
Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

Student names: . . . (please update)

Motivations and project overview
Zebrafish (Danio rerio, Fig. 1) have emerged as a powerful model organism in biology and neuroscience,
owing to their genetic tractability, transparent embryonic stages, and well-characterized spinal cord
circuits. In adult zebrafish, locomotion can be generated across a range of swimming frequencies (slow,
medium, and fast regimes), and the underlying neural control of these different speeds has become a
central topic in vertebrate motor control research [1].

Figure 1: The zebrafish.

Scientific context and motivation.

• Zebrafish as a model system. Zebrafish offer a unique window into vertebrate locomotion. Their
spinal cord circuitry is structurally simpler than that of larger vertebrates yet retains many fun-
damental features, including segmental organization and distributed central pattern generators
(CPGs). This makes them ideal for studying the neural basis of rhythmic movements [1].

• Neuromechanical modeling. A realistic neuromechanical model integrates neural control with
the biomechanical properties of the fish body and its interaction with the fluid environment.
Such a model allows us to systematically test how different neural parameters (e.g., activation
frequencies, muscle stiffness, phase lags) affect locomotion performance [2].

• Proprioceptive feedback. Recent findings highlight specialized stretch-sensitive organs in zebrafish
musculature that can detect bending or strain along the body. How these sensors influence the
fish’s ability to adapt swimming gaits—particularly when transitioning from slow to fast regimes
or responding to environmental perturbations—remains an open question. Incorporating these
sensors into a computational model can help clarify their role and importance [3].

Goals of this project.

In Project 1, you will focus on modeling and simulating swimming in an adult zebrafish. You will
investigate how the muscle and body mechanics interact to produce efficient locomotion. Additionally,
you will design a CPG controller capable of generating the undulatory body movements required for
propulsion.

1

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

In Project 2, you will extend this controller by incorporating proprioceptive feedback, which has
been experimentally shown to play a critical role in modulating swimming behavior based on local
stretch signals along the body [3]. Although proprioceptive feedback in zebrafish has been identified
experimentally, its exact functional contribution to fine-tuning locomotion remains unclear. You will
thus have the opportunity to integrate these newly discovered feedback loops into your simulation and
test various hypotheses on how zebrafish sense and adapt to their environment.

The document is structured as follows:

1. Prerequisites. A checklist of software dependencies and environment configurations needed
before starting the project.

2. Code organization and usage. Guidelines on how the provided Python files are structured
and how to modify or extend them for your own experiments.

3. Mechanical model description. A detailed explanation of the multi-segment zebrafish model,
including the joints, muscle dynamics, and simplified fluid drag forces.

4. Exercises and questions. A set of tasks guiding you through the study of different zebrafish
controllers, muscle parameters and swimming kinematics.

By the end of these projects, you will have built a comprehensive simulation framework capable of
generating biologically inspired swimming patterns in zebrafish. You will also have gained insight
into the interplay between neural control, biomechanics, and sensory feedback in shaping locomotor
behaviors, and you will be better equipped to address broader questions in motor control and bio-
inspired robotics.

Instructions and deadlines.

Update this LATEX file (or recreate a similar one, e.g. in Word) to prepare your answers to the questions.
Feel free to add text, equations and figures as needed. Hand-written notes, e.g. for the development
of equations, can also be included as pictures (from your cell phone or from a scanner). The code of
project 1 should contain exercise 0 to 4.

The final report for this project should include:

• A PDF file containing your responses to the questions.

• The source file of the report (*.doc/*.tex).

• The python code you used for the project.

All files should be inside a single zipped folder called final_report_name1_name2_name3.zip where
name# are the team member’s last names. Submit only one report per team.

Deadline for Project 1 is Friday 27/04/2025 23:59

1. Prerequisites
To have all the necessary python packages necessary to complete the final project, check that you have
installed all the necessary required packages.

IMPORTANT: Make sure you have activated and are using your virtual environment and its python
interpreter that that you have created for this course.

NOTE: If you are unclear about the basic steps then refer back to Lab 0 documentation

Next, pull the latest version of the exercise repository. Navigate to the directory Project1/Python in
the terminal and execute the following,

2

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

>> pip i n s t a l l −r requi rements . txt −−upgrade

We recommend that each group creates their own GitHub (or Gitlab) repository in order to easilty
share code among the members. You can do that by copying the content of the Project1 folder into
a newly created repository (e.g. My_CMC_Project).
Keep the repositories private and only share acces with other members of your team.

