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Lecture: 

Models of arm movements
Topics: 

• Invariants of arm movements

• Different school of thoughts:

• Internal Models

• Equilibrium Point Trajectory

• Muscle synergies

• Population coding
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Invariants of arm movements

Despite the large variety of movements that humans can make, 

most of our (typical) movements show several invariants.

• Bell-Shaped Velocity Profile and Straight Trajectory

• Isochrony principle

• Fitts’s Law

• Two Third Power Law

• Minimum Jerk hypothesis

Note: these properties are only valid for stereotypical 

movements (e.g. movements done without thinking). When 

needed, the brain can override those and perform almost 

arbitrary movements.
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Bell-shaped velocity profile

The velocity profile for reaching movements is approximately 

bell-shaped and the trajectory of the hand in free space is 

close to a straight line. 

Morasso, P. Spatial control of arm movements. Exp. Brain Research, 42, pp. 223-227, 1981.
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Bell-shaped velocity profile

The velocity profile for a reaching movements is approximately 

bell-shaped and the trajectory of the hand in free space is 

close to a straight line. 

Morasso, P. Spatial control of arm movements. Exp. Brain Research, 42, pp. 223-227, 1981.

Joint angles:

Joint angle 

velocities:

hand

velocity:

Bell-shaped profiles
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Previous lecture:

Muscles

Note: we had seen this type of 

bell-shaped velocity profile 

in the lecture on muscle 

models.
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Isochrony principle in reaching mvts

Isochrony principle:

Spontaneous  tendency   to   

increase the   velocity of 

movements depending   on   

the   distance  in   order   to   

keep   execution   time 

approximately constant. 

In other words: the velocity of 

voluntary movements 

increases proportionally with 

their linear extension

Viviani, P., and McCollum, G. (1983). The relation between linear extent 

and velocity in drawing movements. 

Sartori, L., Camperio-Ciani, A., Bulgheroni, M., & Castiello, U. (2013). 

Reach-to-grasp movements in Macaca fascicularis monkeys: the Isochrony

Principle at work. Frontiers in psychology, 4.
Sartori et al 2013
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Fitts’ law
Fitts’ Law: this law reflects the relationship between the

difficulty to reach the target and the duration of the  

movement. It corresponds to a speed/accuracy trade-off. 

Movements that require higher accuracy are performed 

slower.

The duration of a fast motion to a target can be approximated by:

Fitts, P.M. The information capacity of the human motor system in controlling the amplitude

of movement, Journal of Experimental Psychology, 47(6), pp. 381-391, 1954.

R.W. Soukoreff, I.S. MacKenzie / Int. J. Human-Computer Studies 61 (2004) 751–789

Note: the isochrony principle (previous slide)  is therefore valid for 

movements with the same index of difficulty. 



10

High curvature

High angular velocity

Low instantaneous speedLow curvature

Low angular velocity

High instantaneous speed

Two-Third Power Law

Two-Third Power Law: When drawing movements in the air on 

on paper, there is a constant relationship between the 

kinematics of elliptical motion and the geometrical properties 

of the trajectory. 

Where k is a constant,  

C(t) is the curvature of the 

hand trajectory,

C=1/R, where R is the radius

Lacquaniti. F.. Terzuolo. C.A. and Viviani, P. (1983) The law relating kinematic 

and figural aspects of drawing movements Acta Psycho. 54,115-130

𝑣 𝑡 = 𝑘𝐶(𝑡)−1/3

𝜔 𝑡 = 𝑘𝐶(𝑡)2/3

Note: 𝑣 = 𝑅𝜔 =
𝜔

𝐶
hence the 2/3 vs −1/3 power laws

Two versions:

Angular velocity: 

Instantaneous speed: 

Curvature C
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Minimum Jerk

Human arm motions are smooth. They appear to minimize jerk,

i.e. the derivative of acceleration.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical 

model. The journal of Neuroscience, 5(7), 1688-1703.

Shadmehr and Wise (2005), Computational Neurobiology of Reaching and Pointing: A Foundation for Motor 

Learning, MIT Press, Cambridge.

3rd deriv.: jerk

4th deriv.: snap

5th deriv.: crackle

Cost function:
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Minimum Jerk

Human arm motions are smooth. They appear to minimize jerk,

i.e. the derivative of acceleration.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical 

model. The journal of Neuroscience, 5(7), 1688-1703.

