
Computational Motor Control, Spring 2025
Python exercise, Lab 2, NOT GRADED

Student
Names

Student names: . . . (please update)
Instructions: Update this file (or recreate a similar one, e.g. in Word) to prepare your answers to
the questions. Feel free to add text, equations and figures as needed. Hand-written notes, e.g. for
the development of equations, can also be included e.g. as pictures (from your cell phone or from
a scanner). This lab is not graded. However, the lab exercises are meant as a way to
familiarise with dynamical systems and to study them using Python to prepare you for
the final project. This file does not need to be submitted and is provided for your own benefit. The
graded exercises will have a similar format.

The file lab#.py is provided to run all exercises in Python. Each exercise#.py can be run to run
an exercise individually. The list of exercises and their dependencies are shown in Figure 1. When
a file is run, message logs will be printed to indicate information such as what is currently being
run and and what is left to be implemented. All warning messages are only present to guide you
in the implementation, and can be deleted whenever the corresponding code has been implemented
correctly.

lab2.py
exercise1.py

exercise2.py

system_parameters.py

pendulum_system.py

system_animation.py

Figure 1: Exercise files dependencies. In this lab, you will be modifying exercise1.py, exercise2.py
and pendulum_system.py.

In this exercise, you will explore the different modeling techniques that can be used to control a single
joint and segment. We initially start by exploring a single joint controlled by a a single simplified
pendulum model with damping(friction) (exercise1) and then extend it to pair of spring-dampers muscle
models (exercise2). These only represent the passive dynamics observed in a real musculoskeletal
system. You are provided with a code that can simulate a pair spring-damp muscle model .

Important note: Both exercise use a generic class that can handle both a pair of spring damp
muscles, or a single spring damp muscle sketched in Figure 2. Each muscle pair contains sping
constants and resting angles, and damping coefficients. Simply set all the values of these parameters
equal for the two pairs to study the behavior of a single spring-damper instead of a pair (in Exercise 1).
Have a look at the specification of parameters of the pendulum system in the class PendulumParameters
in system_parameters.py.

S1 S2

D1 D2

Figure 2: Pendulum model with two springs S1 and S2 and two dampers b1 and b2
T - Positive torque direction.
g - Gravity.
θ - Angle made by the pendulum
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Question 1: Pendulum with friction

1.a Find the fixed points of the pendulum with friction (i.e. damping, and analyze
their stability using a local linearization under no external input Text = 0 ) expressed
in the following equation (briefly describe the calculation steps).

Iθ̈ = −mgLsin(θ) + Text − bθ̇ (1)

Considering Inertia I = mL2, the equation of the pendulum can be written as,

θ̈ = −g
sin(θ)

L
+ Text

I
− b

θ̇

I
(2)

where θ is the angle, g the gravity constant, L the length of the pendulum and b is the damping
coefficient.

Fixed points:

ẋ2 = − g

L
sin x1 − bx2 sin(x̃1) = 0 ⇒ x̃1 = nπ, n ∈ Z

ẋ1 = x2 = 0 x̃2 = 0
(3)

Jacobian and eigenvalues:

J =
(

0 1
− g

L cos x1 −b

)
⇒ λ2 + bλ + g

L
cos x1 = 0 ⇒ λ± =

−b ±
√

b2 − 4 g
L cos x1

2 (4)

In the case where x̃1 = 0 (i.e. pendulum down), both eigenvalues λ± < 0, thus the fixed point is
stable. In the case x̃1 = π, we have λ− < 0 and λ+ > 0, thus the fixed point is unstable (saddle
point).

1.b Implement the the damping equation of the pendulum using equations de-
scribed above in the function pendulum_system.py::pendulum_equation. Numerically
solve the differential equations of the pendulum with different initial conditions.
Show several time evolutions and phase portraits with different initial conditions
that illustrate several aspects of the interesting behavior of the pendulum. Ad-
ditionally, implement the damping parameter and demonstrate examples of un-
derdampded, critically damped and overdamped behaviors. See exercise1.py and
system_parameters.py and pendulum_system.py for help with implementation.

