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Computational motor control
Lecture 1
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Content of today’s lecture

Explanation of the objectives and organization of the
course

Overview of the numerical modeling approach

Overview of the content of all lectures
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Goals of the course

To explore how numerical simulations can be used to explain motor
control in biology (note: motor control = control of movements in
neuroscience)

To learn how to design good numerical models, and how to evaluate
them

To present how inspiration from biology can bring useful contributions to
the new design and control principles for robotics

To apply concepts from the lectures to (1) design and test simple
models in Python, and (2) develop sensory-motor models applied to
a simulated zebrafish .



Implementation

Lectures every week: Thursday 10:15-12:00 AAC 231
Support for modeling projects: 13:15-15:00, INF 2
Video recordings will be made available as much as
possible (but try to attend lectures)

Handouts: copies of slides before each course + additional
articles/documents

Use of Moodle for all course materials, cf
http://moodle.epfl.ch



http://moodle.epfl.ch/

Implementation (continued)

Practical work:
(1) Series of modeling exercises in Python
(2) Sensory-motor models of a zebrafish

Teams of three students

One written report, with different subparts (exploration of swimming
gaits, exploration of muscle properties, implementing a controller based
on phase oscillators, exploring the role of sensory feedback).

Final mark: 40% written exam, 60% reports

Written exam at the end of the semester, on May 15 (TBC)



Prerequisites

Good background in mathematics (differential equations)
At ease with programming (for the practical)
Python (installation and tutorial today)

Interest in

« understanding biology,

e using mathematical and numerical tools to do science
(computational science),

* using inspiration from biology to develop new algorithms
and new robot controllers

Be proactive, curious, willing to explore new territories 0



https://qitlab.com/farmsim

FARMS
Framework for animal and robot

Jonathan Shravan
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Model for the practicals

Neuromechanical model of the Zebrafish

https://powersscientific.com/effects-of-lighting-on-zebrafish/

Why the zebrafish?

« Key model animal in
biology and in neuroscience

« Many transgenic lines

« Transparent at the larval
stage

« |deal for optogenetic
experiments

* Increasing number of
papers studying its

locomotion 13


https://powersscientific.com/effects-of-lighting-on-zebrafish/

Model for the practicals

Neuromechanical model of the Zebrafish

« Exploration of swimming gaits,

« Exploration of muscle properties,

* Implementation of a central
pattern generator model made
of phase oscillators,

« Exploring the role of sensory
feedback

* Open-ended question

Slower than real time 14



Reports

What is important: good reports with a careful scientific evaluation of
the model and the results

To get a good mark:

« Good scientific graphs

« Careful and critical analysis of the results

 Relate the results to biological observations

« Suggestions of additional experiments

 Possibly: make predictions

Note: this is research, i.e. solutions might not be known yet and there will
be less guidance than usual lab projects

Warning: no plagiarism!! (also between teams)

Tell us asap if work is not properly shared among team members. 15



Content of today’s lecture

« Explanation of the objectives and organization of the course
« Overview of the numerical modeling approach

 Qverview of the content of all lectures

16



What do we mean by model?

A mathematical description or a numerical simulation of a biological
system (i.e. systems of equations or algorithms)

Should be based on well-specified (explicit) assumptions and idealizations

Should answer a clear question

Should allow experimenting, i.e. exploration of how changes of parameters
affect the behavior of the model

Should be carefully evaluated and validated against biological data

Should make predictions and suggest new biological experiments for future
validation

17



What are assumptions and idealizations?

Assumptions are statements or premises that are taken as given within a particular
scientific framework. They may or may not be strictly true, but they are accepted to
enable the development of a theory or model.

Idealizations, on the other hand, are deliberate distortions or simplifications of reality
that are introduced to make problems more tractable or to highlight key mechanisms.
Unlike assumptions, idealizations are knowingly false but useful approximations.

Truth value
Purpose

Role in models

Example

Assumptions

May be true or false
Provide foundational premises

Set boundaries or define a system

"The speed of light is constant"
(empirical assumption)

Idealizations

Explicitly false
Simplify reality for modeling

Distort reality to highlight key
mechanisms

"A pendulum swings without air
resistance" (idealization)

Note: In this course, we will often treat them as having the same meaning 4g



Why make numerical models?