Next, download the zip folder farms_packages.zip uploaded in Moodle and unzip its content in a
dedicated directory (e.g. My_CMC_Project/FARMS). Open a terminal and navigate to that
directory, then run the following commands:

>> pip i n s t a l l −e farms_core . py
>> pip i n s t a l l −e farms_sim . py
>> pip i n s t a l l −e farms_mujoco . py
>> pip i n s t a l l −e farms_amphibious . py

This will install the MuJoCo simulator and the dm_control package which are software maintained
by Deepmind for running multi-body rigid system simulations. It will also install the farms_core,
farms_mujoco, farms_amphibious and farms_sim FARMS packages developed at the Biorobotics
Laboratory (BioRob). If you are interested in knowing more about MuJoCo and FARMS, you can
find out more on the official MuJoCo website and the FARMS paper.

Example script

You can now run a simulation example to get you accustomed to the MuJoCo graphical interface with
example_single.py. Navigate to the Python directory of the project repository and try running:

>> python example_single . py

You should see the zebrafish model floating in the water. In the following sections, we will explain
the properties of the mechanical model and how to design a controller to generate swimming locomo-
tion.

Graphical User Interface Interaction

When you run the example script, a Graphical User Interface (GUI) should launch. You can use the
left mouse click to move around the scene and right mouse click to rotate the camera. You can also
select a part of the model by double left clicking on a part. Once selected, you can then interact
with it by holding the CONTROL key and dragging with left or right click. Try it out for yourself to
familiarise with the interface.

There are many keyboard shortcuts also available

• Press SPACE to toggle play/pause

• Press “'” / “∧” to change speed factor (between zero (0) and backspace)

• Press w to toggle wireframe

• Press t to toggle transparency

• Press s to toggle shadows

• Press c to show collisions

• Press f to show collisions forces, combine with p to show friction/reaction

• Press b to show external forces (try in water later on)

3

https://mujoco.org/
https://www.biorxiv.org/content/10.1101/2023.09.25.559130v1https://www.biorxiv.org/content/10.1101/2023.09.25.559130v1

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

• And many more...

2. Code organization and usage.
In this project you will modify the files exercise_#.py, controllers/wave_controller.py,
controllers/abstract_oscillator_controller.py, simulation_parameters.py (optional)
and plot_results.py (optional). We provide below a brief description of these and the other files,
for completeness.

• example_single.py — Run single simulation example (fixed parameters)

• example_multiple.py — Run multiple parallel simulations with different parameters

• exercise_#.py — Files for the exercises 1-3

• controllers/wave_controller.py — This file contains the equations for the left and right
muscle activations in a step function, which is internall called at each iteration time step.

• controllers/abstract_oscillator_controller.py — Contains the equations for the abstract
oscillator neural controller. You have to implement here the differential equations that will be
described later in the code.

• simulation_parameters.py — This file contains the SimulationParameters class and is pro-
vided for convenience to send parameters to the setup of the controller. Please carefully read
the parameter list and their documentation in this code.

• metrics.py — This file contains the implementation for all the controller/mechanical metrics
(see below).

• plotting_common.py — Plotting utilities (see below).

• plot_results.py — Loading and plotting the simulation results.

• util folder — Contains all the utilities for running the simulation (do not modify)

• logs folder — Contains all the simulation logs

• muscle_parameters folder — Contains the optimized muscle parameters used in the Project
(do not modify)

• models folder — Contains extra code for the biomechanical and simulation in MuJoCo (do
not modify)

Running the simulations

We provided two example files for running the simulations:

• example_single.py - in this example you can see how to run a single simulation of the ze-
brafish. You can explore the GUI, where to store the simulation data (for postprocessing and
plotting) and how to use some plotting tools (explained more in the next section). Try to
change some parameters of the SimulationParameters.py:SimulationParameters() class to
test how it works (try, i.e. to save the video, activate/deactivate the headless mode, etc). The
results are saved to controller variable and log_path folder for further inspection and analy-
sis. The results store the sensor readings (check utils/run_closed_loop:run_single()) and
the controller states (Class variables in your controller, i.e. controllers/wave_controller.py,
controllers/abstract_oscillator_controller.py).

• example_multiple.py - in this example you can see how to run multiple simulation (without
GUI) in parallel using the processors for different parameter values.

