Computational Motor Control

Lecture 2:

Intro to dynamical systems

Auke Jan ljspeert



Recap of goals:

To explore how numerical simulations can be used to
explain motor control in biology

To learn how to design good numerical models, and how to
evaluate them

To present how inspiration from biology can bring useful
contributions to the new design and control principles for
robotics

To apply concepts from the lectures to (1) design and test
simple models in Python, and (2) develop sensory-motor
models applied to a simulated zebrafish
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Lecture 2:
Methodology of modeling
and intro to dynamical systems

Topics:

* Dynamical systems, ODEs

Solving ODEs

Definition of stability

Linear dynamical systems



Dynamics is Everywhere

Physics
Chemistry
Weather Prediction, ...

Neurons in the brain

Models of single neurons
Oscillations, synchronization
Neural network behaviors

Central pattern generators,
neuromechanical models




Dynamical systems features

Limit cycle attractors Fixed point attractors
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Dynamical Systems Theory is...

... a powerful mathematical framework for modeling and
understanding dynamic processes

... Highly relevant for many domains in science and
engineering

... NOT a new topic, the first dynamical system appeared with
the invention of calculus (Newton in 1666!)

Development of the modern theory since Poincaré (~1890)



Dynamical Systems

 Two kinds of dynamical systems
1. Differential equations (continuous in time):

 Ordinary Differential Equations (ODE) e.g.

dx o

— =i = f(x)

« Partial Differential Equations (PDE) e.qg.

O
du “u

At — Or2

2. Ilterated maps (discrete in time):

LIntl = ]L (‘rn)



Ordinary differential equations

Most models presented in the course will be based on ordinary
differential equations (ODES):

d
—X=f(X at
m (X, a,t)

These types of equations are used in many types of numerical
models. They determine how the state variables X vary over
time. The time derivative of the state variables X are
described as a (usually nonlinear) function of the state
variables, some parameters @, and (possibly) the time t.

Autonomous ODEs: Ex: (X,a) no explicit dependence on time

dt
d
Non-autonomous ODEs: m

, X=T1(X.a,t) explicit time dependence,
much harder to deal with



Ordinary differential equations

Note, any higher order differential equation:

d2
d—txl_— X,

Can be transformed into a set of first order equations by the
introduction of additional variables:

=>» we restrict our analysis to first order systems: %x = f(X,a,t)



Introduction to nonlinear
dynamical systems, part |
Topics:

* Dynamical systems, ODEs

Solving ODEs
* Definition of stability

* Linear dynamical systems



First Example

Consider the following nonlinear system

odx .
X =— =5Sin X
dt

Such a system can be analyzed in different ways:

« Analytical integration
* Numerical integration
« Geometrical analysis
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First Example: analytical integration

This particular nonlinear system

odx .
X =— =5Sin X
dt

can be solved analytically by separating the variables:

dt = 9%
SIN X

which implies

X

j =In

tan |—In
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First Example: analytical integration

« We have the exact solution:

t—t,=1In

tan §| —In
2

tan 20
2

 This is very valuable, but it is difficult to interpret because In
this case, it does not provide x(t)

« Given some initial conditions x,, what are the qualitative

features of the solution x(t)?

 What happens when t->x?

* |s this behavior the same for any initial condition?

 We cannot so easily answer these guestions with the exact
analytic solution of the equation

=> it is often useful to also use numerical integration and
geometrical interpretation
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First Example

Consider the following nonlinear system

odx .
X =— =5Sin X
dt

Such a system can be analyzed in different ways:

« Analytical integration
 Numerical integration
« Geometrical analysis
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Numerical integration

Almost all interesting problems in biology are nonlinear and
multidimensional

Analytical (closed form) solutions very rarely exist -
therefore use of numerical tools to solve the equations

Useful integration methods for solving differential equations:
 Euler Method

« Runge Kutta method

Note: numerical integration typically corresponds to transform a
differential equation into an iterative map (discretization of
time)

16



Solving differential equations:
Euler method

From an initial condition X,

x() iteratively update your
2 e ) DR state using the local
Xq {--mmoemmomesmmeememseeeeaee- X ad derivative value:
) f(x1) d
S I ol —X = f(%,a,t)
f(x0) dt
t, t, t, t

A simple iterative method, with small At steps:

X(t + At) = X(t) + % X(t) - At = X(t) + f(X(t),d,1)- At

X(t+ At) — X(t)

That Is directly derived from the %X(t) =lim ,,_,

definition of the time derivative: At

=y |



Solving differential equations:
Euler method

Advantage of Euler method:
 Very simple and very quickly implemented

Disadvantages:

* Less accurate than other methods, e.g. Runge-Kutta
* Not always stable

It is better not to use it in practice.