Scientific Value:

« They force us to conceptualize all the relevant components of a system
and the mechanisms of interaction between them

« They help understanding the mechanisms of complex dynamical
regimes

« They allow us to test hypotheses and validate them against biological
data

« They allow recording and monitoring multiple quantities (many of which
might not be able to be recorded in animal experiments)

« They allow us to make predictions, and suggest new experiments
19



Why make numerical models?

Ethical value:

 Using numerical models can reduce the number of animal
experiments

Economical value:

Numerical experiments are much cheaper to run than real animal
experiments (e.g. in terms of recording equipment + animal costs)

 Modeling can serve as inspiration for new algorithms, devices or
robots

*  Numerical models can be used for optimization (e.g. designing an
optimal prosthesis, improving athletes, ...)

20



Scientific methodology (from B.Webb 2001)

Models, and especially numerical simulations, are now an
essential element of a scientific approach:

echnology - = Simulation/robot behaviour D E— Model
or robot
representing interpreting
Experimenting :
Hypothesis | = _Z 2" + behaviour model

Webb, B. (2001). Can robots make good

models of biological behaviour? Behavioral il ;
and Brain Sciences, 24(6), 1033-1050. theorisin g comparing
https://doi.org/10.1017/S0140525X01000127

_ observing
World === -» Target system ~==-=---~- >

Target
behaviour

21


https://doi.org/10.1017/S0140525X01000127

Inductive vs deductive research

Inductive reasoning:
From the specific observations
to generalization

Theory

1

Tentative Hypothesis

1

Pattern

1

Observation

Deductive reasoning:
From the general to the specific

Theory

| |

Hypothesis

|

Observation

| |

Confirmation
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Modeling and numerical simulation

Some additional thoughts:
A model should be as simple as possible, but not more (Einstein?) (i.e. not much
can be learned from a model that is as complex as the real thing)

A model should have explanatory power (i.e. not only descriptive, e.g. as a
blackbox).

Like any scientific theory, you should be ready to throw away models when they
do not correspond to new evidence from experiments.

But models that can not explain some biological data are still useful to indicate that
more thinking is needed.

All models are wrong, some are useful... (George Box, statistician)
23



Interesting example
of the modeling approach:
the lamprey swimming network

Neural networks that co-ordinate locomotion and body
orientation in lamprey, S. Grillner et al, Trends in
Neuroscience, 18, pp 270-279, 1995

Neural networks for vertebrate locomotion. S. Grillner. Scientific
American, 274(1), pp 64-69, 1996

A combined neuronal and mechanical model of fish swimming.
O. Ekeberg. Biological Cybernetics, 69:363-374, 1993.

24



The lamprey

Lamprey: one of the most primitive vertebrate

Anguilliform swimming

Believed to be very similar to the ancestor of all vertebrates
Has been studied in detail by neurobiologists

Very nice example of fruitful interaction between
neurobiology and computational neuroscience (i.e. modeling)

Movie by J.T. Buchanan

25



The lamprey

Example of recordings N -
(Boyd and McClelland 2002) G:::v 1 v
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The lamprey swimming network

Conceptual model (Grillner, Sci. Am. 1996)

BRAIN STEM

STRETCH E — o e STRETCH
RECEPTORS - RECEPTORS
ON LEFT SIDE | ON RIGHT SIDE
OF SPINE OF SPINE

A A
MUSCLES . MUSCLES
ON LEFT SIDE ON RIGHT SIDE

— EXCITATORY
— INHIBITORY
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Methodology of modeling

Important steps:

1.

2.

|dentify the questions to be addressed,

ldentify important quantities in the biological data,
Choose the level of abstraction,

Specify the assumptions (idealizations),
Extensively test the model

Validate the results against biological data

Suggest new biological experiments

28



Lamprey models: four levels of abstraction

Analytical models of oscillators

abstract

Numerical models of nonlinear oscillators

Connectionist neural network models

detailed

Biophysical neural network models




The lamprey: biophysical models

Biophysical models have helped understanding the
oscillating properties of the segmental network

(Grillner et al 1995)

30



Biophysical models: steps

Questions to be addressed:

How are oscillations generated in a segmental network?

Important quantities:

Intracellular voltages, ion concentrations,...

Level of abstraction:

Biophysical model: Hodgkin-Huxley like neuron model

Assumptions:

Single cell represents a whole population of neurons,...