4

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

Plotting tools

We provided some optional plotting tools in plotting_common.py (check the documentation for more
details):

• plot_time_histories - plots time histories of a vector of states on a single plot

• plot_time_histories_multiple_windows - plots time histories of a vector of states on multiple
subplots

• plot_left_right - plotting left and right time histories on separate subplots

• plot_2d - plots an array 2d colored plot (uuseful for 2d parameter searches)

• plot_trajectory - plots head positions

• plot_positions - plots positions of the links

Examples for how to use these tools can be found in example_single.py and plot_results.py

Performance metrics

In order to quantitatively evaluate both the neural controller and the mechanical body of the zebrafish
model, we define a series of metrics that capture different aspects of locomotor performance. These
metrics are computed over the last portion of the simulation (e.g. the final 60% of the recorded data)
to avoid transient effects. Below, we provide a brief description of each metric category—neural and
mechanical—and present the main equations used in the code.

Neural metrics

The neural metrics focus on signals generated by the controller (e.g., muscle activations). Typically,
we analyze the difference xi = M i

L −M i
R between left- and right-side muscle commands, which directly

relates to the torque output around each joint i.

• Neural frequency (fneur). We compute the neural frequency via a Fast Fourier Transform (FFT)
of the muscle activation signals.

fneur =< argmax
f

∣∣Xi[f]
∣∣ >i

• Neural amplitude (Aneur). The amplitude is estimated as:

Aneur =<
2

∣∣Xi[ki
max]

∣∣
N

>i

where
∣∣Xi[ki

max]
∣∣ is the magnitude of the FFT at the index corresponding to the dominant

frequency for each signal, and N is the number of samples.

• Intersegmental phase lag (IPLneur). For two oscillatory signals x1(t) and x2(t) with similar
frequencies, the delay ∆t1,2 is computed by cross-correlation:

∆t1,2 = argmax
τ

(
corr

(
x1, x2

))
The corresponding phase lag is computed by normalizing the delay by the average frequency of
the two signals f1,2, as:

PL1,2 = 2π f1,2 ∆t,

Finally, the overall intersegmental phase lag is computed by averaging the phase lag values for
each successive couple of signals along the body:

5

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

IPLneur = 1
N − 1

n−2∑
i=0

PLi,i+1

• Total wave lag (TWLneur). The total wave lag is obtained by summing these pairwise lags along
the body and normalizing by the fraction of the body that is actively driven by joints:

TWLneur = (N − 1)IPL

active_body_fraction .

• Peak-to-through correlation coefficient (PTCC). To quantify the rhythmic consistency of the
controller signals, we compute the autocorrelation of each signal and look at the difference
between its first local maximum and the subsequent local minimum (normalized by the zero-lag
peak). This yields a measure of how strongly the signal repeats its pattern each cycle.

Mechanical metrics

The mechanical metrics quantify how effectively and efficiently the body segments move in the
simulated fluid environment. They rely on joint angles, joint torques, link positions, and center-of-
mass trajectories.

• Mechanical frequency (fmech) and amplitude (Amech). These metrics are computed analogously
to their neural counterparts, considering the joint angles instead of the muscle commands.

• Forward speed (vfwd) and lateral speed (vlat). At each time step, we project the center-of-mass
velocity vCOM(t) onto the forward (dfwd(t)) and lateral (dlat(t)) principal axes of the fish. The
overall speed metrics are computed by averaging the instantaneous values over time:

vfwd = < vCOM(t) · dfwd(t) >t

vlat = < vCOM(t) · dlat(t) >t

• Sum of torques (Tsum). We sum the absolute value of the net torques on all active joints:

Tsum = dt ×
∑

t

njoints∑
j=1

∣∣τj(t)
∣∣.

• Energy consumption (E). The code integrates the positive power τj(t) θ̇j(t) at each joint:

Pj(t) = max
(

τj(t) θ̇j(t), 0
)

E = dt ×
∑

t

n∑
j=1

Pj(t)

By taking only positive contributions, we model that active muscles do not recover energy from
negative work.

• Cost of transport (CoT). The cost of transport relates the energy expenditure to the distance
traveled. In our simplified code, it is:

CoT = E

Dfwd
,

where Dfwd is the forward distance covered by the center of mass.

