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Lecture:

Models of arm movements
Topics:

 |nvariants of arm movements

« Different school of thoughts:
 |nternal Models
« Equilibrium Point Trajectory

« Muscle synergies

« Population coding



Invariants of arm movements

Despite the large variety of movements that humans can make,
most of our (typical) movements show several invariants.

« Bell-Shaped Velocity Profile and Straight Trajectory
* [sochrony principle

« Fitts’s Law

« Two Third Power Law

 Minimum Jerk hypothesis

Note: these properties are only valid for stereotypical
movements (e.g. movements done without thinking). When
needed, the brain can override those and perform almost
arbitrary movements.



Bell-shaped velocity profile

The velocity profile for reaching movements is approximately
bell-shaped and the trajectory of the hand in free space is
close to a straight line.

Morasso, P. Spatial control of arm meyvements. Exp. Brain Research, 42, pp. 223-227, 1981.

—

Fig. 1. Experimental setup for the study of reaching movements in
the horizontal plane. Recorded variables: (X, Y) Cartesian
Coordinates of the Hand, (®, 8) Angular Coordinates of the Joints
(wrist movements were not allowed). Visual targets: T,, . . . T,.



Bell-shaped velocity profile

The velocity profile for a reaching movements is approximately
bell-shaped and the trajectory of the hand in free space is

close to a straight line.

hand

Joint angles: velocity:
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Joint angle
velocities:

Morasso, P. Spatial control of arm movements. Exp. Brain Research, 42, pp. 223-227, 1981. 6



Previous lecture:
Muscles ( AL

Note: we had seen this type of o0 - 11 <t ssr
bell-shaped velocity profile :

In the lecture on muscle
models.

Torquey,.,

Torgue,.,




Isochrony principle in reaching mvts

Isochrony principle: . —
Spontaneous tendency to f
increase the velocity of :
movements depending on
the distance in order to e e
keep execution time . "
approximately constant. I
In other words: the velocity of g
voluntary movements
Increases proportionally with
their linear extension Distance (em)
Viviani, P., and McCollum, G. (1983). The relation between linear extent F:?ijfﬁmtldd‘:{rf{glgtg;hi'k;t';;l' Elttwjl ' I'lﬁl {Pe-l:akt‘fdﬂot
and velocity in drawing movements. e e e
Sartori, L., Camperio-Ciani, A., Bulgheroni, M., & Castiello, U. (2013). one representative subject (N = 8.
Reach-to-grasp movements in Macaca fascicularis monkeys: the Isochrony Sartori et al 2013

Principle at work. Frontiers in psychology, 4. 8



Fitts’ law

Fitts’ Law: this law reflects the relationship between the
difficulty to reach the target and the duration of the
movement. It corresponds to a speed/accuracy trade-off,
Movements that require higher accuracy are performed

slower.
The duration of a fast motion to a target can be approximated by:

w

Y

A (T
T = a + blog, (W—I_l) 7 A

where A is the amplitude of the movement, 17" the width of the
target and «a, b are constants determined in an empirical way:.

The term - + 1 is called the index of difficulty.

Note: the isochrony principle (previous slide) is therefore valid for
movements with the same index of difficulty.

Fitts, P.M. The information capacity of the human motor system in controlling the amplitude
of movement, Journal of Experimental Psychology, 47(6), pp. 381-391, 1954,

R.W. Soukoreff, I.S. MacKenzie / Int. J. Human-Computer Studies 61 (2004) 751-789



Two-Third Power Law

Two-Third Power Law: When drawing movements in the air on
on paper, there is a constant relationship between the

kinematics of elliptical motion and the geometrical properties
of the trajectory.

3
é = 2;'3/ P
> 2 e
Q %\ High curvature ‘—3 /
aff High angular velocity = /
Low curvature = Low instantaneous speed < /
Low angular velocity % 2 a s
High instantaneous speed Curvature C
Two VeI’SiOﬂS' Where Kk is a constant,
' : 2/3 C(t) is the curvature of the
Angular velocity:  w(t) = kC(t) hand trajectory,
C=1/R, where R is the radius
. — —-1/3
Instantaneous speed: v(t) = kC(t)~/ Noterv = R =
" L . . . hence the 2/3 vs —1/3 power laws
Lacquaniti. F.. Terzuolo. C.A. and Viviani, P. (1983) The law relating kinematic 10

and figural aspects of drawing movements Acta Psycho. 54,115-130



Minimum Jerk

Human arm motions are smooth. They appear to minimize jerk,
l.e. the derivative of acceleration.
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Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical
model. The journal of Neuroscience, 5(7), 1688-1703.

