
Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

Student names: . . . (please update)
Instructions: Update this file (or recreate a similar one, e.g. in Word) to prepare your answers to
the questions. Feel free to add text, equations and figures as needed. Hand-written notes, e.g. for
the development of equations, can also be included e.g. as pictures (from your cell phone or from
a scanner). This lab is not graded. However, the lab exercises are meant as a way to
familiarise with dynamical systems and to study them using Python to prepare you for
the final project. This file does not need to be submitted and is provided for your own benefit. The
graded exercises will have a similar format.

In this exercise, you will familiarise with ODE integration methods, how to plot results and study
integration error. The file lab#.py is provided to run all exercises in Python. Each exercise#.py
can be run to run an exercise individually. The list of exercises and their dependencies are shown
in Figure 1. When a file is run, message logs will be printed to indicate information such as what is
currently being run and and what is left to be implemented. All warning messages are only present
to guide you in the implementation, and can be deleted whenever the corresponding code has been
implemented correctly.

lab1.py
exercise1.py

exercise2.py

ex1_functions.py

ex1_integration.py

ex1_errors.py

Figure 1: Exercise files dependencies. In this lab, you will be modifying exercise1.py,
ex1_functions.py, ex1_integration.py,ex1_errors.py and exercise2.py. It is recommended
to check out exercise1.py before looking into the other ex1_*.py files.

1

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

Question 1: Numerical integration

1.a Compute the analytical solution x(t) for the following linear dynamical sys-
tem. Provide here the calculation steps, then implement the solution in ex1_fun-
ctions.py::analytic_function() and run exercise1.py to plot the result.

ẋ = 2 · (5 − x), x(t = 0) = 1 (1)

dx

dt
= 2 · (5 − x)

⇒ 1
5 − x

dx = 2dt

⇒
∫ x

x0

1
5 − x

dx =
∫ t

t0
2dt

⇒ − ln(5 − x) + ln(5 − x0) = 2(t − t0) + C

⇒ ln(5 − x

5 − x0
) = −2(t − t0) − C

⇒ 5 − x

5 − x0
= e−2(t−t0)−C

⇒ x(t) = 5 − (5 − x0)e−2(t−t0)−C

(2)

Using x0 = 1 at time t0 = 0, we obtain C = 0, thus:

x(t) = 5 − 4e−2t (3)

Python code: x_correct = 5–4*np.exp(-2*t)

2

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

1.b In some cases, an ODE system may not have an analytical solution or it may
be difficult to compute. Implement Euler integration in ex1_integration.py::eu-
ler_integrate(), then run exercise1.py again to compare the solution of eu-
ler_integrate() (with 0.2 timestep) to the analytical solution obtained previously
and include a figure of the result here. Make sure to also implement ex1_fun-
ctions.py::function() so that the code may be run correctly.
As a code template, check out ex1_integration.py::euler_example().

0 1 2 3 4
Time [s]

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

St
at

e

Analytical
Euler (ts=0.2)

Figure 2: We can see that Euler integration with a 0.2 time steps approximately corresponds to the
analytical solution.

By computing the average abosulute error using:

err = 1
N

N∑
i=1

|fmethod(i) − fanalytical(i)| (4)

with N being the number of state samples, the method being Euler in this case and fanalytical() being
the equation given by 3. According to this equation, we obtain an average error of ∼ 0.085 for the
Euler method in this case. We also obtain a maximum absolute error of ∼ 0.357.

3

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

1.c Various efficient libraries are available to facilitate ODE integration, such as
Scipy. In this exercise first implement your own Runge-Kutta 4th order method
(in ex1_integration.py::ode_intgrate_rk()). Then use scipy.odeint Lsoda method
(in ex1_integration.py::ode_intgrate()) and scipy.ode adaptive Runge-Kutta Do-
pri method of order 4(5) (in ex1_integration.py::ode_intgrate_dopri()) and solve
the ode (overimpose plots of the solution using different methods and markers).
Compare all these methods (euler, runge-kutta, lsoda and dopri) by defining an
error function (there are multiple ways you could do this, choose an appropriate
method and explain why) and number of time steps.