6

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

• Trajectory curvature (κ). To measure how much the fish’s center of mass bends its path in the
xy-plane, we compute

κ = x′′(t) y′(t) − x′(t) y′′(t)(
x′(t)2 + y′(t)2)3/2 ,

where
(
x(t), y(t)

)
is the COM trajectory. The code averages κ over each swimming cycle to

produce mech_traj_curv.

• Mechanical phase lag (IPLmech) and total wave lag (TWLmech). These metrics are computed
analogously to their neural counterparts, considering the joint angles instead of the muscle
commands.

Putting it all together. The code collects both sets of metrics into a single dictionary via the
compute_all_metrics function. By analyzing these metrics, one can characterize how effectively the
controller drives the fish (neural side) and how well the fish converts these signals into forward loco-
motion (mechanical side). This framework thus provides a quantitative basis for comparing different
parameter choices, controller designs, and muscle models throughout the project. The code also pro-
vides additional functions that you may use as a basis for defining any other metrics that you consider
useful for the analyses.

Pro tips

• Check the notes on the code. Many explanations are given therein.

• Be concise and precise in the answers in the answers of the exercises.

• You can append videos to explain your reasoning.

3. Mechanical model description
The mechanical zebrafish model consists of nlinks = 16 links connected by njoints = 15 rotational yaw
joints (see Fig2). The joints are numbered from 0 to 14, ordered from the head to the tail.

The torque produced by each joint is computed by means of Ekeberg Muscle Models (2). For each
joint i = 0, ..., 14, the model receives in input the left (MLi) and right (MRi) activations from the
muscle cells, the current joint angle (θi) and joint speed (θ̇i) to compute the resulting output torque
(τi) via:

τi = αiMdiffi
+ βi(γi + Msumi)θi + δiθ̇i

Mdiffi
= (MLi − MRi)

Msumi = (MLi + MRi)

Where αi is the active gain, γi is the passive stiffness, βi is the active stiffness, δi is the damping
coefficient. The Ekeberg muscle model is a rotational spring-damper system with the addition of
a variable stiffness term β(ML + MR)θi. The active term of the model acts an external torque
α(ML − MR).

The Ekeberg model parameters have been optimized in order to obtain a target resonance frequency
and damping ratio for small angular deflections. Details about the optimization procedure can be
found in the supplementary material of [4]. The muscle_parameters folder contains the results of the
optimization for several combinations of the target parameters. You will study different combinations
in order to understand their effect on the swimming performance.

7

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

When submerged in water, the body is subjected to buoyancy and hydrodynamic forces. Buoyancy
forces are applied to each link according to its submerged volume VUW

Fbi = VUWiρg

Where ρ is the water density and g is the gravity acceleration (g = 9.81m/s2). Since adult zebrafish
typically swim in high Reynolds number regimes, we opted for a simplified hydrodynamic model
composed of inertial drag forces. For each link, a speed dependent drag force (Fd) is applied in each
dimension (i) according to:

Fdi = 1
2ρCdi

AiV
2

i

Where A is the link’s cross-sectional area, cdi
is the drag coefficient in the i-th dimension, Vi is the

current speed of the link in the i-th dimension in the reference frame of the center of mass of the link.
The drag coefficients were chosen in order to match the mechanical metrics computed from swimming
zebrafishes.

Figure 2: The mechanical model of the zebrafish

8

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

4. Exercises and questions
At this point you can now start to work on implementing your exercises 1-4 below (use exercise1.py-
exercise4.py to solve the exercises).

1. Wave Controller

Implement a sine wave swimming controller that generates a periodic traveling wave for activations
of the left and right muscles (MLi and MRi , for i = 0, ...14) to activate the zebrafish according to
equation 1. Write your implementation in exercise_0.py.

MLi(t) = 0.5 + A
2 · sin

(
2π

(
f · t − TWL · i

Njoints

))
MRi(t) = 0.5 − A

2 · sin
(
2π

(
f · t − TWL · i

Njoints

))
(1)

where TWL is the total wave lag, A is the amplitude and f is the frequency of the wave. Note that
that equation 1 guarantee that the active stiffness component Msumi = (MLi + MRi) is equal to 1 at
all times, and that the muscle activation difference Mdiffi

= (MLi − MRi) has amplitude A.

