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Lecture 2: 

Intro to dynamical systems
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Recap of goals:

• To explore how numerical simulations can be used to 

explain motor control in biology

• To learn how to design good numerical models, and how to 

evaluate them

• To present how inspiration from biology can bring useful 

contributions to the new design and control principles for 

robotics

• To apply concepts from the lectures to (1) design and test 

simple models in Python, and (2) develop sensory-motor 

models applied to a simulated zebrafish
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Lecture 2: 

Methodology of modeling 

and intro to dynamical systems

Topics: 

• Dynamical systems, ODEs

• Solving ODEs

• Definition of stability

• Linear dynamical systems
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Dynamics is Everywhere

Physics

Chemistry

Weather Prediction, …

Neurons in the brain

Models of single neurons

Oscillations, synchronization

Neural network behaviors

Central pattern generators,

neuromechanical models
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Dynamical systems features

Limit cycle attractors Fixed point attractors

Chaos
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Dynamical Systems Theory is...

• ... a powerful mathematical framework for modeling and 

understanding dynamic processes

• ... Highly relevant for many domains in science and 

engineering

• ... NOT a new topic, the first dynamical system appeared with 

the invention of calculus (Newton in 1666!)

• Development of the modern theory since Poincaré (~1890)
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Dynamical Systems

• Two kinds of dynamical systems

1. Differential equations (continuous in time):

• Ordinary Differential Equations (ODE) e.g.

• Partial Differential Equations (PDE) e.g.

2. Iterated maps (discrete in time):
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Most models presented in the course will be based on ordinary 

differential equations (ODEs):

These types of equations are used in many types of numerical 

models. They determine how the state variables vary over 

time. The time derivative of the state variables     are 

described as a (usually nonlinear) function of the state 

variables, some parameters , and (possibly) the time t.  

Autonomous ODEs:                    no explicit dependence on time

Non-autonomous ODEs:                     explicit time dependence, 

much harder to deal with

Ordinary differential equations
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Note, any higher order differential equation:

Can be transformed into a set of first order equations by the 

introduction of additional variables:

➔ we restrict our analysis to first order systems: 

Ordinary differential equations

112

2

xx
dt

d
−=

21

12

xx
dt

d

xx
dt

d

=

−= 

),,( txfx
dt

d



=



11

Introduction to nonlinear 

dynamical systems, part I

Topics: 

• Dynamical systems, ODEs

• Solving ODEs

• Definition of stability

• Linear dynamical systems
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First Example

• Consider the following nonlinear system

• Such a system can be analyzed in different ways:

• Analytical integration

• Numerical integration

• Geometrical analysis

x
dt

dx
x sin==
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First Example: analytical integration

• This particular nonlinear system

• can be solved analytically by separating the variables:

• which implies

x
dt

dx
x sin==
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First Example: analytical integration

• We have the exact solution:

• This is very valuable, but it is difficult to interpret because in 

this case, it does not provide x(t)

• Given some initial conditions x0, what are the qualitative

features of the solution x(t)?

• What happens when t→∞?

• Is this behavior the same for any initial condition?

• We cannot so easily answer these questions with the exact 

analytic solution of the equation

➔ it is often useful to also use numerical integration and 

geometrical interpretation
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First Example

• Consider the following nonlinear system

• Such a system can be analyzed in different ways:

• Analytical integration

• Numerical integration

• Geometrical analysis

x
dt

dx
x sin==
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Numerical integration

Almost all interesting problems in biology are nonlinear and 

multidimensional

Analytical (closed form) solutions very rarely exist →

therefore use of numerical tools to solve the equations

Useful integration methods for solving differential equations:

• Euler Method

• Runge Kutta method

Note: numerical integration typically corresponds to transform a 

differential equation into an iterative map (discretization of 

time)
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Solving differential equations: 

Euler method
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A simple iterative method, with small t steps:

That is directly derived from the 

definition of the time derivative:
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From an initial condition x0

iteratively update your 

state using the local 

derivative value:
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Solving differential equations: 

Euler method

Advantage of Euler method:

• Very simple and very quickly implemented

Disadvantages:

• Less accurate than other methods, e.g. Runge-Kutta

• Not always stable

It is better not to use it in practice.
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Solving differential equations:

4th order Runge-Kutta method
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Runge Kutta:

= A more sophisticated method, that updates the states 

based on four estimations of the derivatives:

Corresponds to the first terms of the Taylor expansion
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Solving differential equations:

4th order Runge-Kutta method
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Solving differential equations: 

4th order Runge-Kutta method

Advantage of the Runge-Kutta method:

• Always more accurate than Euler for the same step size

• Normally one step of Runge-Kutta is more accurate than 4 

smaller steps with Euler (see Lab 1)

Disadvantages:

• Can have difficulties with stiff problems (problems with 

different times scales in which derivatives sometimes change 

abruptly). E.g. contacts in a mechanical simulation.

• Can be slower than other, more sophisticated, methods.



22Matlab example: sinx_interface

First Example: numerical integration

• We can understand the behavior of the system by 

numerically integrating the equations for several initial 

conditions

2
tanln

2
tanln 0

0

xx
tt −=−

Exact match with the 

analytical solution:
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Solving differential equations: 

use small integration steps!

With any numerical integration method, the integration step 

size must be sufficiently small, otherwise it leads to 

numerical errors.

One possibility to choose a step size: make several integration 

trials: start relatively large, and gradually decrease until the 

results do not differ significantly

See next.
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Simple example:

Analytical solution:

Role of time step size
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Euler Integration:

A too large time step will lead to numerical instability. In the practicals: if you 

see strange behavior (e.g. an exploding body), the first thing to try is to reduce 

the integration time step. 

Numerical instability: the solution is wrong not only quantitatively but also qualitatively
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Simple example:

Analytical solution:

Role of time step size
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The error decreases with the step size:

E= σ𝑡=1
𝑁 𝑥 𝑡 − ෤𝑥(𝑡)

𝑁

Analytical solution Numerical integration

But what can happen with 

too small steps?

One can define a tolerance 

threshold to determine a 

suitably small time step, e.g. 

here 10-3 is good enough
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More sophisticated methods

It is better to choose integration methods with adaptive 

time steps: the size of the integration time step is 

automatically adjusted based on an estimation of the error and 

a chosen tolerance value. Typically: smaller integration time 

steps when derivatives are large (i.e. when state variables 

change rapidly)

See for instance ode45 in Matlab (4th order Runge Kutta with 

variable time step).

Some algorithms even switch between integration 

methods, e.g. the LSODA algorithm (see lab 1), which 

adaptively switches between methods for stiff and nonstiff

ODEs, 
Petzold, L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary 

differential equations. SIAM. J. Sci. Stat. Comput. Stat. Comput. 4, 136–148 (1983).
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Numerical integration

Note: how to properly do numerical integration is a big topic by 

itself. We only scratched the surface here.

In the lab 1 practical, you will explore this a bit further, including 

other methods such as LSODA and DOPRI.

For an interesting comparison of several methods and the 

influence of hyper parameters, see:

Städter, P., Schälte, Y., Schmiester, L., Hasenauer, J., & 

Stapor, P. L. (2021). Benchmarking of numerical integration 

methods for ODE models of biological systems. Scientific 

Reports, 11(1), 2696. https://doi.org/10.1038/s41598-021-

82196-2

https://doi.org/10.1038/s41598-021-82196-2
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First Example

• Consider the following nonlinear system

• Such a system can be analyzed in different ways:

• Analytical integration

• Numerical integration

• Geometrical analysis

x
dt

dx
x sin==
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First Example: the geometric way

• We can extract qualitative information from the differential 

equation without solving it explicitly and without numerical 

integration

• From a physical point of view,    is the rate of change of x (its 

“velocity”)