Different time evolutions should be shown. Ideally examples should include: starting and staying
at unstable fixed point, simple damped oscillations around stable fixed point, complete loops due to
initial high velocity that then end up at stable fixed point. Depending on the choice of the parameters,
oscillations might disappear in favour of an exponential decay.

For instance:
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Figure 3: Basic pendulum setup (θ0 = 0.1 [rad], θ̇0 = 0 [rad/s])
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Figure 4: Different types of fixed point are obtained depending on the sign of ∆ = b2 − 4 g
L . Note that

the underdamped solution shows an overshoot before settling at the equilibrium point. Also note that
the critically damped solution decays faster than the overdamped (and underdamped) one.
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Figure 5: Stable pendulum setup (θ0 = 0 [rad], θ̇0 = 0 [rad/s])
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Figure 6: Unstable pendulum setup (θ0 = π [rad], θ̇0 = 0 [rad/s]). The pendulum stays at the unstable
fixed point for a few seconds, and then is pushed away due to numerical imprecision of the integration.
It ends up at the stable fixed point (0,0)
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Figure 7: High initial velocity pendulum setup (θ0 = 0.1 [rad], θ̇0 = 10 [rad/s]). In this case, the
pendulum has a high initial velocity, and therefore makes three complete rotations before converging to
the stable fixed point (6 pi, 0).

1.c Investigate and describe how the behavior of the pendulum changes if friction
is zero (b=0). Show a new phase portrait.

0 5 10 15 20 25
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

St
at

e

State 0
State 1

(a) Time evolution

0.15 0.10 0.05 0.00 0.05 0.10 0.15
 [rad]

0.4

0.2

0.0

0.2

0.4

d
/d

t [
ra

d/
s]

(b) Phase portrait

Figure 8: Periodic pendulum setup (θ0 = 0.1 [rad], θ̇0 = 0 [rad/s]). The figures show that without
friction the pendulum keeps oscillating without reduction of amplitude of oscillation. The fixed points,
both unstable and stable, have not changed.
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1.d Does the pendulum without friction (b=0) produce stable limit cycles? Discuss,
and try to support your statement with some numerical simulations (show figures)
and/or analytical arguments.
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Figure 9: The pendulum without friction does not produce stable limit cycle behavior. It has multiple
closed orbits that are not isolated. Perturbations lead to new orbits.

1.e Investigate how the behavior of the pendulum changes if the viscous friction
term is replaced with a dry (Coulomb) friction term. Unlike viscous friction, dry
friction does not depend on speed, only the direction of movement. What are the
main differences between the two types of pendulum? (discuss and show some
examples). And is there anything notable about the numerical integration of the
pendulum with dry friction? If yes, what and why?

θ̈ = − g

L
sin θ − b · sign(θ̇) (5)
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Figure 10: Pendulum with dry friction
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This represents a stiff dynamical system, i.e. a system that is difficult to integrate numerically. Indeed,
this pendulum is difficult to solve numerically because of the switch of derivatives when the angular
velocity changes sign (friction jumping between b and –b). Many more integration times steps are
needed than for the pendulum with viscous friction. The higher d, the more difficulties the integration
method has.

Fixed points are different from the pendulum with viscous friction. Quite complex behavior: the
pendulum ends in a position/angle that depends on the initial conditions (not anymore with a vertical
position).

Exercise 2 : Pendulum model with passive elements
Mechanical behavior of muscle tissue can be approximated by simple passive elements such as springs
and dampers. These elements, when combined properly, allow to study the behavior of muscle under
compressive and tensile loads.