Question 1 Test the controller’s ability to generate swimming locomotion for fixed values
of ϵ ∈ [0, 2], A ∈ [0, 2] and f ∈ [1, 5]Hz (test different parameter combinations). Show plots
of the left and right muscle activations MLi and MRi, and of the animal head trajectory
in the (x,y) plane. Also, show the evolution of the joint angles. Report the performance
metrics in your report.

2. Muscle Optimization

The mechanical behavior of muscle tissue can be approximated by simple passive elements such as
springs and dampers (read paper [5] up to page 51). These elements, when combined properly, allow
us to study the behavior of muscle under compressive and tensile loads. In this section you will explore
the ability to test if and how passive properties of the muscles can be used to improve the performance
of the zebrafish swimming behavior in combination with the muscle actuation.

A simple spring mass damper pendulum example

L

δ δ

γ γ

Figure 3: A pendulum with passive elements.

Let us consider a standard spring-damper pendulum (Fig 3), whose angle from the vertical θ follows
the follows dynamics:

Iθ̈ = −γθ − δθ̇ − mgL sin(θ), (2)

9

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

where L is the length of the pendulum, m the mass, g the gravity, γ the stiffness of the spring, and δ
the damping coefficient. Lastly, let us consider the inertia I = mL2.

Question 2.1 Derive the approximation of 2 for small angles such as:

θ̈ + 2ξωrθ̇ + ω2
rθ = 0.

Where here ξ is called the damping ratio and ωr the (undamped) natural frequency of
the spring mass damper. Find a combination of parameters m, L, γ and δ that gives
underdamped, critically damped and underdamped conditions.

This approach allows us to prescribe to a single muscle a desired resonant frequency and damping
ratio. Similar to a single muscle, we can model a chain of muscles, as in the case of the zebrafish
model proposed in this project, to have a desired resonant frequency and damping ratio using a
system identification approach [4]. In this project you will not implement this method but we give
you access to a set of muscle parameters values of each joint αi, γi, βi and δi that are tuned to have
the same target resonant frequency ωr and damping ratio ξ (the details of the method can be found
in the Supporting information file S3 in this link).

The muscle parameters of each joint are tuned to have the same target resonant frequency ωr and
damping ratio ξ. The parameters used in the simulation are stored in files in the folder mus-
cle_parameters. Each of these files can be selected for simulation by selecting the two arguments
in simulation_parameters.py file. For example, the file

muscle_parameters_optimization_all_FN_6000_ZC_1000_G0_419_gen_100

selects muscle parameters with resonant frequency ωr = 6Hz and damping ratio ξ = 1 and can be
selected in simulation_parameters.py by adding the entry

muscle_parameters_tag =′ FN_6000_ZC_1000_G0_419′

This is the default parameter setting for the simulation.

We also provide a multiplication factor called damping_factor in the simulation parameter that scales
the damping ratio by damping_factor ∗ damping_ratio and allow you to test different muscle prop-
erties (underdamped, critically damped and overdamped muscles).

In this exercise you will use the following simulation settings:

1. Set no gravity mode, by setting the vectory gravity parameter = gravity = np.array([0, 0, 0]).

2. Set a predefined initial joint configuration joint_poses = 0.3 ∗ np.ones(15). With this configu-
ration all the joint angles are initially at 0.3π by setting

3. In this exercise you will test two different animal positions, by using two different values of
animal_pose = [0.0, 0.0, −0.01, 0.0, 0, −1.570796327] (the default value) and animal_pose =
[0.0, 0.0, −0.01, 0.0, 0, −1.570796327]. In the first pose the animal is positioned in water, and
therefore is affected by the drag water forces. In the second set of positions the animal is located
10 meters above ground (in “space“), and it is therefore not affected by water forces.

4. Write your implementation in exercise_1.py

Question 2.2. Run a simulation of the fish 10 meters above ground with no gravity and
test different values of DR ∈ 1, 0.3, 0.1 with no controller (amp=0). What do you observe?
Are your findings in line with the analysis of question 2.1?

Question 2.3. Run a systematic simulation study of the effect of adding the wave con-
troller you implemented in Question 1 as a forcing term for the muscle model. Run

10

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012101

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

multiple simulations of the controller with fixed amplitude amp=0.01 and vary the con-
troller frequency ∈ (0, 20) for TWL=0 (0 total wave lag). Compute and plot the mean
amplitudes across all the joints (stored in metrics["mech_joint_amplitudes"] as a func-
tion of the controller frequency for different damping ratios DR ∈ {1, 0.3, 0.1}. Repeat
the analysis in water and in space (w/o drag forces). Repeat the same analysis also for
TWL=0.5. What conclusions can you derive, in relation to the paper [5]? How could
the system benefit from the passive properties to swim more efficiently?