0 1 2 3 4
Time [s]

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

St
at

e

Analytical
Euler (ts=0.2)
LSODA
RK
dopri

Figure 3: The Euler, Runge-Kutta and LSODA integration methods plotted and compared to the
analytical solution

Method Average error Max error # Timesteps
Euler ∼ 0.085 ∼ 0.357 25

Runge-Kutta ∼ 0.0001 ∼ 0.0004 25
dopri ∼ 6.41e−8 ∼ 1.43e−7 Adaptive

LSODA ∼ 1.17e−8 ∼ 5.79e−8 Adaptive

Table 1: Error analysis for different integration methods

Maintaining the 0.2 time step from the previous exercise, we observe that the error is much smaller
using the Runge-Kutta method for a same number of integration times steps (25). The LSODA and
dopri also obtains small error values similarly to the Runge-Kutta method, although this algorithm
uses an adaptive time step which allows to control the tolerance on the error, at the cost of additional
computation.

4

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

1.d The error comparison between Euler and Runge-Kutta of question 1.c is not fair
for the Euler method. Briefly say why. Choose another number of time steps for
the Euler method that is fairer when compared to Runge-Kutta. Provide the error
values, number of time steps, and include a figure comparing the two integration
methods. Briefly discuss which integration method is best.

0 1 2 3 4
Time [s]

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

St
at

e

Euler (ts=0.05)
Analytical

Figure 4: Euler integration using smaller time step (ts = 0.05)

The Runge-Kutta integration method computes the derivatives 4 times at each iteration. A fair
comparison is therefore to make 4 Euler steps for each Runge-Kutta step.

Method Average error Max error # Timesteps
Euler ∼ 0.085 ∼ 0.357 25

Runge-Kutta ∼ 0.0001 ∼ 0.0004 100
dopri ∼ 6.41e−8 ∼ 1.43e−7 Adaptive

LSODA ∼ 1.17e−8 ∼ 5.79e−8 Adaptive
Euler (smaller ts) ∼ 0.020 ∼ 0.077 100

Table 2: Error analysis for different integration methods including smaller Euler integration with
smaller time step

The error is still much smaller using Runge-Kutta time steps (ode45), even if approximately the same
number of derivatives are computed with both methods (100 times for Euler, 25 · 4 = 100 times for
Runge-Kutta).

5

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

1.e Test the role of the step size by plotting the integration error as a function of
step size. You can use ex1_errors.py::compute_error() to do this by completing
the code in ex1_errors.py::error(). How accurate is the solution compared to the
analytical solution for different step sizes? Include here a graph showing the error
against the step size. Explain which error measure you used (there are several
options). The error of the adaptive solvers can be reduced by setting a smaller
value of the relative tolerance of the solver (rtol). Reduce rtol and check the
solver’s accuracy.

10 3 10 2 10 1 100

Time step [s]

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

Euler
Lsoda
RK
dopri

(a) L1

10 3 10 2 10 1 100

Time step [s]

10 27

10 23

10 19

10 15

10 11

10 7

10 3

101

Er
ro

r
Euler
Lsoda
RK
dopri

(b) L2

10 3 10 2 10 1 100

Time step [s]

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Er
ro

r

Euler
Lsoda
RK
dopri

(c) Linf

Figure 5: Error in function of time step

errL1 = 1
N

N∑
i=1

|fmethod(i) − fanalytical(i)| (5)

errL2 = 1
N

N∑
i=1

(fmethod(i) − fanalytical(i))2 (6)

errLinf = max (|fmethod(i) − fanalytical(i)|) (7)

6

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

The Lsoda method uses a fixed L1 error tolerance of rtol ∼ 1e − 8. The dopri method uses a higher
rtol=1e-4. In both cases the tolerance is reached by the solver and can be reduced by changing rtol.

7

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

Question 2: Stability analysis

2.a Find the fixed points of the following linear dynamical system, and analyze
their stability (briefly describe the calculation steps).

ẋ = Ax, A =
(

1 4
−4 −2

)
(8)

Fixed point x⃗o:

˙⃗x0 = 0⃗ =
(

1 4
−4 −2

)
x⃗o

⇒ x⃗o =
(

0
0

) (9)

Eigenvalues λ:

det(A − λI) = 0

⇒ det
(

1 − λ 4
−4 −2 − λ

)
= 0

⇒ (1 − λ)(−2 − λ) + 16 = 0
⇒ λ2 + λ + 14 = 0

λ± = −1 ±
√

1 − 4 · 14
2 = −1

2 ±
√

−55
2

(10)

The fixed point is stable because the real part of both eigenvalues are smaller than 0.
Non-zero imaginary part: the system exhibits (damped) oscillations.

8

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

2.b Perform numerical integration from different initial conditions to verify the
stability properties. See exercise2.py::exercise2() for implementation. Include
some figures with these different time evolutions and their corresponding phase
portrait and explain their roles.