• It is therefore very useful to make the derivative vs state plot

• For each point x in R, we know its rate of change

• If     >0,  x increases

• If     =0,  x stays fixed

• If    <0,  x decreases

x

x
x
x

xx sin=
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Derivative vs state plot

• We plot                 as a function of x to better understand the 

flow of x

xx sin=
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Derivative vs state plot

• If x = n p then

• And x(t) does not change anymore

• These points are called Fixed Points (or equilibrium points or

rest points)

0=x



32

Derivative vs state plot

• If 0 < x < π then x˙ > 0 and x converges to πx
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Derivative vs state plot

• For each region between fixed points we find the

• convergence properties
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Derivative vs state plot

• We see 2 kinds of fixed points
• Stable Fixed Points are at

• Unstable Fixed Points are

One-dimensional 

phase portrait

+ nn p)12(

nnp2
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First Example: the geometric way
The phase portrait correctly predicts the qualitative behavior of the system:
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Note: this geometric approach works well for 1D dynamical

systems. For 2D systems, one can sketch 2D direction fields, 

i.e. arrows showing the local flow, see next week. 
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First Example: Principles

• For a 1-D system, plotting     as a function of x allows us to 

obtain the Phase Portrait

• Phase portraits show all the qualitatively different trajectories 

of the system

• Fixed points represent equilibrium solutions (or steady 

state solutions).

• They are such that

• Fixed points can be stable or unstable

x

0)( == xfx
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Introduction to nonlinear 

dynamical systems, part I

Topics: 

• Dynamical systems, ODEs

• Solving ODEs

• Definition of stability

• Linear dynamical systems
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Definition of Stability

A fixed point     is

• (Lyapunov) stable if, 

for each , there is a            such that

• unstable if not stable

In words, (Lyapunov) stable means that trajectories that start 

within   of     remain within e of     for all positive time.             

~ It stays in the neighborhood.

We talk about asymptotic stability if can be chosen such that
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Definition of Stability

A fixed point     is

• neutrally stable or marginally stable if it is (Lyapunov) 

stable but not asymptotically stable

• Examples (derivative vs state plots):

Asymptotically stable neutrally stable

x

dx/dt
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Local versus global stability

The stability of a fixed point can be local or global

Locally stable fixed point

Limited basin of attraction

Globally stable fixed point

Infinite basin of attraction
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Introduction to nonlinear 

dynamical systems, part I

Topics: 

• Dynamical systems, ODEs

• Solving ODEs

• Definition of stability

• Linear dynamical systems
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Linear systems

• Linear systems that can be written on the form

• These systems are very well known and can often be solved 

analytically (except for some special cases, e.g. when A can 

not be diagonalized, because it does not have n linearly 

independent eigenvectors).

• We often linearize nonlinear systems to study their local 

behavior around some point

ሶ𝑥 = 𝐴𝑥

Where 𝑥 ∈ ℝ𝑛 and 𝐴 is a 𝑛 × 𝑛 matrix
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Linear systems

• Assuming that A is diagonalizable (i.e. it has n linearly 

independent eigenvectors), the generic solution to equation 

ሶ𝑥 = 𝐴𝑥 where A is an n by n matrix is:

𝑥 𝑡 = σ𝑖=1
𝑛 𝑐𝑖 𝑒

𝜆𝑖𝑡𝑣𝑖 + 𝑥0

• Where 𝜆𝑖 is the ith eigenvalue of A and 𝑣𝑖 ∈ ℝ𝑛 the 

associated eigenvector.

• Thus linear systems are limited to (fairly) simple behaviors.

Reminder, the n eigenvalues λ and eigenvectors Ԧ𝑣 of matrix A (n x n) are found by solving the 

following equations:

det 𝐴 − λ𝐼 = 0 𝐴 Ԧ𝑣 = λ Ԧ𝑣

Where det is the determinant and I is the identity matrix
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Linear systems (2D)

Note: here the eigenvectors are orthogonal. In general, they might not be.
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Eigenvectors and eigenvalues

• Eigenvectors are in general not 

orthogonal. 