Shadmehr and Wise (2005), Computational Neurobiology of Reaching and Pointing: A Foundation for Motor
Learning, MIT Press, Cambridge. 11



Minimum Jerk

Human arm motions are smooth. They appear to minimize jerk,

l.e. the derivative of acceleration. AP R R
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Figure 3. Overlapped predicted (sofid lines) and measured (dashed lines) hand paths (a), speeds (b), and acceleration compaonents along the y-axis (c),
and along the x-axis (df) for two unconstrained pointto-point movements. A, A movement between targets 3 and 6. 8, A movement between targets 1 and

4,

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical
model. The journal of Neuroscience, 5(7), 1688-1703. 12



Minimum Jerk

Also good
prediction of via- O
point experiments,
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Figure 5. Representative examples of comparison between measured (Real, left columns) and predicted (Model, right columns) trajectories from a “via
point” expenment, Displayed are the hand paths, P, and plots of hand speed, T, curvature, C, and velocity components, V. and V,, versus time. The
movement reversed its direction along the y-awis. A, |he intermediate target was located at equal distances trom the initial and final targets. 8, The
intermediate target was at equal distances from the movement end-paints but closer to the line connecting them.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical
model. The journal of Neuroscience, 5(7), 1688-1703. 13



Relationship between invariants

One can find links between these relationships, e.g. between
minimum jerk, 2/3 power law, and the isochrony principle, cf

Viviani, P., & Flash, T. (1995). Minimume-jerk, two-thirds power law, and
iIsochrony: converging approaches to movement planning. Journal of
Experimental Psychology: Human Perception and Performance, 21(1), 32.

Richardson, M. J., & Flash, T. (2002). Comparing smooth arm movements with
the two-thirds power law and the related segmented-control hypothesis. The
Journal of neuroscience, 22(18), 8201-8211.

Huh, D., & Sejnowski, T. J. (2015). Spectrum of power laws for curved hand
movements. Proceedings of the National Academy of Sciences, 112(29),
E3950-E3958. https://doi.org/10.1073/pnas.1510208112

14
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Different schools of thoughts

There are different school of thoughts to explain the control of discrete
(point-to-point) movements in humans:

The internal model based approach (IM) postulates that the CNS can
plan kinematic trajectories and then reproduce them accurately
thanks to internal models (both direct and inverse models).

The equilibrium point hypothesis approach (EPH) postulates that
the CNS specifies a series of equilibrium positions of muscles, and
relies on reflex loops and the spring-like properties of muscles to
move the limb.

The muscle synergies approach postulates that the CNS and
especially the spinal cord implements discrete pattern generators
that reduce the dimensionality of control and that can serve as
motor primitives for more complex movements.

15
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Internal models

The internal model based approach (IM) postulates that the
CNS can plan kinematic trajectories and then reproduce
them accurately thanks to internal models.

An internal model is a neural structure emulating the
physical processes involved into

 the transformation of neural command into actual limb
movements (direct model)

* the prediction of the neural command needed to perform
a limb movement (inverse model)

Among other things, internal models allow the central nervous system to

Imagine the effect of movements without performing them.
18



Internal models

Fig. 1. The sensorimotor loop, showing motor
command generation (top), state transition
(right) and sensory feedback generation (left).
Center, internal representation of these stages
within the CNS.

Previous State

[state, motor command, context]— sensory feedback [previous state, motor command, context]— state

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. nature
neuroscience, 3, 1212-1217. 19



Example of internal models

Inverse kinematics model: maps a desired position x of the
hand to (multiple) joint angles g in the arm

Forward kinematics: X = f(é)

Inverse kinematics: 9 = f1(x)

This is an ill-posed problem for redundant systems like arms,
l.e. with more degrees of freedom (e.g. 7) than those needed
to determine the hand position (3)

Redundancy can be solved by trying to stay close to preferred
postures.

This is a geometrical problem. 20



Example of internal models

Inverse dynamics model: maps a desired posture of the arm in
terms of joint angles 6 (and possibly joint angle velocities,

and accelerations) to the necessary torques T (or muscle
activations).

Forward dynamics: 6, 5, 5] = g(T) 7 @

Inverse dynamics: T = g'(6, 5, 5)

This is a complex high-dimensional and nonlinear problem since
it depends on the physics of the arm (load, gravity, inertia,
etc.). It is a problem involving dynamics.

21



Experiments to investigate
Internal models

Researchers have designed several experiments to investigate
whether the central nervous system can learn internal models.

For instance: inverse dynamics models using manipulandum
experiments, I.e. experiments that record human movements in
2D (typically the horizontal plane)

Conditt, M. A., & Mussa-Ivaldi, F. A. (1999). Central representation of
time during motor learning. Proceedings of the National Academy of
Sciences, 96(20), 11625-11630.
https://doi.org/10.1073/pnas.96.20.11625

22



https://doi.org/10.1073/pnas.96.20.11625

Internal model
of Inverse dynamics?

A user has to move the handle of a ma-
nipulandum to a given target position.
The target and the position of the handle is
shown on a monitor, but the user does not
see his/her own arm.