18



Solving differential equations:
4" order Runge-Kutta method

= A more sophisticated method, that updates the states
based on four estimations of the derivatives:

Runge Kutta:

\ "k, = f(x(t),1)-At
Yn . k
Ry k, = f(x(t)+?1,t+%)-At
e Ky = f(x(t)+72,t+%)-At
ﬁ lﬁ } | 11 1 (1 B, gﬁq lillldﬁmm'f”f °’Efe (See 1 lfoflderailsj From tese s k 4= f ( X(t) + k3,t + At) . At
- k. k, k, k
X(t + At) = x(t) + é +24 84 64+O(At5)

Corresponds to the first terms of the Taylor expansion / 19



Solving differential equations:
4" order Runge-Kutta method

Fourth lorder

Runge Kutta:
k, = f(x(t),1)-At

K, = f(x(t)+k71,t+%)-At

First order‘

= F(X(t) 42 1+ 4) - At

. 2
Euler: \ k, = F(X(t) +k,;, T+ At) - At

X(t+ At) = x(t) + f (X(t),1)- At + O(AL?) x(t+At) = x(t) + k6 + "3 + k3 + "6 +O(AL%)

20



Solving differential equations:
4™ order Runge-Kutta method

Advantage of the Runge-Kutta method:

* Always more accurate than Euler for the same step size

* Normally one step of Runge-Kutta is more accurate than 4
smaller steps with Euler (see Lab 1)

Disadvantages:

« Can have difficulties with stiff problems (problems with
different times scales in which derivatives sometimes change
abruptly). E.g. contacts in a mechanical simulation.

« Can be slower than other, more sophisticated, methods.
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First Example: numerical integration

We can understand the behavior of the system by
numerically integrating the equations for several initial

conditions Exact match with the
analytical solution:
6.28
\to = Injtan 2|~ In

3.14 P

X 0
-3.14
-6.28 ' ' ' '

0 2 4 b 8 10
Time

Matlab example: sinx interface

tan -2
2
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Solving differential equations:
use small integration steps!

With any numerical integration method, the integration step
size must be sufficiently small, otherwise it leads to
numerical errors.

One possibility to choose a step size: make several integration
trials: start relatively large, and gradually decrease until the
results do not differ significantly

See next.
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Role of time step size

Numerical instability: the solution is wrong not only quantitatively but also qualitatively

\ Euler Integration:
Simple example: ‘ |

12\

d 10_
—X =a(g—X
" (9—x) | .
X(t=0)=0.0 < ol
. . 4! —dt=0.3
Analytical solution: _L —ad01
t ——dt=0.001 |
=0-ge“+g o
0 0.5 1 1.5 ”

Time [s]

A too large time step will lead to numerical instability. In the practicals: if you
see strange behavior (e.g. an exploding body), the first thing to try is to reduce
the integration time step. 24



Role of time step size

Analytical solution Numerical integration

/

N
E= YN ‘x(t)—x(t)‘
Simple example: - 4t=1 N
d_ X = a(g — X) The error decreases with the step size:
t
x(t=0)=0.0 .

1,

Analytical solution:

0.8 One can define a tolerance
threshold to determine a

X(t) = (XO — g) e_at 4+ g 0.6 suitably small time step, e.g.

here 102 is good enough

0.4
0.2+

e e ——— - - - - oS qm=— = —mr TSt - -

. g
But what can happen with S 107 102 10" 10°
too small steps? dt [s] .

Error




More sophisticated methods

It Is better to choose integration methods with adaptive
time steps: the size of the integration time step is
automatically adjusted based on an estimation of the error and
a chosen tolerance value. Typically: smaller integration time
steps when derivatives are large (i.e. when state variables
change rapidly)

See for instance ode45 in Matlab (4" order Runge Kutta with
variable time step).

Some algorithms even switch between integration
methods, e.g. the LSODA algorithm (see lab 1), which
adaptively switches between methods for stiff and nonstiff
ODEs,

Petzold, L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM. J. Sci. Stat. Comput. Stat. Comput. 4, 136-148 (1983). 26



Numerical integration

Note: how to properly do numerical integration is a big topic by
itself. We only scratched the surface here.

In the lab 1 practical, you will explore this a bit further, including
other methods such as LSODA and DOPRI.