• Eigenvectors are very important 

as they define important 

directions in phase space.

• Example

yxx +=

yxy 24 −=

Repulsion in the direction of V1 

Attraction in the direction of V2 
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Linear systems
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Example of a 2D linear system, root locus diagram

The eigenvalues of this 2D system 

can be plotted in the space of 

imaginary numbers. This is known 

as a root locus diagram.

Here we will plot the eigenvalues for 

different values of the critical 

parameter d.

Let’s analyze the following 2D linear 

system:

𝜆1 = −1
𝜆2 = −9
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Example of a 2D linear system, root locus diagram

𝜆1 = −1
𝜆2 = −9
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Example of a 2D linear system, root locus diagram

𝜆1 = −3
𝜆2 = −3
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Example of a 2D linear system, root locus diagram

𝜆1 = −1 + 2.83𝑖
𝜆2 = −1 − 2.83𝑖
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Example of a 2D linear system, root locus diagram

𝜆1 = 3𝑖
𝜆2 = −3𝑖
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Example of a 2D linear system, root locus diagram

𝜆1 = 1 + 2.83𝑖
𝜆2 = 1 − 2.83𝑖
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Example of a 2D linear system, root locus diagram

In a root locus diagram, the stability 

and behavior of the system is 

immediately visible from the 

position of the eigenvalues.

As we will see in the next lecture, 

linearizing around the fixed points of 

a nonlinear system always leads to 

a linear system of which the eigen 

values can be investigated
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Example of a 2D linear system, root locus diagram

In a root locus diagram, the stability 

and behavior of the system is 

immediately visible from the 

position of the eigenvalues.

As we will see in the next lecture, 

linearizing around the fixed points of 

a nonlinear system always leads to 

a linear system of which the eigen 

values can be investigated.

𝑑 = −10 𝑑 = −6 𝑑 = −2 𝑑 = 0 𝑑 = 2
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Example of a 2D linear system, root locus diagram

Note this 2D linear system represent dynamic regimes that are quite 

representative of many systems: 

𝑑 = −10 𝑑 = −6 𝑑 = −2 𝑑 = 0 𝑑 = 2

Overdamped 

system, slow 

convergence

Critically damped 

system, fastest 

possible convergence 

without overshoot

Under damped 

system, overshoot 

and oscillations that 

gradually decrease

Marginally stable 

system, oscillations 

but no limit cycle (cf

next lecture)

Unstable system, 

amplitudes increase 

exponentially
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Excellent book on dynamical systems:

Strogatz, S. H. (2019). Nonlinear Dynamics and Chaos: With 

Applications to Physics, Biology, Chemistry, and Engineering

(2nd ed.). CRC Press. 

https://doi.org/10.1201/9780429492563

PDF provided on Moodle

https://doi.org/10.1201/9780429492563
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Possible exam questions

• What should you be carefully with when performing numerical integration? What 

happens if the integration step is too large or too small?

• Geometrically analyze the following dynamical system:  

Show the fixed points, determine their stability properties, draw examples of x(t) as 

accurately as possible (e.g. with inflection points at the right place).

• Discuss different types of stability, Lyapunov stable, asymptotically stable, 

neutrally stable, global versus local stability.

• Discuss the type of dynamical regimes a linear dynamical system can have.

• Compute the fixed points of the following 2D linear dynamical system,                  

and analytically determine their stability (compute eigenvalues, etc.). 

Discuss the type of behavior of such a system.

• Analyze the following system: 

Compute the stability of its fixed points by computing the eigenvalues. Compute also 

the eigenvectors and draw typical trajectories in phase space.

x
dt

dx
x sin==

Axx =
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yxx += yxy 24 −=
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End of Lecture 2

Practical at 13:15

Start thinking about teams, but not needed

for first labs that are not graded.