Consider the following equation describing the motion of simple pendulum with an external torque
Text,

Iθ̈ = −mgLsin(θ) + Text (6)

Consider the system only for the pendulum range θ = [−π/2, π/2]

Explore the pendulum model with two antagonist spring elements

In this question the goal is to add two antagonist springs to the pendulum model which you are already
familiar with from lab 2 exercises. For simplicity we assume the springs directly apply a torsional force
on to the pendulum. Use equation 7 to develop the spring model.

Note : The springs can only produce force in one-direction like the muscles. That is, they can only
apply a pulling force and apply a zero force when compressed. In terms of torsion this translates to,
spring S1 can exert only clockwise torque and spring S2 can exert only counter-clockwise torque. You
need to accommodate for this condition in the equations shown below.

The setup for the pendulum with a pair of antagonist springs is as shown in figure 11. Use exercise2.py,
pendulum_system.py and system_parameters.py files to complete the exercise.
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S1 S2

Figure 11: Pendulum model with two springs S1 and S2.
T - Positive torque direction.
g - Gravity.
θ - Angle made by the pendulum

TS = k · (θref − θ) (7)

Where,

• TS : Torsional Spring force

• k : Spring Constant

• θref : Spring reference angle

• θ : pendulum angle

Substituting the above in 2,

θ̈ = −g
sin(θ)

L
+ Text

I
+ TS

I
(8)

θ̈ = −g
sin(θ)

L
+ Text

I
+ k · (θref − θ)

I
(9)

Use the generalized form of the spring equation described in 9 to extend it to both the antagonist
springs S1 and S2 with the necessary conditions to make sure springs do not produce when com-
pressed.

Extending the above equation to both springs,

θ̈ = −g
sin(θ)

L
+ min(k1 · (θref1 − θ)

I
, 0) + max(k2 · (θref2 − θ)

I
, 0) + Text

I
(10)

For all questions the initial conditions used are,

θ = 0.5

θ̇ = 0.1

unless explicity specificied otherwise. Students may use different set of initial conditions
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2.a Implement the dynamic equations of the pendulum with springs using equations
described above in the function pendulum_system.py::pendulum_equation. Does the
system have a stable limit cycle behavior? Describe and run an experiment to sup-
port your answer. You can use the function exercise2.py::pendulum_perturbation
to perturb the pendulum either by changing states or applying an external torque.
Use the class system_animation.py::SystemAnimation to visualize the pendulum.
Example code can be found in exercise2.py::exercise2

The first requirement for a limit cycle is that the system should have a closed trajectory. The pendulum
system with springs does exhibit a closed trajectory behavior. But, in order to have a stable limit cycle
the system should converge to a single trajectory as time tends to either positive/negative infinity. One
solution to check for stable limit cycle behavior is to use the state and phase plot like shown in figure
12 under perturbations to show that there is no stable limit cycle behavior. At t=5s a pertubation is
applied to the velocity of the system (θ̇ = 2.0). This pushes the trajectory to a new trajectory and
it never returns to the original trajectory. This shows that the system does not have a stable limit
cycle. Alternatively students may also use poincare map to show that there is no stable limit cycle.
Students should clearly detail the pertubation they used.
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(a) State of pendulum with spring under perturbations
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(b) Phase of pendulum with spring under perturbations

Figure 12: Pertubation approach to check to system limit cycle behavior

2.b Explore the role of spring constant (k) and spring reference angle (θref) in terms
of range of motion, amplitude and frequency of pendulum. Keep the constants
equal, i.e k1 = k2 and θref1 = θref2
Refer to exercise2.py::exercise1 for an example

Spring constant (k): Dictates the magnitude and rate at which the pendulum oscillates. The larger
the constant the faster the system oscillates. This can also be seen as the responsiveness of the system.
Figure 13 shows the reponse of the pendulum with a small spring constant of k1 = k2 = 0.1. Figure
14 shows the reponse of the pendulum with a large spring constant of k1 = k2 = 100.

• For both low/high spring constant, the amplitude of the θ remains the same while the amplitude
of θ̇ increases with increase in spring constant magnitude.