Relationship between muscle properties and swimming performance

In [6], the authors demonstrated that the zebrafish locomotor networks can be subdivided into three
modules, each one specialized for a different frequency range. Interestingly, this compartmentalization
involves the neurons of the CPG network, as well as the motoneurons and the corresponding muscle
cells [1] (see Fig4).

Figure 4: A schematic of the modular organization of the locomotor circuits in the adult zebrafish.

In this section, you will study the relationship between the selected muscle parameters and the resulting
swimming performance. You will study at least three different muscle parameters configurations,
namely:

• FN_5000_ZC_1000_G0_419

• FN_7500_ZC_1000_G0_419

• FN_10000_ZC_1000_G0_419

Question 2.4.For each muscle parameters configuration, study the relationship between the activation
frequency and the total wave lag (TWL) of the control wave. Change the activation frequency in the
range [3.0, 40.0]Hz, corresponding to the range observed experimentally in fishes. Change also the
total wave lag in the range [0.0, 2.0]. Set the amplitude of the controller to a constant value of 0.5 for
all joints. Report the results obtained repeating the analysis for the three muscle combinations:

• What is the optimal TWL to optimize swimming speed? Does it change between
muscle parameters?

• Do you see a appearance of specialization of the muscle parameters with respect to
the swimming speed?

• What choice of muscle parameters maximizes the speed?

• What choice of muscle parameters maximizes locomotor efficiency?

3. Implementation of a CPG network

In the previous tasks you actuated all 15 joints in open loop using a wave controller. By actuating all
these joints in this fashion you mimicked an anguilliform swimmer (Fig 5a), in which the entire body

11

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

is flexible through its length, and is actuated by a traveling wave from head to tail. However, this
is characteristics of slender fishes like the lamprey, but not the zebrafish. The wave actuation in the
zebrafish is concentrated on the tail segments, with the rostral segments that largely remain still the
transverse plane (called carangiform swimmer, Fig 5b).

Figure 5: A snapshot of the body shape for an anguilliform (a) and carangiform (b) swimmer.

You will model the carangiform swimming mode of the zebrafish in this section with a double chain
CPG oscillators and scaling the motor gains from the oscillators to the muscles. You will actively
control the joints i = 0, ..., 12, while the remaining left and right muscle activations (ML13,14 and
MR13,14 , i.e.; the tail joints) will be set to zero.

Here we first describe the equations of the abstract oscillator network you will implement to control the
zebrafish. To model the spinal CPG controller, we consider two chains of ncpg = 26 populations of CPG
neurons on each body side as shown in Fig 6, where each joint is governed by two oscillators.

Figure 6: Configuration of the spinal CPG controller in the zebrafish. The joints that you should
actively control (joints 0-12) are marked in green and joints that should be left passive (joints 13-14)
are marked in red. The active joints are driven by 13 pairs of Ekeberg muscles receiving motor outputs
from a double chain of 26 oscillators with nearest-neighbor and contralateral coupling. The CPG model
receives descending signals from the MLR region in the brain, which is represented as a drive signal
in this model.

Let us index the left-side CPG units with the even index i = 0, 2, ..., 24 and the right-side CPG units
with the odd index i = 1, 3, ..., 25. Each CPG unit is described by following equations:

The oscillator’s phase equation is defined below, with θi the oscillator phase, f the frequency, wij the

12

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

coupling weights, ϕij the nominal phase lag (phase bias), ri the oscillator amplitude.

θ̇i = 2πf +
∑

j

rjwijsin(θj − θi − ϕij) (3)

In this model we only consider couplings between adjacent (i.e. successive segments) and contralateral
(i.e. left-right) oscillators. The coupling weights are defined as below:

wij =


wbody2body, if |i − j| = 2
wbody2body_contralateral, if j − i = 1 and i%2 = 0
0, otherwise

(4)

The phase lags are defined as below, such that the phase lags between contralateral segments are
constant π and the phase lags between neighborhood segments are constant and sum up to ϕbody_total

from head to tail. njoints here refer to the total number of body joints including the passive ones and
assuming they would naturally follow the same phase lags as active joints. We connect n oscillators
with n − 1 phase lags. Assuming a total phase lag of 1, we have to divide the total body phase lag by
njoint − 1.