A The manipulandum has two actuators at its
W basis to produce desired torque; a torque is

g SRS
o 5 j‘“’f// applied so to produce a force field depend-
S l.fa;// ing on the velocity of the hand (as depicted

In the fig below).

-1 -0.5 0 05 1
Hand x-velocity (m/s)

Shadmehr and Mussa-Ivaldi (1994), Adaptive representation of dynamics
during learning of a motor task, Journ. of Neuroscience.

23



Internal model
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Internal model
of Inverse dynamics?

R\, >’<_ L Error has almost
' 7N “——— disappeared in the
> final trial

The error decreases as the number of trial increases (here first, second, third
and final, 250t trial).

The trajectories suggest the existence of a kinematic plan (i.e. subjects want
to perform straight lines).

Two possible explanations:
(1) The subject learns a model of the force field

(2) The subject incwness of the arm by cocontracting musc:lezs5



Internal model
of iInverse dynamics?

Strong after effects
after 250 sessions
of learning

When the force field is removed, the errors are approximatively the mirror
images of the previous ones. This phenoma is called after effects.

W After effects would not appear if the correction was made by increasing the
stiffness.

B This means that the newly learned model of the dynamics is still used
by CNS.
26



Internal model
of inverse dynamics?

The perturbation experiment designed by Shadmehr and Mussa-
lvaldi tends to support the idea of internal models.

And it looks like a majority of researchers now favor the idea
of kinematic plans and internal models.

However some people think the experiment can also be

explained by the EPH, see Gribble, P. L., & Ostry, D. J.
(2000), in a few slides.

27



Learning inverse models

Direct and inverse models can be learned by motor babbling.

Motor babbling: more or less random movements like those
performed by a baby.

By observing the results of actions both direct and inverse models
can be learned.

E.g. learning an inverse kinematics model, that maps a desired
position of the hand to (multiple) joint angles in the arm.

Example: D'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse
kinematics. In Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on (Vol. 1, pp. 298-303). IEEE.

28



Learning inverse models

D'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning
Inverse kinematics. In Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on
(Vol. 1, pp. 298-303). IEEE.

Forward kinematics: % = f(6)

Inverse kinematics: 0= f1(®)

An ill-posed problem for redundant systems like arms, i.e. with
more degrees of freedom (e.g. 7) than hand position (3)

They solved this on a humanoid robot, using statistical
learning methods

29



Learning inverse models

0.2
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Figure 2: System per-
s Figure 4: Trajectory followed in the first 3 minutes when
n
fOl'.‘['IlﬂnCE after bei £ learning the inverse kinematics from scratch while attempt-
trained on data collected ing to perform the figure-eight task.

from motor babbling.

DB, Humanoid robot at ATR

They showed that inverse kinematics learning could be done
on a humanoid robot after a motor babbling phase. It can
also be done continuously, while performing movements.

30



Learning inverse dynamics model

A similar approach to learn an inverse dynamics model, i.e. the
mapping from a desired posture, to the torques necessary to
get there.

By doing online
learning, the inverse
dynamics model is
updated to take into
account an additional
load.

Sethu Vijayakumar, Aaron D'Souza, Tomohiro Shibata, Jorg Conradt and Stefan Schaal,
Statistical Learning for Humanoid Robots, Autonomous Robot , Vol. 12, No.1, pp. 55-69 (2002)31



Learning inverse models

7~ Desired state Estimated state )

Nice article: é/ é‘
Wolpert, D. M., & Ghahramani, Z. (2000). 4
Computational principles of movement ' ’ +O§g-ate |
neuroscience. Nature neuroscience, 3, 1212- . | error
121r. il DC g v

They claim: (1) internal models are fundamental e oy 41 gy
for understanding a range of processes such as | “™™ (Yt
state estimation, prediction, context estimation,  \_ _/

control and learning.
(2) optimality underlies many theories of movement
planning, control and estimation and can

. . -( Motor -
account for a wide range of experimental Sesory | command €

findings.
(3) the motor system has to cope with uncertainty
about the world and noise in its sensory inputs

) “"///

d

and motor commands, and the Bayesian Edghsbhmidhasgn bl bl s et
approach provides a powerful framework for B - oA R AL o ph——
optimal estimation in the face of such e D e e
uncertainty. T, s Sl Wi 1

the inverse model and is used as the error signal to train it.



Learning inverse models

Position
distribution

Interesting hypothesis: rather than
minimizing jerk, the CNS minimizes
the uncertainty

This model assumes that there is
noise in the motor command and
that the amount of noise scales with
the motor command’s magnitude.