Good match 

between 

experimental data, 

and trajectories 

that minimize jerk
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Minimum Jerk

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical 

model. The journal of Neuroscience, 5(7), 1688-1703.

Also good 

prediction of via-

point experiments, 

i.e. reaching a 

target, while 

passing through a 

specific via point

RealModel ModelReal

Via point
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Relationship between invariants

One can find links between these relationships, e.g. between 

minimum jerk, 2/3 power law, and the isochrony principle, cf

Viviani, P., & Flash, T. (1995). Minimum-jerk, two-thirds power law, and 

isochrony: converging approaches to movement planning. Journal of 

Experimental Psychology: Human Perception and Performance, 21(1), 32.

Richardson, M. J., & Flash, T. (2002). Comparing smooth arm movements with 

the two-thirds power law and the related segmented-control hypothesis. The 

Journal of neuroscience, 22(18), 8201-8211.

Huh, D., & Sejnowski, T. J. (2015). Spectrum of power laws for curved hand 

movements. Proceedings of the National Academy of Sciences, 112(29), 

E3950–E3958. https://doi.org/10.1073/pnas.1510208112

https://doi.org/10.1073/pnas.1510208112
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Models of arm movements
Topics: 

• Invariants of movements

• Different school of thoughts:

• Internal Models

• Equilibrium Point Trajectory

• Muscle synergies

• Population coding
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Different schools of thoughts

16

There are different school of thoughts to explain the control of discrete 

(point-to-point) movements in humans:

The internal model based approach (IM) postulates that the CNS can 

plan kinematic trajectories and then reproduce them accurately 

thanks to internal models (both direct and inverse models).

The equilibrium point hypothesis approach (EPH) postulates that 

the CNS specifies a series of equilibrium positions of muscles, and 

relies on reflex loops and the spring-like properties of muscles to 

move the limb.

The muscle synergies approach postulates that the CNS and 

especially the spinal cord implements discrete pattern generators

that reduce the dimensionality of control and that can serve as 

motor primitives for more complex movements.
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Different schools of thoughts

17

Internal model 

based approach 

Equilibrium point 

hypothesis 

Muscle synergies 
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Internal models

The internal model based approach (IM) postulates that the 

CNS can plan kinematic trajectories and then reproduce 

them accurately thanks to internal models.

An internal model is a neural structure emulating the

physical processes involved into

• the transformation of neural command into actual limb 

movements (direct model)

• the prediction of the neural command needed to perform 

a limb movement (inverse model)

Among other things, internal models allow the central nervous system to 

imagine the effect of movements without performing them. 
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Internal models

Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. nature 

neuroscience, 3, 1212-1217.
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Example of internal models

Inverse kinematics model: maps a desired position Ԧ𝑥 of the 

hand to (multiple) joint angles Ԧ𝜃 in the arm

This is an ill-posed problem for redundant systems like arms, 

i.e. with more degrees of freedom (e.g. 7) than those needed 

to determine the hand position (3)

Redundancy can be solved by trying to stay close to preferred

postures.

This is a geometrical problem.

Ԧ𝑥

Ԧ𝜃

Forward kinematics:

Inverse kinematics: 𝜃 = f-1( Ԧ𝑥)

Ԧ𝑥 = f( Ԧ𝜃)
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Example of internal models

Inverse dynamics model: maps a desired posture of the arm in 

terms of joint angles Ԧ𝜃 (and possibly joint angle velocities, 

and accelerations) to the necessary torques 𝑇 (or muscle 

activations).

𝑇

Ԧ𝜃

Forward dynamics:

Inverse dynamics: 𝑇 = g-1( Ԧ𝜃,
ሶԦ𝜃,
ሷԦ𝜃)

[ Ԧ𝜃,
ሶԦ𝜃,
ሷԦ𝜃] = g(𝑇)

This is a complex high-dimensional and nonlinear problem since 

it depends on the physics of the arm (load, gravity, inertia, 

etc.). It is a problem involving dynamics.
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Experiments to investigate 

internal models

Researchers have designed several experiments to investigate 

whether the central nervous system can learn internal models. 