• The frequency of both θ and θ̇ increases with higher spring constant and vice-versa.

Reference angle: The resting angle for the spring. Since the spring like muscles act only in one
direction, the resting angle dictates the angular position of the pendulum at which springs start to
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act. But having a symmetric spring reference angle for both springs leads to no change in amplitude,
range of motion or frequency for a given set of initial conditions. Figures 15 and 16 show the state and
phase plot of the system with spring references close to reference (θref1 = −10◦ & θref1 = 10◦ ) and
far from reference (θref1 = −75◦ & θref2 = 75◦ ) respectively. With reference being θ = 0.0◦
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Figure 13: State of pendulum with spring to study the effect of spring constant
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(b) Phase of pendulum with high spring constant

Figure 14: State of pendulum with spring to study the effect of spring constant
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(b) Phase of pendulum with reference close to pendulum
rest position

Figure 15: State of pendulum with spring to study the effect of spring reference
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(b) Phase of pendulum with reference far to pendulum
rest position

Figure 16: State of pendulum with spring to study the effect of spring reference

2.c Explain the behavior of the model when you have asymmetric spring constants
(k) and spring reference angles (θref), i.e. k1 ̸= k2 and θref1 ̸= θref2 Support your
responses with relevant plots

As we saw the previous question, changing the spring constant and reference angle yielded different
behaviors. Here we introduce assymetry in the system and change parameters individually.

Variable Spring Constant (k): In figure 17 the spring constants are set to k1 = 1.0 and k2 = 100.
and both spring references set to θref1 = θref2 = 0.0◦. With these values, it is clear from the phase
plot 17b that variable spring constants introduces assymetry in the shape of the closed trajectory. The
side with higher spring constant pulls the pendulum back to the reference faster. While the slower
spring side is dominated more by the pendulum dynamics rather than of the spring forces.
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Variable Spring reference (θref ): In figure 18 the spring references are set to θref1 = 0.0◦ and
θref2 = 75.◦ and both spring constants set to k1 = k2 = 10.0. With these values, the it is clear from
the phase plot 18b that variable spring references changes the center of the closed trajectory. That is,
the pendulum system now oscillates around a non-zero point.

Thus by having unssymetric spring values, we can produce more complex closed loop trajectories in a
simple system.
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Figure 17: State of pendulum with spring to study the effect of Variable spring constant

0 2 4 6 8
Time [s]

0.2

0.0

0.2

0.4

St
at

e State 0
State 1

(a) State of pendulum with Variable spring reference

0.375 0.400 0.425 0.450 0.475 0.500 0.525
 [rad]

0.4

0.2

0.0

0.2

0.4

d
/d

t [
ra

d/
s]

(b) Phase of pendulum with Variable spring reference

Figure 18: State of pendulum with spring to study the effect of variable spring reference
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Explore the pendulum model with two antagonist spring and damper elements

Over time muscles lose energy while doing work. In order to account for this property, let us now add
a damper in parallel to the spring model. Use equation 11 to develop the damper model.

Note : Like the previous springs, the springs in spring-dampers can only produce a force in one-
direction. However, the damper terms do not have this limitation and each damper can exert a force
in both directions.

Again use exercise2.py, pendulum_system.py and system_parameters.py files to complete the
exercise. The setup for the pendulum model with a pair of antagonist spring and dampers in parallel
is as shown in figure 19.

S1 S2

D1 D2

Figure 19: Pendulum model with two springs S1 and S2 and two dampers b1 and b2
T - Positive torque direction.
g - Gravity.
θ - Angle made by the pendulum

TB = b · θ̇ (11)

Where,

• TB : Torsional Damper force

• b : Damping Constant

• θ̇ : pendulum angular velocity

The combined spring damper torque is given by,

TS − TB = k · (θref − θ) − b · θ̇ (12)

The minus for the damper comes from the fact that damper is acting against the work done by the
spring.