Movement B

Movement A

: ; Fig. 2. Task optimization in the presencg of signal-dependent noise
Th IS MO d el accu rately p red ICtS th € (TOPS) model of Harris and Wolpert®. Aver)ge paths and expected final

traj ectories of both saccadic eye position distributions for two different motoX sequences. Although the
sequences bring the hand on average to the Yame final position, they

movements an d arm movements. have different final distributions because of ndise in the motor com-
mands. Movement A has smaller spread than B ai\d therefore has lower
cost than B. In general, the task determines the degired statistics of the

Ve ry n ICG TE D tal k movement, and the trajectory that optimizes the staistics is selected.

https://www.ted.com/talks/daniel wolpert the real reas

on_for_brains?language=en Movements that maximize accuracy

Wolpert, D. M., & Ghahramani, Z. (2000). (i.e. minimize uncertainty) are preferred.

Computational principles of movement neuroscience.
Nature neuroscience, 3, 1212-1217. 33


https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains/transcript?language=en#t-19815
https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains?language=en
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Equilibrium point hypothesis

The equilibrium point hypothesis approach (EPH) postulates
that the CNS specifies a series of equilibrium positions of
muscles, and relies on reflex loops and the spring-like properties
of muscles to move the limb.

No need for inverse models nor detailed kinematic plans
Was first proposed by Anatol Feldman
Key idea: muscle reflexes should not be viewed as hardwired

stereotypical responses to stimuli, but rather as tunable
mechanisms that form the basis of motor behavior.

35



Different schools of thoughts

Cerebral cortex

Definition of the motor plan _ _Cerebellt.jm.
1 1 1 Timing, Coordination,

| | | | g and Learning

Basal Ganglia
Action selection

bbb | Equilibrium point
[ Brain Stem | hypothesis
Descending modulation

Spinal ngtworksl l l

\[ Reflexes q—) ® @ q-)
v Ny

®
@@@@@@@@P@P@PM&S
)
)

Sensory feedback

Voo
( muscle-dynamics
¢ ¢ ¢ ¢ ¢ ¢
( body-dynamics

36




Tonic Stretch reflex

Wikipedia: The stretch reflex (myotatic reflex) is a muscle
contraction in response to stretching within the muscle. It is a

monosynaptic reflex which provides automatic regulation of
skeletal muscle length. Sensory neurens  Cellbody of sensory  Gray

Sensory (stretch) receptors neuron in dorsal

matter
root

ganglion

Quadriceps muscles
(extensors)
|

https://www.youtube.com/watch?v= N
HfuhVWK8COU \(

Interneurons

White
matter

] ] muscles
http://humanphysiology.academy/Neurosciences%20201

5/Chapter%202/P.2.2%20Spinal%20Reflexes.html

Spinal cord
Noior nauTons (cross section)

serving quadriceps @ Sensory neuron

@ Motor neuron
@ Interneuron

When a muscle lengthens, the muscle spindle is stretched and its nerve activity
increases. This increases alpha motor neuron activity, causing the muscle fibers to
contract and thus resist the stretching. A secondary set of neurons also causes the
opposing muscle to relax. The reflex functions to maintain the muscle at a
constant length. This is important e.g. to maintain a given posture. 37



http://en.wikipedia.org/wiki/Muscle_contraction
http://en.wikipedia.org/wiki/Reflex_arc
http://en.wikipedia.org/wiki/Skeletal_striated_muscle
http://en.wikipedia.org/wiki/Muscle_spindle
http://en.wikipedia.org/wiki/Alpha_motor_neuron
https://www.youtube.com/watch?v=HfuhVWK8C0U
http://humanphysiology.academy/Neurosciences%202015/Chapter%202/P.2.2%20Spinal%20Reflexes.html

Equilibrium point hypothesis

Based on the spring like-behavior of the muscles!

Descending signals
(central command)
can tune the tonic
stretch reflex, and
shift the force-length
relationship

In cats, constant descending signal correspond to a given
force-length relationship( stiffness) (Mathews, 1959)

Matthews P.B.C. (1959) The dependence of tension upon extension in the stretch reflex
of the soleus of the decerebrate cat. Journal of Physiology 47: 521-546



Equilibrium point hypothesis

Force A: Equilibrium Point F°A'°e

By changing the A
descending signals
and tuning the tonic )
stretch reflex, active
movements can be
generated towards
new equilibrium
points (i.e. new end
postures)

B: Active Movement

Latash, M. L. (2008). Fig. 1

Evolution of motor An illustration of single-muscle control within the EP-hypothesis.

control: from reflexes A: A central command () defines a force-length characteristic. Given an external load
and motor programs to (L), only one equilibrium point is possible (EP:1). Any deviations (filled points) from EP:

L@%g&g!g%@&?ﬁgg ; will result in motion back to EPx.

human kinetics, 19(1),
3-24. new equilibrium point (EP:) is established, and a motion to EP2 happens.

B: To perform an active movement, a change in A is required (A1 to A2). As a result, a

C: Movements can occur passively, as a result of a change in the load (L: to L2). |



Equilibrium point hypothesis

Adapted from Wikipedia:

In the Equilibrium Point hypothesis, all movements are generated by the
nervous system through a gradual transition of equilibrium points along a
desired trajectory.