For instance: inverse dynamics models using manipulandum 

experiments, i.e. experiments that record human movements in 

2D (typically the horizontal plane)

Conditt, M. A., & Mussa-Ivaldi, F. A. (1999). Central representation of 

time during motor learning. Proceedings of the National Academy of 

Sciences, 96(20), 11625–11630. 

https://doi.org/10.1073/pnas.96.20.11625

https://doi.org/10.1073/pnas.96.20.11625
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Internal model 

of inverse dynamics?
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Internal model 

of inverse dynamics?
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Internal model 

of inverse dynamics?

Error has almost

disappeared in the 

final trial

The error decreases as the number of trial increases (here first, second, third 

and final, 250th, trial).

The trajectories suggest the existence of a kinematic plan (i.e. subjects want 

to perform straight lines).

Two possible explanations:

(1) The subject learns a model of the force field

(2) The subject increases the stiffness of the arm by cocontracting muscles
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Internal model 

of inverse dynamics?

Strong after effects

after 250 sessions 

of learning
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Internal model 

of inverse dynamics?
The perturbation experiment designed by Shadmehr and Mussa-

Ivaldi tends to support the idea of internal models.

And it looks like a majority of researchers now favor the idea 

of kinematic plans and internal models.

However some people think the experiment can also be 

explained by the EPH, see Gribble, P. L., & Ostry, D. J. 

(2000), in a few slides.
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Learning inverse models

Direct and inverse models can be learned by motor babbling.

Motor babbling: more or less random movements like those 

performed by a baby.

By observing the results of actions both direct and inverse models 

can be learned.

E.g. learning an inverse kinematics model, that maps a desired 

position of the hand to (multiple) joint angles in the arm.

Example: D'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse 

kinematics. In Intelligent Robots and Systems, 2001. Proceedings. 2001 

IEEE/RSJ International Conference on (Vol. 1, pp. 298-303). IEEE.
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Learning inverse models

D'Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning 

inverse kinematics. In Intelligent Robots and Systems, 2001. 

Proceedings. 2001 IEEE/RSJ International Conference on

(Vol. 1, pp. 298-303). IEEE.

Forward kinematics:

Inverse kinematics:

An ill-posed problem for redundant systems like arms, i.e. with 

more degrees of freedom (e.g. 7) than hand position (3)

They solved this on a humanoid robot, using statistical 

learning methods

Ԧ𝑥

Ԧ𝜃

𝜃 = f-1( Ԧ𝑥)

Ԧ𝑥 = f( Ԧ𝜃)
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Learning inverse models

30

They showed that inverse kinematics learning could be done 

on a humanoid robot after a motor babbling phase. It can 

also be done continuously, while performing movements.

DB, Humanoid robot at ATR
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Learning inverse dynamics model

A similar approach to learn an inverse dynamics model, i.e. the 

mapping from a desired posture, to the torques necessary to 

get there.

By doing online 

learning, the inverse 

dynamics model is 

updated to take into 

account an additional 

load.

Sethu Vijayakumar, Aaron D'Souza, Tomohiro Shibata, Jorg Conradt and Stefan Schaal,

Statistical Learning for Humanoid Robots, Autonomous Robot , Vol. 12, No.1, pp. 55-69 (2002).
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Learning inverse models

32

Nice article: 
Wolpert, D. M., & Ghahramani, Z. (2000). 

Computational principles of movement 

neuroscience. Nature neuroscience, 3, 1212-

1217.

They claim: (1) internal models are fundamental 

for understanding a range of processes such as 

state estimation, prediction, context estimation, 

control and learning.

(2) optimality underlies many theories of movement 

planning, control and estimation and can 

account for a wide range of experimental 

findings.

(3) the motor system has to cope with uncertainty 

about the world and noise in its sensory inputs 

and motor commands, and the Bayesian 

approach provides a powerful framework for 

optimal estimation in the face of such 

uncertainty.
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Learning inverse models

Interesting hypothesis: rather than 

minimizing jerk, the CNS minimizes 

the uncertainty 

This model assumes that there is 

noise in the motor command and 

that the amount of noise scales with 

the motor command’s magnitude. 

This model accurately predicts the 

trajectories of both saccadic eye 

movements and arm movements.