Test the model:

See (Grillner et al 1995)

Validation

Several mechanisms act together to produce oscillations. Production of
oscillations over a large frequency range. See (Grillner et al 1995)

Suggestion of new biological experiments:

Pharmacological manipulations, ...

31



The lamprey: connectionist models

Leaky-integrator models have helped understanding the intersegmental
coupling mechanisms that generate traveling waves
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N oo

Connectionist models: steps

Questions to be addressed:

How are traveling waves generate in the spinal cord?

How is a wavelength of one body length maintained?
Important quantities:

Average firing frequency, phase lags between segments,...
Level of abstraction:

Connectionist model: leaky-integrator neuron model
Assumptions:

Symmetries (left-right, along the spinal cord), ...

Test the model: see (Ekeberg 1993)

Validation: Constant wavelength at different frequencies, see (Ekeberg 1993)
Suggestion of new biological experiments:

Mechanical manip., changing the sensory feedback, ...

33



Neuromechanical models

Neuromechanical models = models of neural circuits + of the biomechanics
They have helped understanding:
« therole of sensory feedback from stretch receptor cells in burst termination.

Swimming through a speed barrier Swimming through a speed barrier
without sensory feedback with sensory feedback

....................................

(Ekeberg et al 1995, ljspeert et al 1999) 34



For more details about
the usefulness of modeling see:

Webb, B. (2001). Can robots make good models of biological behaviour? Behavioral
and Brain Sciences, 24(6), 1033-1050.
https://doi.org/10.1017/S50140525X01000127

Neural networks that co-ordinate locomotion and body orientation in lamprey, S.
Grillner et al, Trends in Neuroscience, 18, pp 270-279, 1995

Neural networks for vertebrate locomotion. S. Grillner. Scientific American, 274(1), pp
64-69, 1996

A combined neuronal and mechanical model of fish swimming. O. Ekeberg. Biological
Cybernetics, 69:363-374, 1993.

Cf Moodle folder
35
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Overview of the content of the course

36
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Introduction to nonlinear dynamical systems

Topics:
* Ordinary differential equations (ODES)

* Methods for solving (ODES)
« Geometrical interpretation, phase portrait
« Differences between linear and nonlinear systems

« Linear stability analysis

38



Introduction to nonlinear dynamical systems

Topics:
* Oscillators and limit cycles

 Different oscillator models
« Chains of oscillators

 Bifurcations and chaos

39



Ordinary differential equations

Most models presented in the course will be based on ordinary differential
equations (ODES):

d
—%=f(%,a,t
o<t

These types of equations are used in many types of numerical models. They
determine how the state variables X vary over time. The time derivative of the
state variables X are described as a (usually nonlinear) function of the state
variables, some parameters « and (possibly) the time t.

Autonomous ODEs: %X: f(X,a) no explicit dependence on time

Non-autonomous ODESs: Ey(: f(X,a,t) explicit time dependence, much harder to
deal with dt

40



Numerical simulation
of systems of coupled oscillators

41



A limb = a damped pendulum

¢
%l 1
¢ =—dg-sin(g)- =
L = 1
@. angle
d: damping
g: gravity
L: length
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Frequency of oscillation: @ = \/% Vo3 - 27 -0.9[Hz]
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A Hopf oscillator to model
a neural oscillatory center

&

X=a(u—+X"+y?)x—vy
y=a(u—x"+y*) y+vx

M. amplitude

o positive parameter Boyd and McClellan, the Journal of Experimental Biology 2002
v: intrinsic frequency

w;: couplings

Frequency of oscillation: V

43


dx%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*x%20-%201%20*%20y;%0d%0a%20%20%20%20%20dy%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*y%20+%201%20*%20x;

A Hopf oscillator to model
a neural oscillatory center

&

X=a(u—+X"+y?)x—vy
y=a(u—x"+y*) y+vx

M. amplitude
o positive parameter
v: intrinsic frequency
w;: couplings

Stable limit cycle:

Frequency of oscillation:

44


dx%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*x%20-%201%20*%20y;%0d%0a%20%20%20%20%20dy%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*y%20+%201%20*%20x;

A pendulum coupled to an oscillator

@ angle
d: damping
g: gravity
L: length

¢'=—d¢—sin(¢)-%@
X=(u—x*+y*)x=vy
y=(u—-yx*+y*) y+vx

M. amplitude
v: intrinsic frequency
w;: couplings

Forced pendulum: complex dynamics

0.1

]
0.1
0.2

0.3
0.4
0.5

o 2 4 ] g 12 14 16 13 20

T s]

Raibert: “the central nervous system does not
control the body; it can only make suggestions”.