"Equilibrium point" in this sense is taken to mean a state where a field has
zero force, meaning opposing muscles are in a state of balance with each
other, like two rubber bands pulling the joint to a stable position.

Equilibrium point control is also called "threshold control" because signals
sent from the CNS to the periphery are thought to modulate the threshold
length of each muscle. In this theory, motor neurons send commands to
muscles, which changes the force—length relation within a muscle,
resulting in a shift of the system's equilibrium point.

As opposed to internal models, the nervous system would not need to
directly estimate limb dynamics, but rather muscles and spinal reflexes
would provide all the necessary information about the system.

40



Equilibrium point hypothesis

Feldman thus postulated that:

 H1 Muscles tend to have a given length A at rest (i.e. an
equilibrium point)

 H2: The CNS can modify the rest length of muscles

« H3: Movements are generated as a time sequences of the rest
lengths by changing reflex thresholds

H1 and H2 are commonly accepted by neuroscientists. H3 Is
more controversial.

Feldman, A. G. (1986). Once more on the equilibrium-point

hypothesis (A model) for motor control. Journal of motor
behavior, 18(1), 17-54.

41



EPH and perturbation exp,

Gribble and Ostry tried to explain the results seen before with
the EPH and without an inverse dynamics model.

The same perturbations than in Shadmehr et Mussa-Ivaldi

(1994) are applied to a dynamic model of an arm.

central
command :
- oree f farce
length ————= "\ > - / - .
length reflex delay - time length v
rate of change ey motoneurone activation force-length | force-velocity
of length activation dynamics relationship relationship force
velacity reflex delay
Iforce
length

passive stiffness

It is assumed that the NS knows

« the control signal that has been sent

« the desired trajectory

* the actual trajectory Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm

movements using equilibrium-point control. Experimental Brain
Research, 135(4), 474-482. 42



EPH and perturbation exp,

The following algorithm is used:
1. Initial command £ for a desired movement 1/, .:
R(t) = Mj.s(t +d)
Simulation of the movement — M ;. (1)
Computation of the error: M., (t) = Myps(t) — Mges(t)
M., 1s added to the initial control R: R'(t) = R(t) + M- (t + d)
return in 1 with R’ instead of R

o & 0D

Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm movements

using equilibrium-point control. Experimental Brain Research, 135(4), 474-482. 43



EPH and perturbation exp,

The following trajectories

’ ] ﬁf are obtained
b .
- }%_ A null field
A B commands of Ain a
force field (no
o adapation)
L fﬂy C force field and
P adaptation
¥ .' 7 D command of C and
ot null field

Qualitatively similar results are obtained

Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm movements

using equilibrium-point control. Experimental Brain Research, 135(4), 474-482. 44
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Muscle synergies

Muscle synergies = observed coherent activations,
In space or time, of a group of muscles, that have
been proposed as building blocks that could simplify
the construction of motor behaviors.

Closely related topics: force fields, or discrete
pattern generators: coordinated movements of a
whole limb towards a target under the control of
simple inputs

Similarities to EPH —both are mainly spinal cord
mechanisms— but without the focus on reflex
tuning 46



Different schools of thoughts
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Force fields: pattern generators
for discrete movements

Concepts of force fields (Mussa-lvaldi, Bizzi et al):
« Stimulation of the spinal cord =» movement towards an

equilibrium posture (from any initial conditions)

a b \ D

[2 cm
— g o
: \\

Nature Reviews | Neuroscience

« Stimulation of different sites in the spinal cord
=>» different force fields, and different equilibrium postures
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Force field:

Forces produced by the limb
when a particular point in the
spinal cord is stimulated




Prediction

Force fields: pattern generators
for discrete movements

Stimulation of two sites = linear superposition of the two

force fields
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Figure 4 | Summation of force fields by co-stimulation of
sites in the frog spinal cord. a and b | Two examples of
force fields, evoked by stimulation of different sites in the spinal
cord of a frog. ¢ | Force field predicted by a simple summation
of the force vectors measured at each position in the separate
force fields shown in a and b. d | Force field actually produced
by co-stimulation of the two spinal sites illustrated in a and b.
The force field produced by co-stimulation of two sites in the
spinal cord was very similar to the force field predicted by a
simple summation of each separate force field (compare ¢ and
d). (Adapted from REE 54.)