Very nice TED talk:

https://www.ted.com/talks/daniel_wolpert_the_real_reas

on_for_brains?language=en Movements that maximize accuracy 

(i.e. minimize uncertainty) are preferred.
Wolpert, D. M., & Ghahramani, Z. (2000). 

Computational principles of movement neuroscience. 

Nature neuroscience, 3, 1212-1217.

https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains/transcript?language=en#t-19815
https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains?language=en
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Models of arm movements
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• Invariants of movements
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• Internal Models

• Equilibrium Point Trajectory

• Muscle synergies

• Population coding
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Equilibrium point hypothesis

The equilibrium point hypothesis approach (EPH) postulates 

that the CNS specifies a series of equilibrium positions of 

muscles, and relies on reflex loops and the spring-like properties 

of muscles to move the limb.

No need for inverse models nor detailed kinematic plans

Was first proposed by Anatol Feldman

Key idea: muscle reflexes should not be viewed as hardwired 

stereotypical responses to stimuli, but rather as tunable 

mechanisms that form the basis of motor behavior.
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Different schools of thoughts

36

Equilibrium point 

hypothesis 
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Tonic Stretch reflex

Wikipedia: The stretch reflex (myotatic reflex) is a muscle 

contraction in response to stretching within the muscle. It is a 

monosynaptic reflex which provides automatic regulation of 

skeletal muscle length.

When a muscle lengthens, the muscle spindle is stretched and its nerve activity 

increases. This increases alpha motor neuron activity, causing the muscle fibers to 

contract and thus resist the stretching. A secondary set of neurons also causes the 

opposing muscle to relax. The reflex functions to maintain the muscle at a 

constant length. This is important e.g. to maintain a given posture.

https://www.youtube.com/watch?v=

HfuhVWK8C0U

http://humanphysiology.academy/Neurosciences%20201

5/Chapter%202/P.2.2%20Spinal%20Reflexes.html

http://en.wikipedia.org/wiki/Muscle_contraction
http://en.wikipedia.org/wiki/Reflex_arc
http://en.wikipedia.org/wiki/Skeletal_striated_muscle
http://en.wikipedia.org/wiki/Muscle_spindle
http://en.wikipedia.org/wiki/Alpha_motor_neuron
https://www.youtube.com/watch?v=HfuhVWK8C0U
http://humanphysiology.academy/Neurosciences%202015/Chapter%202/P.2.2%20Spinal%20Reflexes.html
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Equilibrium point hypothesis

Matthews P.B.C. (1959) The dependence of tension upon extension in the stretch reflex 

of the soleus of the decerebrate cat. Journal of Physiology 47: 521-546

Descending signals 

(central command) 

can tune the tonic 

stretch reflex, and 

shift the force-length 

relationship
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Equilibrium point hypothesis

39

Latash, M. L. (2008). 

Evolution of motor 

control: from reflexes 

and motor programs to 

the equilibrium-point 

hypothesis. Journal of 

human kinetics, 19(1), 

3-24.

By changing the 

descending signals 

and tuning the tonic 

stretch reflex, active 

movements can be 

generated towards 

new equilibrium 

points (i.e. new end 

postures)
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Equilibrium point hypothesis
Adapted from Wikipedia: 

• In the Equilibrium Point hypothesis, all movements are generated by the 

nervous system through a gradual transition of equilibrium points along a 

desired trajectory. 

• "Equilibrium point" in this sense is taken to mean a state where a field has 

zero force, meaning opposing muscles are in a state of balance with each 

other, like two rubber bands pulling the joint to a stable position. 

• Equilibrium point control is also called "threshold control" because signals 

sent from the CNS to the periphery are thought to modulate the threshold 

length of each muscle. In this theory, motor neurons send commands to 

muscles, which changes the force–length relation within a muscle, 

resulting in a shift of the system's equilibrium point. 

• As opposed to internal models, the nervous system would not need to 

directly estimate limb dynamics, but rather muscles and spinal reflexes 

would provide all the necessary information about the system.
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Equilibrium point hypothesis
Feldman thus postulated that:

• H1 Muscles tend to have a given length λ at rest (i.e. an 

equilibrium point)

• H2: The CNS can modify the rest length of muscles

• H3: Movements are generated as a time sequences of the rest 

lengths by changing reflex thresholds 

H1 and H2 are commonly accepted by neuroscientists. H3 is 

more controversial.