ϕij =


sign(i − j) · ϕbody_total

njoints−1 , if |i − j| = 2
sign(i − j) · π, if j − i = 1 and i%2 = 0
0, otherwise

(5)

The oscillator’s amplitudes are defined below, with ri the oscillator amplitude, Ri the nominal ampli-
tude and ri the convergence rate of nominal amplitudes. Note that this equation is actually the same
equation as in [7] and has been simplified into a first-order ODE in order to simplify the implementation
in this project.

ṙi = a(Ri − ri) (6)

The oscillator frequency and nominal amplitudes are defined as linear functions of drive d to sim-
ulate that the CPG controller can be receive descending commands from higher level controller
(brain).

Ri = Gamp_i · d (7)

f = Gfreq · d + offset (8)

The motor output commands for the body joints are defined below, with G a scaling factor for the
motor output.

qi = G · ri(1 + cos(θi)) (9)

The meaning and default values of parameters mentioned above are given in Table 1.

Questions:

Question 3.1 Implement the abstract oscillator model in abstract_oscillator_controller.py.
Specifically, complete the function network_ode , motor_output and step_euler. You can
check simulation_parameters.py which the controller file reads for parameter naming con-
ventions and default values.

13

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

Parameter Meaning Defaults
drive Drive signal from the brain 4
cpg_frequency_gain Frequency gain of the oscillator (wrt. drive) 0.6
cpg_frequency_offset Offset of the oscillator frequency 0.6
cpg_amplitude_gain Nominal amplitude gain per oscillator (wrt. drive) 0.125 (all)
weights_body2body Coupling weights between neighborhood oscillators 30
weights_body2body_segment Coupling weights between contralateral oscillators 10
phase_lag_body Total spine phase lag from head to tail 2π
amplitude_rates Convergence rate of nominal amplitudes 1

Table 1: Default values and biophysical meaning of the parameters of the abstract oscillator CPG
equations

• network_ode: In this function you have to implement Ordinary Differential Equation (ODE) to
compute the evolution of oscillator phases and amplitudes. Specifically, refer to Eq.3 , Eq.6 and
relevant equations to compute the CPG parameters.

• motor_output: In this function you use the network state at current iteration to compute the
motor output as in Eq.9 for the active joints. Then you store the computed motor output in
motor_out for future analysis.

• step_euler: In this function you perform an Euler integration time step of the oscillator states
with the derivatives you computed in network_ode (similar to what you have implemented in
Lab 1). As a result you return the muscle activations for both the active joints (computed from
updated network states in motor_output) and passive joints.

Question 3.2 Test your implementation by running the network using exercise_3.py.
For the network parameters check lecture slides (pay attention to different number of
segments). You can also find more information in [7] (especially in the supplementary
material). You can set all the network parameters in the simulation_parameters.py or
override them by passing an argument to all_pars.

Question 3.3 Report the controller and mechanical metrics of the simulation. Plot the
oscillator phases evolution, oscillator amplitudes evolution, motor output and motor
output difference evolution, and the zebrafish joint angles evolution vs time. Record a
video of the zebrafish swimming for 5s with the abstract oscillator controller. You might
need to change video_record and video_name to generate a video output.

Hint: Optionally you can use some helper functions such as plot_time_histories to generate the plots.
By default the code will try to use ffmpeg as the codec and you might have to install it and add it to
PATH if not already.

Question 3.4 Explore the effect of higher and lower drive parameter and report how
the change of drive affects the abstract oscillator controller, the motor output, and the
locomotion performance.

4. Optimization of swimming kinematics

In the last section you worked on implementing an abstract oscillator to drive the zebrafish to generate
some swimming behaviors. Yet the resulting kinematics can be far from the real animal kinematics
if the controller parameters are not properly tuned. In this task we will optimize the nominal ampli-
tude gains per joint (cpg_amplitude_gain) to imitate the zebrafish kinematics in the real world (Fig
7).