This property is very useful for control
S. Grillner now proposes to use the term CPGs for both

rhythmic and discrete movements



Muscle Synergies Here a “static” muscle synergy

The work on force fields motivated researchers to analyze
EMG data underlying a large variety of movements.
High-dimensional EMG data from many muscles can be
explained by lower dimensional activation 0f muscle

synergies.
Multiple types of movements e

might use a small set of synergies x "\
Muscle synergies are found 2

by performing Principle Component ;3 Xﬁ—me_,Aj
Analysis or with optimization
algorithms (when there are time-shifts)

A schematic illustrating how muscle synergies are linearly combined to generate muscle patterns recorded as
electromyographic signals (EMGs). Each of the two muscle synergies shown (red and green bars) is represented
as an activation balance profile across muscles (muscles 1-5) and activated, through multiplication, by a time-
dependent coefficient. The EMG waveforms resulting from the activations of individual synergies are then summed
together to reconstruct the recorded EMGs (black lines). In the schematic, each color in the EMG reconstruction
reflects how the waveforms from the synergy coded by the same color contribute to the reconstruction.

http://www.pnas.org/content/109/36/14652 50
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Muscle synergies as feedforward neural networks

where D(r) is the vector of EMG activities collected at time 7, N

N is the number of muscle synergies extracted, w; is a time-in-
=4 . — — variant nonnegative vector in muscle space denoting the ith
D(I } — C I (I }H,, { E. muscle synergy, ¢;(¢) is the nonnegative activation coefficient for
the ith synergy, and ¢ is any residual activities unexplained by the
| — i I linear combination.
i=1 Activation

MUSCLE

Muscle Activation
Synergy Coefficient

motoneurons

muscles
VDB WN =

Synaptic weights

Safavynia SA, Torres-Oviedo G, Ting LH. http://www.pnas.org/content/109/36/14652

Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement.
Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24. 51
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Muscle synergies

Example: Combinations of three time-varying muscle
synergies underlie the variety of muscle patterns required for

the frog to kick in different directions. dAvella, Saltiel, and Bizzi. "Combinations

of muscle synergies in the construction of a natural motor behavior." Nature neuroscience 6.3
(2003): 300-308.

By modifying c; and t; for each synergy, different movements can be creagqed

b c /\ m(t) :Z Ca'wi(r_r:'}
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Fig. I. Time-varying synergies \nodel. In this simulated example, two time-varying synergies (a) are scaled in amplitude and shifted in time (b),
and then combined to construct\two different patterns (c). (a) The rows in each synergy (W, and W) represent the activation time courses of
the three muscles (m; to mj3), with the amplitude, shown in color code, normalized within each synergy to the value of the maximum sample.
The profile in the box below each yynergy represents the time course of the synergy averaged across muscles. (b) To generate a specific muscle
pattern, every muscle in each synergy is first scaled in amplitude by a non-negative coefficient (c, in the illustration representing the time course
of the three muscles of W)) and shifded in time by an onset delay (t|). The three curves in a box represent W before (dashed traces) and after
(solid traces) scaling and shifting. (c) Thie elements of the first synergy (magenta shaded area) are then summed together with corresponding ele-
ments of the second synergy (green shaded area) to generate the complete pattern (solid line). In this illustration, the amplitude coefficients (c;
and ¢;) are represented as the height of\the rectangles below the muscle patterns, and the onset delays (t; and t;) are represented by the hori-

zontal position of the left edge of the rectangle. . . .
Here the muscle synergy is time-varying (temporal pattern) Sy

time shifts



Muscle synergies

Cross-validation procedure for finding the number of synergies needed for
explaining most of the data

The synergies extracted from each individual frog are generally very
similar to each other (tests with 4 frogs)

Significant similarities among the synergies extracted from kicking
and from different natural behaviors (jumps, swimming and walking)

(a) Cross-validation procedure. For each number of
synergies, the extraction is performed on a randomly
selected 80% of the data, and the reconstruction tested on
os| the remaining 20% of the data. Mean and standard

oal deviation of the fraction of total variation (R?) of five disjoint
test sets explained by the synergies extracted from the
remaining data is shown. The slope of the curve changes

07k

0.6

Cross-validation R 2

TE 5 4 5 6 7 8 5 sharply at three, indicating that four or more synergies

Number of synergies

capture only a small additional fraction of the total variation
1 in the data explained by three synergies. (b) Similarities
between sets with different numbers of synergies. The
nodes on each row of the pyramid represent the synergies
extracted from sets with a number of elements ranging
from 1 to 6. The links between the nodes in two adjacent
rows connect synergies that are similar (similarity value
above 0.6, with the value computed as the maximum of the
normalized scalar product at different delays; Methods).
e The degree of similarity is indicated by the thickness and

darkness of the link and the value shown close to each Iink.53

Number of synergies




Muscle synergies

Muscle synergies are a way to reduce the dimensionality of the control
problem, and allow sharing of neural circuitry across many tasks. Key idea:
representing all useful muscle patterns as combinations of a small
number of generators

Muscle synergies appear to exist in humans e.g. for posture control, walking,
arm movements, etc.

Note: while the regularities have been observed, the underlying neural circuits
are still to be decoded. They could be implemented with feedforward neural
networks in the spinal cord.