Feldman, A. G. (1986). Once more on the equilibrium-point 

hypothesis (λ model) for motor control. Journal of motor 

behavior, 18(1), 17-54.
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EPH and perturbation exp,

Gribble and Ostry tried to explain the results seen before with 

the EPH and without an inverse dynamics model.

The same perturbations than in Shadmehr et Mussa-Ivaldi

(1994) are applied to a dynamic model of an arm.

It is assumed that the NS knows

• the control signal that has been sent

• the desired trajectory

• the actual trajectory Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm 

movements using equilibrium-point control. Experimental Brain 

Research, 135(4), 474-482.
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EPH and perturbation exp,

Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm movements 

using equilibrium-point control. Experimental Brain Research, 135(4), 474-482.
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EPH and perturbation exp,

Gribble, P. L., & Ostry, D. J. (2000). Compensation for loads during arm movements 

using equilibrium-point control. Experimental Brain Research, 135(4), 474-482.
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Muscle synergies

• Muscle synergies = observed coherent activations, 

in space or time, of a group of muscles, that have 

been proposed as building blocks that could simplify 

the construction of motor behaviors. 

• Closely related topics: force fields, or discrete 

pattern generators: coordinated movements of a 

whole limb towards a target under the control of 

simple inputs

• Similarities to EPH —both are mainly spinal cord

mechanisms— but without the focus on reflex 

tuning



47

Different schools of thoughts

47

Muscle synergies 
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Force fields: pattern generators

for discrete movements

Concepts of force fields (Mussa-Ivaldi, Bizzi et al):

• Stimulation of the spinal cord ➔ movement towards an 

equilibrium posture (from any initial conditions)

• Stimulation of different sites in the spinal cord

➔ different force fields, and different equilibrium postures

Force field:

Forces produced by the limb

when a particular point in the 

spinal cord is stimulated



49

Force fields: pattern generators

for discrete movements

• Stimulation of two sites ➔ linear superposition of the two

force fields

• This property is very useful for control

• S. Grillner now proposes to use the term CPGs for both

rhythmic and discrete movements

P
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n
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Muscle synergies

• The work on force fields motivated researchers to analyze

EMG data underlying a large variety of movements.

• High-dimensional EMG data from many muscles can be

explained by lower dimensional activation of muscle 

synergies.

• Multiple types of movements

might use a small set of synergies

• Muscle synergies are found

by performing Principle Component                                 

Analysis or with optimization

algorithms (when there are time-shifts)

A schematic illustrating how muscle synergies are linearly combined to generate muscle patterns recorded as 

electromyographic signals (EMGs). Each of the two muscle synergies shown (red and green bars) is represented 

as an activation balance profile across muscles (muscles 1–5) and activated, through multiplication, by a time-

dependent coefficient. The EMG waveforms resulting from the activations of individual synergies are then summed 

together to reconstruct the recorded EMGs (black lines). In the schematic, each color in the EMG reconstruction 

reflects how the waveforms from the synergy coded by the same color contribute to the reconstruction. 

http://www.pnas.org/content/109/36/14652

Here a “static” muscle synergy

http://www.pnas.org/content/109/36/14652
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Muscle synergies as feedforward neural networks

Safavynia SA, Torres-Oviedo G, Ting LH.

Muscle Synergies: Implications for Clinical Evaluation and Rehabilitation of Movement.

Top Spinal Cord Inj Rehabil. 2011 Summer;17(1):16-24.

Activation

Synaptic weights

motoneurons

http://www.pnas.org/content/109/36/14652

Here an example with 2 synergies (red + green):

http://www.pnas.org/content/109/36/14652
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Muscle synergies

Example: Combinations of three time-varying muscle 

synergies underlie the variety of muscle patterns required for 

the frog to kick in different directions. d'Avella, Saltiel, and Bizzi. "Combinations 

of muscle synergies in the construction of a natural motor behavior." Nature neuroscience 6.3 

(2003): 300-308.

