0 m 0 0 0 O

0 0 I, 0 0 O
M=|0 0 0 m 0 O

0 0 0 0 m O

0 0 0 0 0 I

IR RN A

The second derivative (with respect to time) of the me-
chanical constraint equation (9) is:

—

cos @, — COs @,

I, 212
- @23 2 sin @, — ¢2 2

211 . l .212 .
9015 singy — y, + @2 5 COS P2 — $2 551N Q;
I3 213 -
200s<pz rpszsm(ps (P35005¢3 =0

Iy A
sin@; — j3 + @3 2C08 @3 — ¢3=sin @3

2 2
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This can be rewritten as:

I . I |
(1 0 ——Elsmq;l —1 0 —Ezsm(pz
0 1 h s 0 -1 l—zcos
200 Py 2 P2
l
0 0 0 1 0 —Ezsin(pz
I,
0 0 0 0 1 Ecosq;z

i :

which can be identified as 47v = 7 with = defined as the
right hand side above.
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