Could be compatible with control based on inverse models and optimal

control.
Similarity to EPH (also spinal cord mech.) but without the focus on reflex

tuning.
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Muscle synergies

Muscle synergies could be Eovstem Descending
implemented by e B | [
feedforward neural L i
networks in the spinal % sl

cord. N\’

|
| moteneurons (€

[ v
| Spinal circuits/reflexes |
[
YYYYYYVYYy Clinical Tests:
Musculo-

Reflexes
skeletal Electromyography
System (latencies/activation)
(directly
measurable)

I[sometric tests

Muscle tone
Safavynia SA, Torres-Oviedo G, Ting LH.
Muscle Synergies: Implications for Clinical
Evaluation and Rehabilitation of Movement. "gﬁ;;:;g:;;‘;v

Top Spinal Cord Inj Rehabil. 2011
Summer;17(1):16-24.
See also

http://journal.frontiersin.org/article/10.3389/fncom.2013.
00051 /full

Coordination tests

Sit-to-stand
Timed “Up-and-go"
Berg balance scale

BEHAVIOR
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Summary IM vs EPH

IM approach

Focus on the plan of the
trajectory

Mainly feedforward
Control of the final trajectory
Complete knowledge of the

system, need for direct and
Inverse models

Big responsibilities for
higher brain regions (motor
cortex, cerebellum, etc.)

EPH approach

Focus on the muscle
dynamics from which the

trajectory emerges
Mainly feedback

Only partial control of the
trajectory

Incomplete knowledge of
the system, relies on
reflexes, no inverse
dynamics model

Big responsibilites for spinal
cord circuits
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Summary muscle synergies

The idea of muscle synergies is quite close to EPH (both
are essentially spinal cord mechanisms) but is also
compatible with IM as a way to reduce dimensions.

Personal opinion: the nervous system is super redundant,
It could use several control principles at the same time,
and possibly switch depending on tasks.

E.g. muscle synergies/EPH for simple stereotyped
movements, and internal models for more complex
movements

Computational models will certainly help understanding this!

S7



Topics:

Lecture:
Models of arm movements

 Invariants of movements

« Different school of thoughts:

Internal Models
Equilibrium Point Trajectory
Muscle synergies

 Population coding

58



Population Code

* For motor planning (e.g. imagining a hand trajectory in
advance) and motor control (e.g. for verifying that a desired
trajectory is followed), movements are encoded in the motor
cortex based on a population code, and direction-sensitive
neurons.

« Almost universal principle in the brain: an individual neuron is
tuned to specific stimuli. Thus, a population of neurons with
different preferred stimuli can represent all possible
stimuli.

* Multiple examples of population code:
— Visual information processing in the visual cortex (cf previous lecture)
— Tactile information in the somatosensory cortex
— Encoding of plans for arm movements in the motor cortex
— Place cells for navigation in the hippocampus
- ... 59




Mean response and population coding

« Mean response exhibits a tuning curve, typically well
approximated by a Gaussian or cosine function.

STIMULUS ~ RESPONSE
Stimulus Stimulus Stimulus

‘||||

Orientation tuning in
the visual cortex:

= I

FGURE 4.8 Response of a single cortical cell to bars presented at various orientations

« The curves are usually quite large. Therefore the activity
of a single neuron is not sufficient to identify the stimulus

properly. The information is coded across the whole
population.

« Cfthe large receptive fields in the salamander optic tectum.60




How to extract information
using a population code?

« Example: neurons detecting wind direction in the cricket
(Miller et al 1991, Theunissen and Miller 1991, Salinas and
Abbott 1994)

1.07

FEH

0.5

ﬁrmax

U.D'—J/

T T T 1 I
0 90 180 270 360
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. Figure 3.4: Tuning curves for the four low-velocity interneurons of the cricket cer-
Miller et al 1991 cal system plotted as a function of the wind direction s. Each neuron responds with
a firing rate that closely approximated by a half-wave rectified cosine function. The
preferred directions of the neurons are located 90° from each other, and r;,,,, values
are typically around 40 Hz. Error bars show standard deviations. (Adapted from

Theunissen and Miller, 1991.)

Having large tuning curves is a good thing!
Too thin curves would “leave gaps” S /\ /\ /\ A

180
S (degrees)
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Population Vector

Represent each
preferred stimulus
by vector in stimulus
space.

Population vector:
weighted sum of
preferred vectors
(weighted by response)

Imax / 4

Only small error
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Figure 3.5: A) Preferred directions of four cercal interneurons in relation to the
cricket’s body. The firing rate of each neuron for a fixed wind speed is propor-
tional to the projection of the wind velocity vector v onto the preferred direction
axis of the neuron. The projection directions ¢, ¢, ¢; and & for the four neurons
are separated by 90°, and they collectively form a Cartesian coordinate system.
B) The root-mean-square error in the wind direction determined by vector decod-
ing of the firing rates of four cercal interneurons. These results were obtained
through simulation by randomly generating interneuron responses to a variety of
wind directions, with the average values and trial-to-trial variability of the firing
rates matched to the experimental data. The generated rates were then decoded
using equation 3.21 and compared to the wind direction used to generate them. (B
adapted from Salinas and Abbott, 1994.)
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Population Vector

Similarly to the coarse coding we have seen in the salamander optic tectum
it is beneficial that the tuning curves are rather large and overlapping:
« Fewer neurons are sufficient to cover a large input space

» Lessrisk of “gaps” in the input space

 The loss of one neuron does not create a “blind” spot

/ A\
Py -
/7 AY ! \
/ \ R

v
N

Large tuning curves Thin tuning curves

N

— I. —
Upop = E ( : ) Ca .
a1 I'max / 63




Motor cortex, arm movements

Works very well in
many cases!