0 2 4 6 8
Time [s]

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

St
at

e

State 0
State 1

(a) State

0.5 0.0 0.5 1.0
State 0

1.0

0.5

0.0

0.5

1.0

St
at

e
1

(b) Phase

Figure 6: The left graph shows typical oscillations with decreasing amplitude (damped oscillations) in
function of time. The right graph shows the evolution of both states, but the time information is lost.

The damped oscillations correspond to an inward spiral in the phase plane. The quiver plot is a vector
plot that shows the general behavior of the system in the phase plane.

0 2 4 6 8
Time [s]

0.04

0.02

0.00

0.02

0.04

St
at

e

State 0
State 1

(a) State

0.15 0.10 0.05 0.00 0.05 0.10
State 0

0.15

0.10

0.05

0.00

0.05

0.10

St
at

e
1

(b) Phase

Figure 7: These graphs show the evolution of the system from (0,0) to demonstrate the fixed point
behavior.

9

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

2.c Change one value in matrix A such that the time evolution becomes periodic for
some initial conditions. Say which value and include a time evolution figure.

In order for the system to become periodic, we need the eigenvalues λ to be purely imaginary, say by
modifying the first element of the matrix:

det(A − λI) = 0

⇒ det
(

a − λ 4
−4 −2 − λ

)
= 0

⇒ (a − λ)(−2 − λ) + 16 = 0
⇒ λ2 + (2 − a)λ + (16 − 2a) = 0

λ± = −(2 − a) ±
√

(2 − a)2 − 4 · (16 − 2a)
2

(11)

By selecting a = 2, we obtain:

λ± = −(2 − 2) ±
√

(2 − 2)2 − 4 · (16 − 4)
2 = ±

√
12j (12)

Thus the system changed to:

ẋ = Ax, A =
(

2 4
−4 −2

)
(13)

0 2 4 6 8
Time [s]

1.0

0.5

0.0

0.5

1.0

St
at

e State 0
State 1

(a) State

1.5 1.0 0.5 0.0 0.5 1.0 1.5
State 0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

St
at

e
1

(b) Phase

Figure 8: A is changed to: A = [[2,4],[-4,-2]] Eigen values are now complex numbers with real part =
0. This leads to oscillatory behavior without damping.

10

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

2.d Compute the eigenvalues and eigenvectors of the following system. What can
you say about the stability of its fixed point? What is the meaning of its eigenvec-
tors? Try to plot the flow of the system to get an intuition of its behavior.

ẋ = Ax, A =
(

1 1
4 −2

)
(14)

The first part of the exercise is solved as in 2.c.

Eigenvalues λ:

det(A − λI) = 0

⇒ det
(

1 − λ 1
4 −2 − λ

)
= 0

⇒ (1 − λ)(−2 − λ) − 4 = 0
⇒ λ2 + λ − 6 = 0

λ± = −1 ±
√

1 + 4 · 6
2 = −1

2 ± 5
2

(15)

The eigenvalues of the system are equal to λ1 = 2 and λ2 = -3
The fixed point is a saddle node because the real part of one eigenvalue is greater than 0.

Eigenvectors v⃗:
Note that the matrix is singular, therefore we just consider one of the two equations.
There are infinite solutions to the system, we will consider vectors with unitary norm.

(A − λ1I)v⃗1 = 0
⇒ (A − 2I)v⃗1 = 0

⇒
(

−1 1
4 −4

)
v⃗1 = 0

⇒ v1x = v1y

v⃗1 =
(

1/
√

2
1/

√
2

)
(16)

(A − λ2I)v⃗2 = 0
⇒ (A + 3I)v⃗2 = 0

⇒
(

4 1
4 1

)
v⃗2 = 0

⇒ 4v2x = −v2y

v⃗2 =
(

1/
√

17
−4/

√
17

)
(17)

11

Computational Motor Control, Spring 2025
Python exercise, Lab 1, NOT GRADED

Student
Names

You can observe in Figure 9 how the eigenvector associated to the negative value corresponds to a line
of stable solutions (the stable manifold). Due to the uniqueness theorem, trajectories cannot cross,
therefore the stable manifold is effectively dividing the phase space in two regions. Points starting on
the left of the manifold will diverge towards (− inf, − inf), points starting on the right of the manifold
will diverge towards (+ inf, + inf).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
State 0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

St
at

e
1

Eigenvector 0
Eigenvector 1
Saddle node

Figure 9: Phase diagram of the system with a saddle point. The eigenvalues of the saddle point
correspond to the stable and unstable manifold of the system

12