This study

was particular

as it also

considered

time shifts

By modifying ci and ti for each synergy, different movements can be created

Here the muscle synergy is time-varying (temporal pattern)
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Muscle synergies

• Cross-validation procedure for finding the number of synergies needed for 

explaining most of the data

• The synergies extracted from each individual frog are generally very 

similar to each other (tests with 4 frogs)

• Significant similarities among the synergies extracted from kicking 

and from different natural behaviors (jumps, swimming and walking) 

(a) Cross-validation procedure. For each number of 

synergies, the extraction is performed on a randomly 

selected 80% of the data, and the reconstruction tested on 

the remaining 20% of the data. Mean and standard 

deviation of the fraction of total variation (R2) of five disjoint 

test sets explained by the synergies extracted from the 

remaining data is shown. The slope of the curve changes 

sharply at three, indicating that four or more synergies 

capture only a small additional fraction of the total variation 

in the data explained by three synergies. (b) Similarities 

between sets with different numbers of synergies. The 

nodes on each row of the pyramid represent the synergies 

extracted from sets with a number of elements ranging 

from 1 to 6. The links between the nodes in two adjacent 

rows connect synergies that are similar (similarity value 

above 0.6, with the value computed as the maximum of the 

normalized scalar product at different delays; Methods). 

The degree of similarity is indicated by the thickness and 

darkness of the link and the value shown close to each link.
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Muscle synergies

Muscle synergies are a way to reduce the dimensionality of the control 

problem, and allow sharing of neural circuitry across many tasks. Key idea: 

representing all useful muscle patterns as combinations of a small 

number of generators

Muscle synergies appear to exist in humans e.g. for posture control, walking, 

arm movements, etc. 

Note: while the regularities have been observed, the underlying neural circuits 

are still to be decoded. They could be implemented with feedforward neural 

networks in the spinal cord.

Could be compatible with control based on inverse models and optimal 

control.

Similarity to EPH (also spinal cord mech.) but without the focus on reflex 

tuning.
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Muscle synergies

Safavynia SA, Torres-Oviedo G, Ting LH.

Muscle Synergies: Implications for Clinical

Evaluation and Rehabilitation of Movement.

Top Spinal Cord Inj Rehabil. 2011 

Summer;17(1):16-24.

Muscle synergies could be

implemented by 

feedforward neural 

networks in the spinal 

cord.

See also

http://journal.frontiersin.org/article/10.3389/fncom.2013.

00051/full

http://journal.frontiersin.org/article/10.3389/fncom.2013.00051/full
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Summary IM vs EPH

IM approach

• Focus on the plan of the 

trajectory

• Mainly feedforward

• Control of the final trajectory

• Complete knowledge of  the 

system, need for direct and 

inverse models

• Big responsibilities for 

higher brain regions (motor 

cortex, cerebellum, etc.)

EPH approach

• Focus on the muscle 

dynamics from which the 

trajectory emerges

• Mainly feedback

• Only partial control of the 

trajectory

• Incomplete knowledge of 

the system, relies on 

reflexes,  no inverse 

dynamics model

• Big responsibilites for spinal 

cord circuits
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Summary muscle synergies

• The idea of muscle synergies is quite close to EPH (both 

are essentially spinal cord mechanisms) but is also 

compatible with IM as a way to reduce dimensions.

• Personal opinion: the nervous system is super redundant, 

it could use several control principles at the same time, 

and possibly switch depending on tasks.

• E.g. muscle synergies/EPH for simple stereotyped

movements, and internal models for more complex

movements

• Computational models will certainly help understanding this!
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Population Code

• For motor planning (e.g. imagining a hand trajectory in 

advance) and motor control (e.g. for verifying that a desired 

trajectory is followed), movements are encoded in the motor 

cortex based on a population code, and direction-sensitive 

neurons. 

• Almost universal principle in the brain: an individual neuron is 

tuned to specific stimuli.  Thus, a population of neurons with 

different preferred stimuli can represent all possible 

stimuli.

• Multiple examples of population code:

– Visual information processing in the visual cortex (cf previous lecture)

– Tactile information in the somatosensory cortex

– Encoding of plans for arm movements in the motor cortex

– Place cells for navigation in the hippocampus

– …
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Mean response and population coding

• Mean response exhibits a tuning curve, typically well 

approximated by a Gaussian or cosine function.

• The curves are usually quite large. Therefore the activity 

of a single neuron is not sufficient to identify the stimulus 

properly. The information is coded across the whole 

population. 