45


dx%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*x%20-%201%20*%20y;%0d%0a%20%20%20%20%20dy%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*y%20+%201%20*%20x;

A pendulum coupled to an oscillator

Bidirectional coupling:
Entrainment!!
(different systems reaching a same resulting frequency)

0.1
. .
0.1
02
03
. 0.4
" 05
¢ =—d ¢—sin(¢)- —+W X 5

y=(u—yx*+y*) y+vx = o

> Or i
X = (=%’ +y)>< V I R I TR R
1 T T T T T T T T T

o 2 4 B B 12 14 & 18 20
¢. angle Lt: amplitude T [5]

d: damping v: intrinsic frequency

g: gravity w;: couplings 46

L: length


dx%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*x%20-%201%20*%20y;%0d%0a%20%20%20%20%20dy%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*y%20+%201%20*%20x;

More legs !

X2,Y>

@ angle
d: damping
g: gravity
L: length

?

Xlz(,u_\lxlz"'Yf) X1_Vy1+Wz¢1
y1:(,u_\/X12+Y12) Y1tV X+ Wy

Y2
M. amplitude
v: intrinsic frequency
w;: couplings

o
>
e

R
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]
T T

Interlimb coordination

and gait transition !!
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dx%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*x%20-%201%20*%20y;%0d%0a%20%20%20%20%20dy%20=%20(mu%20-%20x%5e2%20-%20y%5e2)*y%20+%201%20*%20x;

Mathematical models
are very useful to study locomotion

v

Spring-loaded inverted
pendulum (SLIP) (Blickhan,

o

Inverted pendulums

TEMPLATE

Use as a guide or
target for control

neuromechanical
control ?\
T //?I \/'
Add degrees of
Collapse dimensions freedom (joints,

Make policies for

by trimming away muscles) from
degrees of freedom animal to reveal
(se;k SY: HEI%}ES mechanisms

and symmetries) ANCHOR

Templates and anchors
(Koditchek and Full 1999)

@@@

3

Systems of coupled oscillators,
Kopell, Ermentrout, ...
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Neuron models

Machine Learning

Absltract

Binary neurons
Discrete time

Real number neurons
Discrete time

Real number neurons
Continuous time

— | Perceptron NNs

—

BackProp NNs

Echo-state network

Hopfield network

Kohonen map

Several CPG

v

Spiking neurons
(integrate and fire)

Cont. Time Recur. NN

models

Liquid-state machine

\
e
™~
L

Several comp.
neurosc. models

Biophysical models

/'

Squid neuron (H.&H.)

v

Numerous comp.
neurosc. models

v. -
Realistic

Computational

[
>

neuroscience
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McCulloch-Pitts neuron

Inhibitory
Output: y

»

Excitatory

X: Input vector from all other neurons
w;: the strength/weight of each synapse

y: neuron output _ .
f(x): transfer function y f(ZW, le

51



McCulloch-Pitts neuron (1943)

Transfer function = threshold function : @4

10 [

0 ifz<0

f(z):&(z):{l if z>0 = V=Q(Zwi'xi]

v

* This type of transfer function depends on firing rates, not
individual spikes

 Binary neuron: a neuron is either in a high firing rate 1, or a
low firing rate O

1.0 [ ~a

1.0 | =~




McCulloch-Pitts neuron (1943)

Transfer function = threshold function : @4

f(z):&(z):{l if z>0 = y:(g(z\,\,i.xij

10 [

0 ifz<0

v

* This type of transfer function depends on firing rates, not
individual spikes

 Binary neuron: a neuron is either in a high firing rate 1, or a
low firing rate O
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Leaky integrator neuron model