Substituting the above in 2

θ̈ = −g
sin(θ)

L
+ Text

I
+ TS − TB

I
(13)

θ̈ = −g
sin(θ)

L
+ Text

I
+ (k · (θref − θ) − b · θ̇

I
) (14)
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Use the generalized form of the spring equation described in 14 to extend it to both the antagonist
spring-damper systems (S1-D1) and (S2-D2).

Extending the above equation for both spring and dampers,

θ̈ = −g
sin(θ)

L
+ Text

I
+ min

(
k1 · (θref1 − θ)

I
, 0
)

− b1 · θ̇

I
+ max

(
k2 · (θref2 − θ)

I
, 0
)

− b2 · θ̇

I
(15)

2.d Implement the dynamics equations of the pendulum to now include the damping
using the equations described above. Modify pendulum_system.py::pendulum_equation.
How does the behavior now change compared to the pendulum without dampers?
Briefly explain and support your responses with relevant plots

In questions 1a-1c observed a closed loop trajectory. By adding dampers to the system introduces a
fixed point behavior. The system now loses energy over time and converges to a single position. Even
when the system is perturbed the pendulum is returns to the same fixed point showing that there
is only one stable fixed point in the system. Figure 20 shows the behavior of the system with the
following system parameters,

• k1 = 50.0

• k2 = 50.0

• b1 = 0.5

• b2 = 0.5

• θref1 = −45◦

• θref2 = 45◦
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(a) State of pendulum with spring and damper
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(b) Phase of pendulum with spring and damper

Figure 20: Pendulum setup with spring and damper

Note that, like you observed in Lab 2, the nature of the fixed point might change depending on the
magnitude of the damping term. Figure 21 shows the behavior of the system with the following system
parameters,

• k1 = 5.0

• k2 = 5.0
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• b1 = 5.0

• b2 = 5.0

• θref1 = −45◦

• θref2 = 45◦
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(a) State of pendulum with spring and large damping
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(b) Phase of pendulum with spring and large damping

Figure 21: Pendulum setup with spring and large damping term. The fixed point now shows an
overdamped behavior

2.e Can you find a combination of spring constants (k), damping constants (b) and
spring reference angles (θref) that makes the pendulum rest in a stable equilibrium
at (θ = π/6) radians? Describe how you arrive at the necessary parameters and
support your response with relevant plots.

The following parameters set the pendulum at π/6

b1 = 1.

b2 = 1.

k1 = 50.0
k2 = 50.0

stheta_ref1 = np.deg2rad(0.0)
stheta_ref2 = np.deg2rad(65.6)

Using the knowledge from previous questions and setting system parameters assymetrically we obtain
a pendulum convergence point at θ = π/6 as shown in figure 22.

15



Computational Motor Control, Spring 2025
Python exercise, Lab 2, NOT GRADED

Student
Names

0 2 4 6 8
Time [s]

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

St
at

e

State 0
State 1

(a) State of pendulum with spring and damper for a
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Figure 22: Pendulum setup with spring and damper for a given set point

Note that changing the damping term will not influence the position of the equilibrium point of the
system. Consider the following parameters:

b1 = 1.

b2 = 1.

k1 = 50.0
k2 = 50.0

stheta_ref1 = np.deg2rad(0.0)
stheta_ref2 = np.deg2rad(65.6)

The system still approaches the convergence point in θ = π/6, this time without damped oscillations,
as shown in figure23.
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Figure 23: Pendulum setup with spring and large damping term for a given set point
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Names

2.f What is the missing component between a real muscle and the muscle model
with passive components that you just explored? What behavior’s do you lack
because of this missing component?

The missing component between a real muscle the muscle model with passive components is the active
contractile element. The active contractile element can contract and produce force upon receiving an
external activation. Having an active element allows for an external control to switch the behavior of
the pendulum from a fixed point behavior to oscillatory and even stable limit cycle behaviors
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