• Cf the large receptive fields in the salamander optic tectum.

Orientation tuning in 

the visual cortex:



61

How to extract information 

using a population code?

• Example: neurons detecting wind direction in the cricket 

(Miller et al 1991, Theunissen and Miller 1991, Salinas and 

Abbott 1994)

Miller et al 1991

Having large tuning curves is a good thing!

Too thin curves would “leave gaps” 
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Population Vector

Represent each

preferred stimulus

by vector in stimulus

space.

Population vector:

weighted sum of

preferred vectors

(weighted by response)

Only small error
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Population Vector

N

Similarly to the coarse coding we have seen in the salamander optic tectum 

it is beneficial that the tuning curves are rather large and overlapping:

• Fewer neurons are sufficient to cover a large input space

• Less risk of “gaps” in the input space

• The loss of one neuron does not create a “blind” spot 

Large tuning curves Thin tuning curves
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Motor cortex, arm movements

Works very well in 

many cases!

E.g. encoding of arm 

movements in the 

motor cortex

The direction of 

motion can be 

predicted from the 

population vector

This can be used in 

neuroprosthetics to 

guide robotic arms.

N
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Planning movements in the motor cortex

65

Population coding 

of the planned 

movement
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Extracting the motor plan from the motor cortex

66

Andrew Schwarz and colleagues, U. of Pittsburgh
Meel Velliste, et al, Cortical control of a prosthetic arm for self-feeding,

Nature, Vol 453, pp 1098-1101, 2008

More about this in the next neuroprosthetics lecture.
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Different types of possible 

estimators in population coding

• Pouget, et al 2000, Information processing with population 

codes, Nature reviews Neuroscience, 

• Population coding with large tuning curves has many good 

properties:

– Robustness against neural lesions

– Robustness against noise

– Can support short-term memory

– Can implement complex nonlinear functions

• There are different types of estimators that can be used to 

extract information: Voting methods (like the population 

vector estimator of the cricket example) or Probabilistic 

methods (like maximum likelihood or maximum a-posteriori) 
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Interesting papers on population coding

• Pouget, et al 2000, Information processing with population codes, Nature 

Reviews Neuroscience, 2000 Nov;1(2):125-32.

• Salinas, E. & Abbot, L. Vector reconstruction from firing rate. J. Comput. 

Neurosci. 1, 89–108 (1994).

• Georgopoulos, A., Kalaska, J. & Caminiti, R. On the relations between 

the direction of two-dimensional arm movements and cell discharge in 

primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).

• Miller JP, Jacobs GA, Theunissen F (1991) Representation of sensory 

information in the cricket cercal sensory system. I. Response properties 

of the primary interneurons. J. Neurophysiol. 66:1680-1689 

• Theunissen F, Miller JP (1991) Representation of sensory information in 

the cricket cercal sensory system. II. Information theoretic calculation of 

system accuracy and optimal tuning curve widths of four primary 

interneurons. J. Neurophysiol. 66:1690-1703.
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Possible exam questions

• Describe 3 invariants that have been observed in human arm 

movements (choose out of Bell-Shaped Velocity Profile, Isochrony

principle, Fitts’s Law, Two Third Power Law, Minimum Jerk hypothesis)

• Explain the different school of thoughts to explain the control of 

discrete (point-to-point) movements in humans: the internal model 

based approach, the equilibrium point hypothesis, and the muscle 

synergies. Explain the differences.

• Explain what an internal model is, give examples, and explain why they 

are useful for controlling the movements of an arm.

• Explain what a population vector is. Discuss how the width of a tuning 

curve affects computation with a population vector (e.g. what happens if 

the tuning curve is too thin or too large).
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Written exam

• Exam will take place on May 15, 10:15-12:15, on the campus, 

in rooms AAC231 and SG 0211(info about room allocation 

will be given through the Moodle forum)

• Closed book, just bring your favorite pen (snacks and drinks)

• Questions close to the examples shown at the end of each 

lectures + to the exercises/practicals

• Some “mathematical questions”, e.g. about dynamical 

systems, limit cycles, and synchronization. To be solved 

analytically and geometrically. See also the practicals.

• Some “knowledge” questions

• Some “discussion” questions
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End of Lecture

No lecture next week! (May 8) 

Only the practicals in the afternoon