Idea: add a state variable m; (membrane potential) that is controlled by a differential
equation

dm,
TJ F j— _mJ —I— S 0.25 ; : : i T
1 <) :1
X . — 0.05F
J 1 _D'(m H +b) . 0.05 0.1 0‘15 0-2 0.125 0‘3 0.35 04 045 05
+ € . S=5.0
- S=-10
m; : membrane potential .
x, :firing rate B’
7, : time constant ; | S
S :input (dendritic sum) || = & Wi %

m; convergesto S witha speed thatdependson

o4




Two-neuron oscillator

Neuron1

Neuron2

Neuron1

0.8 Neuron2
06
>
04
0.2
0
0 2 4 6 8 10 12 14 16 18 20

time
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One stable point

Three stable points

Two saddles

See Beer (1995), Adaptive Behavior, Vol 3 No 4

[

8] w

=} [

w

[N

0 1 2 3 4 5 6 7

|
P o BN W [ R W |

0 1 2 3 4 5 6 7 8

Two-neuron network: other possible behaviors

One stable point
One unstable
One saddle
One limit cycle

Four stable points
One unstable
Four saddles
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Muscle models

The amount of active contractile force developed during contraction
depends on the degree of overlap of thick and thin filaments

Total force

Tension
E

assive

: i el
Thick filament / i

Myosin heads

Thin filament

Active force Passive force




Hill Muscle model

Very influential model made in the 1930’s, most modern models are variations of it.
It is made of 4 elements:

Contractile element

/ Damper

il K, Force

-

pring in series

\ Spring in parallel

H &

.

59



Hill model: iIsometric case with pulse stimulation

K

K 0 _
Tt)=(T,—M)e B(tt)+M where M :{M dependingont,
up

" s

0 C C+A 2C+A —
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Hill model: iIsometric case with pulse stimulation

This is a good approximation of
how tension builds up in a muscle e —

B S f successive i ic twitch ¢

Tension

A A A A A A A A A A

C Unfused tetanus

;

-

M o
o

|

M

Tension

A A A A A A A R A A A A AR

D Fused tetanus

Tension

Tension

Tension

Elect. stimulation
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Models of locomotion control

Topics:

 Locomotion control in animals

 Locomotion of the lamprey

« Different models of the lamprey locomotor system
*  Neuromechanical simulation of the salamander

«  Applications to robotics

63



Biomechanics of animal Locomotion

General principles:

1.

2.

To rhythmically apply forces to the environment, /

Use of antagonist muscles =» creation of torques
+ modification of the stiffness of a joint

Fox X G Torqueie, = Fex X dhex

¢ ;‘”‘1
: . . |
Storage of mechanical energy (spring properties
Of mUSC|eS and tendonS) G.E. Loeb, C. Ghez (2000) The Motor Unit and Muscle

Action. In: Principles of Neural Science. 4th edition.
Edited by E.R. Kandel, J.H. Schwartz and T.M. Jessell.
Appleton & Lange, New York. pp. 675-694.

Multiple degrees of freedom

64



Animal Locomotion (ct'd)

Generation of forces:

Animals use the principles of action-reaction

Key feature: creation of asymmetries in the external forces due to the

environment (little resistance in the direction of locomotion compared to the
other directions)

Examples: elongated form of the body, scales on snake skin, legs (transition

between swing and stance) . . . .
LH oLl o '\ L e ]

NPV AN

Scales:
Asymmetric friction Swing-stance alternation 65

Asymmetric drag



Animal locomotion

Large diversity of different types of
locomotion:swimming, crawling,
walking, hoping, burrowing, flying,...
but all use the same principles.




Neural control of movement

Caudate

Cerebral cortex Thalamus

IC Pattern
Cerebellum generators

//\

Brain Stem Spinal Cord
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Locomotion of the lamprey

Lamprey: one of the most primitive vertebrate

Anguiliform swimming

Has been studied in detail by neurobiologists

Believed to be very similar to the ancestor of all vertebrates

FORWARD SWIMMING

68



The lamprey swimming network

Conceptual model by Sten Grillner (Grillner et al, Sci. Am. 1996)

BRAIN STEM

STRETCH E — o e STRETCH
RECEPTORS - RECEPTORS
ON LEFT SIDE | ON RIGHT SIDE
OF SPINE OF SPINE

A A
MUSCLES . MUSCLES
ON LEFT SIDE ON RIGHT SIDE

— EXCITATORY
— INHIBITORY
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Lamprey: AnalyliCal analysis OT chaln of
oscillators

Lamprey CPG modeled as a chain of oscillators with nearest neighbor coupling:

d¢. ¢ : Phase of oscillatori
E = +h(4.1,4.4.) @ : Intrinsic frequency of oscillatori
h(¢_,,¢,4.,): Couplingfunction