For an interesting comparison of several methods and the
Influence of hyper parameters, see:

Stadter, P., Schalte, Y., Schmiester, L., Hasenauer, J., &
Stapor, P. L. (2021). Benchmarking of numerical integration
methods for ODE models of biological systems. Scientific
Reports, 11(1), 2696. https://doi.org/10.1038/s41598-021-
82196-2
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First Example

Consider the following nonlinear system

odx .
X =— =5Sin X
dt

Such a system can be analyzed in different ways:

« Analytical integration
* Numerical integration
« Geometrical analysis

28



First Example: the geometric way

We can extract qualitative information from the differential
equation without solving it explicitly and without numerical
Integration

From a physical point of view, X is the rate of change of X (its
“velocity”)

It is therefore very useful to make the derivative vs state plot

For each point x in R, we know its rate of change X =Sin X
If X>0, Xincreases

If X=0, X stays fixed

If X<0, X decreases

29



Derivative vs state plot
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We plot X =SIN X as a function of x to better understand the

flow of x
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Derivative vs state plot
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fx=nnthen X=0

And x(?) does not change anymore
These points are called Fixed Points (or equilibrium points or

rest points) 31




Derivative vs state plot
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If 0 < X < mthen X >0 and X converges to T
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Derivative vs state plot
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For each region between fixed points we find the

convergence properties
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Derivative vs state plot

One-dimensional
phase portrait

________

 We see 2 kinds of fixed points
« Stable Fixed Points are at (2n+1)z neZ

« Unstable Fixed Pointsare 2nz nez
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First Example: the geometric way

The phase portrait correctly predicts the qualitative behavior of the system:

6.28

3.14

-3.14

One-dimensional
phase portrait

-6.28 ' ' —— |
0 2 4 B 8§ |10
Time

Note: this geometric approach works well for 1D dynamical
systems. For 2D systems, one can sketch 2D direction fields,
l.e. arrows showing the local flow, see next week.
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First Example: Principles

For a 1-D system, plotting X as a function of X allows us to
obtain the Phase Portrait

Phase portraits show all the qualitatively different trajectories
of the system

Fixed points represent equilibrium solutions (or steady
state solutions).

They are suchthat X = f(X) =0

Fixed points can be stable or unstable

36



Introduction to nonlinear
dynamical systems, part |
Topics:

* Dynamical systems, ODEs

Solving ODEs
« Definition of stability

* Linear dynamical systems



Definition of Stabllity

radius

A fixed point z*Is

 (Lyapunov) stable If, \

foreach ¢ > 0, thereisa 6 > 0 such that

H]‘(U) . -_I..* H < o‘ = H](-{-) . -,I.,* H < (____’ \vz_l,_ 2 'U Liapunov stable

In words, (Lyapunov) stable means that trajectories that start
within ¢ of =™ remain within ¢ of =* for all positive time.
~ It stays in the neighborhood.

We talk about asymptotic stability if 6 can be chosen such that

H]({)) _ __I..=+<H < 8§ = lim .'.I"('ﬁ) — 7
T—o0

38



Definition of Stabllity

A fixed point z*Is
 neutrally stable or marginally stable if it is (Lyapunov)
stable but not asymptotically stable

 Examples (derivative vs state plots):

dx/dt \

/ /

Asymptotically stable neutrally stable



Local versus global stability

The stability of a fixed point can be local or global

‘\'
Locally stable fixed point

Limited basin of attraction

derivative =

0/ 1
state variable x
r=—x+1

Globally stable fixed point

Infinite basin of attraction

40



Introduction to nonlinear
dynamical systems, part |
Topics:

* Dynamical systems, ODEs

Solving ODEs
* Definition of stability

 Linear dynamical systems



Linear systems
* Linear systems that can be written on the form
x = Ax
Where x € R" and A is a n X n matrix
« These systems are very well known and can often be solved
analytically (except for some special cases, e.g. when A can

not be diagonalized, because it does not have n linearly
Independent eigenvectors).

 We often linearize nonlinear systems to study their local
behavior around some point

42



Linear systems

Assuming that A is diagonalizable (i.e. it has n linearly
independent eigenvectors), the generic solution to equation
x = Ax where A4 is an n by n matrix is:

A

x(t) =Y , cetitv; + x

Where 1; is the i'" eigenvalue of A and v; € R" the
associated eigenvector.

Thus linear systems are limited to (fairly) simple behaviors.

Reminder, the n eigenvalues A and eigenvectors v of matrix A (n x n) are found by solving the
following equations:

det(A—AI) =0 AV = v

Where det is the determinant and | is the identity matrix 43



Linear systems (2D)

A1 < 0and Ay < 0 A >0and Ao < 0 A1 >0and Ay >0
Stable Fixed Point Saddle Unstable Fixed Point
7 TN N/
Ai € Cand Re(\; < 0) Ai € Cand Re(\; = 0) A; € Cand Re(A\; > 0)
Stable Spiral Neutrally Stable Center Unstable Spiral

P B \
Y (@ *\@

_:—'—'_'_H-r

X

Note: here the eigenvectors are orthogonal. In general, they might not be. 44



Eigenvectors and eigenvalues

Repulsion in the direction of V1

Eigenvectors are in general not

orthogonal. \ \ )

Eigenvectors are very important
as they define important v
directions in phase space.