E.g. encoding of arm
movements in the
motor cortex

The direction of
motion can be
predicted from the
population vector

N

— I‘ —
Upop = E Ca -

r
a—1 Mmax g

This can be used in
neuroprosthetics to
‘guide robotic arms.

|- ape

Figure 3.6: Comparison of population vectors with actual arm movement direc-
tions. Results are shown for eight different movement directions. Actual arm
movement directions are radially outward at angles that are multiples of 45°.
The groups of lines without arrows show the preferred direction vectors of the
recorded neurons multiplied by their firing rates. Vector sums of these terms
for each movement direction are indicated by the arrows. The fact that the ar-
rows point approximately radially outward shows that the population vector re-
constructs the actual movement direction fairly accurately. (Figure adapted from
Kandel et al., 1991 based on data from Kalaska et al., 1983.) 4



Planning movements in the motor cortex

Population coding
of the planned
movement

Sensory feedback

Cerebral cortex
Definition of the motor plan
1 1 1

Cerebellum
Timing, Coordination,

and Learning

Action selection

BEE.

Brain Stem
Descending modulation

Basal Ganglia |

Spinal ngtworksl l l

\[ Reflexes q—) ® @ q-)
v N Ky
2000

( muscle-dynamics

$ $ $ $ $ $
( body-dynamics
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Extracting the motor plan from the motor cortex

More about this in the next neuroprosthetics lecture.

———..

Andrew Schwarz and colleagues, U. of Pittsburgh

Meel Velliste, et al, Cortical control of a prosthetic arm for self-feeding,
Nature, Vol 453, pp 1098-1101, 2008 66




Different types of possible
estimators in population coding

* Pouget, et al 2000, Information processing with population
codes, Nature reviews Neuroscience,

« Population coding with large tuning curves has many good
properties:

— Robustness against neural lesions

— Robustness against noise

— Can support short-term memory

— Can implement complex nonlinear functions

« There are different types of estimators that can be used to
extract information: Voting methods (like the population
vector estimator of the cricket example) or Probabilistic
methods (like maximum likelihood or maximum a-posteriorg?



Interesting papers on population coding

Pouget, et al 2000, Information processing with population codes, Nature
Reviews Neuroscience, 2000 Nov;1(2):125-32.

Salinas, E. & Abbot, L. Vector reconstruction from firing rate. J. Comput.
Neurosci. 1, 89—-108 (1994).

Georgopoulos, A., Kalaska, J. & Caminiti, R. On the relations between
the direction of two-dimensional arm movements and cell discharge in
primate motor cortex. J. Neurosci. 2, 1527-1537 (1982).

Miller JP, Jacobs GA, Theunissen F (1991) Representation of sensory
iInformation in the cricket cercal sensory system. |. Response properties
of the primary interneurons. J. Neurophysiol. 66:1680-1689

Theunissen F, Miller JP (1991) Representation of sensory information in
the cricket cercal sensory system. Il. Information theoretic calculation of
system accuracy and optimal tuning curve widths of four primary
iInterneurons. J. Neurophysiol. 66:1690-1703.
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Possible exam questions

Describe 3 invariants that have been observed in human arm
movements (choose out of Bell-Shaped Velocity Profile, Isochrony
principle, Fitts’s Law, Two Third Power Law, Minimum Jerk hypothesis)

Explain the different school of thoughts to explain the control of
discrete (point-to-point) movements in humans: the internal model
based approach, the equilibrium point hypothesis, and the muscle
synergies. Explain the differences.

Explain what an internal model is, give examples, and explain why they
are useful for controlling the movements of an arm.

Explain what a population vector is. Discuss how the width of a tuning

curve affects computation with a population vector (e.g. what happens if
the tuning curve is too thin or too large).
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Written exam

Exam will take place on May 15, 10:15-12:15, on the campus,
In rooms AAC231 and SG 0211(info about room allocation
will be given through the Moodle forum)

Closed book, just bring your favorite pen (snacks and drinks)

Questions close to the examples shown at the end of each
lectures + to the exercises/practicals

Some “mathematical questions”, e.g. about dynamical
systems, limit cycles, and synchronization. To be solved
analytically and geometrically. See also the practicals.

Some “knowledge” questions

Some “discussion” questions
70



End of Lecture

No lecture next week! (May 8)
Only the practicals in the afternoon
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