/7v\\ (I) X. = A cos(¢ ) : Oscillating output

70



Lamprey: AnalyliCal analysis OT chaln of
oscillators

Lamprey CPG modeled as a chain of oscillators with nearest neighbor coupling:

Assumptions: nearest neighbor coupling, same coupling constants a, symmetric
coupling

dg _ in( . —

” =, +asin(g, — ¢)

% = o, +asin(¢,,, — ) +asin(4, —¢)
doy _ - _

. = o, +asin(d,_, —dy)

/1



Lamprey: Analytical analysis of chaln of

oscillators

Introducing the phase differences @, =¢ —¢,,
This can be expressed in matrix form:

gﬂ=Q+A§
dt
—2 1
) sin ¢, w, — W, 1 -2 1
Prnoa sin @y 4 ONPEON 1 -2
1

1
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Lamprey: Analytical analysis of chaln of

oscillators
Does the chain phase-lock? We look at do _O+LAS =0

_ dt
Solution:

—

¢ suchthat S=-A"Q

No solution exists if any of the component of A™Q are larger
than unity in absolute value (i.e. the system would drift).

Good news: the matrix A can be inverted in close form.
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Lamprey: Analytical analysis of chaln of

osclillators
Example with 6 oscillators, and constant frequency difference,
(5 4 3 2 1]
. 4 8 6 4 2 e
At=-—|3 6 9 6 3 Q=
6a
2 4 6 8 4 e
1 2 3 4 5]
Therefore: Csin g, ] 5] This system will phase lock if:
1
sin 8
: v e el 2 €<8  Neven
sing, |=—19 1< = a N
. 2a al™ 9
sin @, 8 e N odd
sin g | 5] a N?-1 MO
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Lamprey: AnalyliCal analysis OT chaln of
oscillators

Example with 6 oscillators

OLOLOLOL0L0,

Phase differences
H. £
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Bimodal locomotion of salamander (cartoon

Swimming: Walking:

Traveling wave in axial muscles Standing wave

Wavelength = body length Limb retractors/protactors are
Limb retractors are tonic phasic

Short cycle durations Longer cycle durations
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A mathematical model to study the transition from
swimming to walking

B BodycPG B

x BodY

! |

drived  Freq[Hzl  x

5 10 15 20 25 30 35 40
Time [s]

o

=,
]
Em

Gait transition due to an

System of coupled oscillators increase of the descending drive

[ljspeert et al, Science, March 2007]. 77



Modeling the CPG with coupled oscillators

A segmental oscillator is modeled as an amplitude-controlled phase oscillator as used in (Cohen,
Holmes and Rand 1982, Kopell, Ermentrout, and Williams 1990) : ‘ ‘
—HEe=6H—~

Phase: éi =27V, "‘Z ;W Sin(ej -0, _¢ij)
i

a.
Amplitude: [ = a.| = (R. —r.)—F )
o '(4( o ) SVNTATATAY

X, =1,(1+cos(4)))

O—0 &£

Output:

Setpoints: | % =X, —Xy,; fortheaxialmotors

¢, = T(6) forthe(rotationd)limbmotors

[ljspeert et al, Science, March 2007]. 78



Descending
modulation




Senses that affect locomotion

All sensing modalities affect locomotion:
« Tactile
*  Proprioception
*  Vestibular system (inner ear)

. Vision
. Audition
. Smell

As we will see next, many of these interactions take place in the spinal cord,
others involve higher parts of the brain.

Tight integration: CPG and reflex pathways often share the same
interneurons. This explains why reflexes are phase-dependent.
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Spinal

Supraspinal

\

Sensory information influencing
locomotion In mammals

Muscle spindles: provide information about length, and changes of
lengths of muscles

Golgi tendon organs: provide information about (internal) force (i.e.
tension) in muscle

Cutaneous receptors: provide information about contact forces

Vestibular system: provides the sense of balance, rotational and
linear accelerations

Visual system: very rich information about visual scene, optical flow,

colors, edges, patterns, etc.
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Examples of sensory responses

We will see next that these types of sensory information are used to implement
multiple sensory responses, for instance:

«  Stumbling correction reflex

 Leg extension reflex

«  Withdrawal reflex (cross extensor reflex)
«  Vestibular oculo reflex

. Posture control
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Stumbling correction reflex