Example / / X
X=X+Y
y=4x-2y \

A =2\ = —3. Attraction in the direction of V2

45



Linear systems

mIf \; > 0 the trajectory diverges exponentially fast to o~
m|f \; < 0 the trajectory converges exponentially fast to 0

m [f \; € C the trajectory has a periodic component since
elhit — E':'Re()\?")t((f'.{ﬁ}f:}(h]l()\i)t) + isin(Im(\;)t))

m The amplitude of the oscillations
e increases If Re(\;) > 0
e decreases If Re(\;) < 0
e is constant if Re(\;) =0

m No stable oscillations exists, a perturbation pushes the
system in a new oscillatory mode

46



Example of a 2D linear system, root locus diagram

Let’s analyze the following 2D linear
system:

X = AX

)
A( 0 3)
—3 d

The eigenvalues of this 2D system
can be plotted in the space of

: : Imaginary numbers. This is known
=3 BRI s 2 as a root locus diagram.

imag(\)
o

real(L) Here we will plot the eigenvalues for
different values of the critical
parameter d.



Example of a 2D linear system, root locus diagram

imag(A)
-

-04

Ay, = — 48



Example of a 2D linear system, root locus diagram

imag(A)

49



Example of a 2D linear system, root locus diagram

imag(A)
o

—1 + 2.83i

A4
A, = —1— 2.83i

-0.8

10

12
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Example of a 2D linear system, root locus diagram

1.5

e

-1.5

-3 0 3 0 2 o —




Example of a 2D linear system, root locus diagram

B o |
5000 1d o
—x1
—x2
4000 F I
—_— 3000 r l
D-)“' 0 2000
E % 1000 |
0
-1000 F ‘
_3 _______________________ . . - -2000 |

d =2

A, =1+ 2.83i
A, =1—2.83i
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Example of a 2D linear system, root locus diagram

Bl 50006 In a root locus diagram, the stability
o o and behavior of the system is
A iImmediately visible from the

: : : position of the eigenvalues.

: : : As we will see in the next lecture,

e @ linearizing around the fixed points of
 %gi0° a nonlinear system always leads to

' ' a linear system of which the eigen
-3 0 3 values can be investigated
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Example of a 2D linear system, root locus diagram

Bl L In a root locus diagram, the stability
o N\ and behavior of the system is

° \ X Immediately visible from the

: : : position of the eigenvalues.

imag ()

As we will see in the next lecture,
linearizing around the fixed points of
angonlinearsystem always leads to
a linear systemqf which the eigen
an be investigated.

VVVVVV

yyyyyyyyyyyy
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Example of a 2D linear system, root locus diagram

Note this 2D linear system represent dynamic regimes that are quite
representative of many systems:

Overdamped Under damped Unstable system,
system, slow system, overshoot amplitudes increase
convergence and oscillations that exponentially
gradually decrease

Critically damped Marginally stable

system, fastest system, oscillations

possible convergence but no limit cycle (cf

without overshoot next lecture)

yyyyyyyyyyyy

yyyyyyyyyyyy



Excellent book on dynamical systems:

Strogatz, S. H. (2019). Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and Engineering
(2nd ed.). CRC Press.
https://doi.org/10.1201/9780429492563

PDF provided on Moodle

S7


https://doi.org/10.1201/9780429492563

Possible exam questions

« What should you be carefully with when performing numerical integration? What
happens if the integration step is too large or too small?
. dxo .
- Geometrically analyze the following dynamical system: * = g =" %
Show the fixed points, determine their stability properties, draw examples of x(t) as
accurately as possible (e.g. with inflection points at the right place).

» Discuss different types of stability, Lyapunov stable, asymptotically stable,
neutrally stable, global versus local stability.

« Discuss the type of dynamical regimes a linear dynamical system can have.

« Compute the fixed points of the following 2D linear dynamical system, X = AX
and analytically determine their stability (compute eigenvalues, etc.).
Discuss the type of behavior of such a system. ( 0 3}

« Analyze the following system: X=X+Yy y=4x-2y
Compute the stability of its fixed points by computing the eigenvalues. Compute also
the eigenvectors and draw typical trajectories in phase space.
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End of Lecture 2

Practical at 13:15

Start thinking about teams, but not needed
for first labs that are not graded.
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