14

https://ffmpeg.org/download.html

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

Figure 7: Left: Tracked kinematics of zebrafish (blue circle) and interpolated kinematics of the
model (green dots). Right: Tracked joint angles of zebrafish (blue circle) and interpolated joint angles
according of the model (green dots) in radians

From Eq. 5, we apply a phase lag of π between contralateral body segments so the left and right muscle
activations are anti-phase. Therefore, the resulting joint torque as the difference between the left and
right muscle torque is correlated with the amplitudes of the motor output as well as the oscillator
amplitudes. We could update the nominal amplitude gains per joint based on the difference between
the desired joint amplitudes and the obtained joint amplitudes from simulation results.

Here we provide the 3 pseudo-steps for the optimization algorithm you have to implement. The details
of each step are explained below:

Algorithm 1 Gradient Descend
1: while errorjoint_amp > tolerance and iter < itermax do
2: Update the nominal amplitude gain
3: Simulate and store the simulation result
4: Compute current joint amplitude errors

Update the nominal amplitude gain: Here we update the nominal amplitude gain with a scaling
method. The method scales the old nominal amplitude gain based on the proportion between the
actual and reference joint amplitudes. If the actual joint amplitudes are greater than the reference
ones, the motor gain will be scaled with a factor within [0, 1]. Otherwise, the motor gain will be scaled
up with a factor within [1, ∞]. Note that the learning rate should be a positive value within lr ∈ [0, 1]
to avoid flipping the sign of the motor gain.

motorgain_new = motorgain_old ∗ (1 + lr ∗ (−1 + Aref

Ares
)) (10)

Simulate and store the simulation result: Here you initialize Simulation parameters with the
updated nominal amplitude gains (pass this as an argument to overide the default parameters) and
run the simulation with run_single.

Hint: To organize the simulation result from different trials, You can pass simulation_i as an
additional argument to Simulation parameters, which will index the simulation trials in the logged
outputs with a suffix.

Compute current joint amplitude errors: Here you read back the simulation result you saved in
last step. They are located under log_path of the Simulation parameters. Load the controller with
load_object function and use the joint amplitude metrics. Compare the result with the reference joint
amplitudes stored in REF_JOINT_AMP and compute the current joint error error_joint_amp.

Question 4.1 Implement the optimization algorithm in exercise_4.py.

15

Computational Motor Control, Spring 2025
Final project, Project 1, GRADED

Student
Names

Question 4.2 Optimize the nominal amplitude gain so that the difference between the
simulation result and the reference is less than 1%. Plot the joint angles of the optimized
controller vs time. Plot an overlay of reference joint amplitudes.

Question 4.3 Report the controller and mechanical metrics of the optimized controller.
Record a video of the zebrafish swimming for 5s. What do you observe with the optimized
controller compared to the unoptimized one and how does the metrics change?

References
[1] S. Grillner and A. El Manira, “Current principles of motor control, with special reference to

vertebrate locomotion,” Physiological reviews, 2019.

[2] P. Ramdya and A. J. Ijspeert, “The neuromechanics of animal locomotion: From biology to robotics
and back,” Science Robotics, vol. 8, no. 78, p. eadg0279, 2023.

[3] L. D. Picton, M. Bertuzzi, I. Pallucchi, P. Fontanel, E. Dahlberg, E. R. Björnfors, F. Iacoviello,
P. R. Shearing, and A. El Manira, “A spinal organ of proprioception for integrated motor action
feedback,” Neuron, vol. 109, pp. 1188–1201.e7, Apr. 2021.

[4] A. Pazzaglia, A. Bicanski, A. Ferrario, J. Arreguit, D. Ryczko, and A. Ijspeert, “Balancing central
control and sensory feedback produces adaptable and robust locomotor patterns in a spiking,
neuromechanical model of the salamander spinal cord,” PLOS Computational Biology, vol. 21,
no. 1, p. e1012101, 2025.

[5] E. D. Tytell, C.-Y. Hsu, and L. J. Fauci, “The role of mechanical resonance in the neural control
of swimming in fishes,” Zoology, vol. 117, no. 1, pp. 48–56, 2014.

[6] K. Ampatzis, J. Song, J. Ausborn, and A. El Manira, “Separate microcircuit modules of distinct v2a
interneurons and motoneurons control the speed of locomotion,” Neuron, vol. 83, no. 4, pp. 934–
943, 2014.

[7] A. J. Ijspeert, A. Crespi, D. Ryczko, and J.-M. Cabelguen, “From swimming to walking with a
salamander robot driven by a spinal cord model,” Science, vol. 315, no. 5817, pp. 1416–1420, 2007.

16