Stumbling correction reflex:

 Rapid lifting of leg when hitting
something during swing

«  Useful to avoid stumbling and
falling

« Phase-dependent: active only
during swing, not during stance

Stumbling corrective reaction: a ¥<

* Note: many (most?) reflexes are phase-dependent compensatory ~——e & >—

reaction during locomotion. H.

flexors extensors
phase-dependent. Reflexes share  [2eees e o v
interneurons with CPG circuits. 936-953; Jorge Quevedo et al. J
.. Neurophysiol
CPG activity can therefore 2005;94:2053-2062

gate/modulate reflexes
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Feature detection in the retina:
Center-Surround response

In addition to their receptive
fields, neurons are often
sensitive to special
features. E.g. the center-
surround response in
retinal ganglion cells

There are two types of
ganglion cells:

On-center: maximally active
with light on the center and
dark on the surround
Off-center: opposite
response

Stimulus:
White circle

Maximal
response

Minimal
response

Stimulus Condition

Q

7]

c
© > jm

o

Time

®

Figure 4.1.1 Responses

of

On-Center / Off-Surround
Ganglion Cell Response

Response

Time

Time

Response

Response

Time

Time

on-center, off-surr

Response

rlHHI i-!‘lll‘,"hl m

cells. As the size of a spot of light increases, the response of an on-

center, off-surround ganglion

maximum when 1t
decreases as tl
Minimum respons

tory surround

he spot falls

E) occurs

on

covers Just the excitatory
the

cell first increases

when light falls only «

\), reaching a

center (B), and then

inhibitory surround (C and D).

n the inhibi-
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Center- @ @

surround

@ Receptors

The center-surround Q Horizontal Cols
response is generated within DivctPath xcitation
the retlna by eXC|tat0ry and Indirect Path HPicECo

inhibitory neurons.

A. WIRING DIAGRAM

Inhibition

This generates a response Orect eciatry
that corresponds to a g Adrem inhibitory

_— component (1)

mexican-hat profile,with =~ 7T e e
excitation in the center
and inhibition on the
surround

B. RECEPTIVE FIELD PROFILES

:‘.‘8\“‘0 4.1.3 Neural inputs to an on-center, off-surround
ipolar cell. The direct path (black
SECEPLOTS in the center of the rec eptive field. The indirect path of

The underlying nEtwork iS a. opPOSiLC polarity (oray connections) comes from rec SOk
MgHout the receptive field via ;
feedforward network prive field via |

connections) comes from

1orizontal cells



Models of the center-surround response

Light
Intensity

1.0+

S N
“ ’\I<\J>I/’

N\

/N_inear neurons: y =) _w,-x,
| | | | | |
| | | -

13
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Models of salamander optic tectum

Comparisons between left and right maps in the tectum can be used to
compute a target’s angular position and distance:

horeopter

Activity due
to ipsilateral

connections
Activity due e e e R -
[7] 1] = (7] [1] [7] [1] [7] [1] e [7] (1] ®
to ML HIH o HNE HillE HillE
4 4 [ ] [ ]
contralateral Yo HIE M i:Ee R
connections [l ofl (1 ol [

Recorded activity in the tectum
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Primary Visual Pathway In primates

Region of overlap Visual field
of two visual fields of right eye

Optic chiasm

Information from
left half of

Visual field
of left eye

Optic nerve

Lateral
geniculate
nucleus

Information from

right half of Primary
visual field (yellow) visual
cortex
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Visual cortex: Neuronal Tuning

In addition to responding only to stimuli in a circumscribed region of the visual
space, neurons in the visual cortex typically only respond to some
specific classes of stimuli (e.g., of given color, orientation, spatial

frequency). Spatial Orientation Selectivity
(Tuning) of Simple Cells

A neuron exhibits a

tuning curve that
describes the
decrease of its
response to stimuli
on WWJWM% off on
off on

increasingly different
from the preferred -
stimulus.

Non-Preferred Less Preferred Preferred

oJ
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Topics:

Models of arm movements

 |nvariants of movements

« Different school of thoughts:

Internal Models
Equilibrium Point Trajectory
Muscle synergies
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Invariants of movements

Despite the large variety of movements that humans can make,
most of our (typical) movements show several invariants.

Bell-Shaped Velocity Profile and Straight Trajectory
* Isochrony principle

« Fitts’'s Law

«  Two Third Power Law

Minimum Jerk hypothesis
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Isochrony principle in reaching movements

Isochrony principle:
Spontaneous tendency to
increase the velocity of movements
depending on the distance in
order to keep execution time
approximately constant.

In other words: the velocity of voluntary
movements increases proportionally
with their linear extension

Viviani, P., and McCollum, G. (1983). The relation between linear extent
and velocity in drawing movements.

Sartori, L., Camperio-Ciani, A., Bulgheroni, M., & Castiello, U. (2013).
Reach-to-grasp movements in Macaca fascicularis monkeys: the
Isochrony Principle at work. Frontiers in psychology, 4.
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Neuromechanical models of human locomotion

Geyer and Herr, 2010.
Song and Geyer 2015

Y. Nakamura lab L. Ting lab (Simpson et al 2015)
(Sreenivasa et al 2012)

Lee et al 2019

fEd |l

<y /L

Falisse et al 2019

@ k@ Q-
/ e
dr® >

€ Muscukukelen s
H
v \

3

Dzeladini et al 2014
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Geyer and Herr's
sensory-driven model

Sensory-driven model

+
7 muscles per leg
+
Different reflexes N
(positive and negative force feedback, - VAS
limits of overextension, ...)

TA
+ .

Posture control (torso angle)

H Geyer, HM Herr. A muscle-reflex model that encodes principles of legged mechanics produces human walking
dynamics and muscle activities. |EEE Trans Neural Syst Rehabil Eng 18(3): 263-273, 2010.
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Speed control

3 vilda [m/s)
Descending a00 [m/s2]
w/ modulation \ SITEIOR e
i Best speed control when
Central pattern CPGs are added to the

generators A sen, 100 hip’s control circuits

0 sen. 0.00
A ¢pg, LOO
0 ¢pg. -0.00
A bas. 100
0 bas, 000
- A CPG simplifies the
/ control of speed

STend, 0.00

Dzeladini et al, The contribution of a central pattern generator in a reflex-based neuromuscular model,
Frontiers in Human Neuroscience, Vol 8, 371, 2014
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Neuroprosthetics
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Neuroprosthetics

Topics:

*  Restoring mobility:
. Prosthesis versus orthosis
. Spinal cord stimulation
. Functional Electromyographic stimulation
. Control of lower limb orthosis

« Restoring upper limb movements:
. Arm/hand replacement
. Cortical implants and population coding
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Cortical implants and population coding

Advances in multi-array electrodes

And in the understanding of movement
coding in the cortex

have allowed the design of cortical
Interfaces

(Nicolelis 2003) 101



Population Vector

E.g. encoding
of arm
movements
In the motor
cortex

1
Upop = E Ca .

a—1 I:I'lﬂ:'{ 3

Figure 3.6: Comparison of population vectors with actual arm movement direc-
tions. Results are shown for eight different movement directions. Actual arm
movement directions are radially outward at angles that are multiples of 45°.
The groups of lines without arrows show the preferred direction vectors of the
recorded neurons multiplied by their firing rates. Vector sums of these terms
for each movement direction are indicated by the arrows. The fact that the ar-
rows point approximately radially outward shows that the population vector re-
constructs the actual movement direction fairly accurately. (Figure adapted from
Kandel et al., 1991 based on data from Kalaska et al., 1983.)
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Interfacing with a robot

Andrew Schwarz and colleagues, U. of Pittsburgh 103



Expected outcomes of this course

You will (hopefully) get:

« Anoverview of how numerical tools are used in biology, as
part of a scientific methodology

« A mathematical background for designing and analyzing
models

« lllustrations of interesting interactions between biology and
robotics/computer science

 Practical experience of designing, programming, and testing
your own models

« Practical experience of writing scientific reports
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Possible exam gquestions

What is a computational model and why is it useful in biology?

What is the difference between inductive and deductive reasoning? Which

approach is typically used in computational motor control (answer: inductive
reasoning)

Methodology of modeling: What are the key steps in developing a
computational model?

Discuss how models have been used to investigate the lamprey
locomotor circuit. Give two different examples of models at different levels of
abstraction and how they were selected to answer specific scientific questions
(see also next lectures).
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End of Lecture 1:

Practicals start this afternoon at 13:15 in INF2
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