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Dynamical neural networks are being increasingly employed in a variety of
contexts, including as simple model nervous systems for autonomous agents.
For this reason, there is a growing need for a comprehensive understanding of
their dynamical properties. Using a combination of elementary analysis and
numerical studies, this article begins a systematic examination of the dynamics
of continuous-time recurrent neural networks. Specifically, a fairly complete
description of the possible dynamical behavior and bifurcations of one- and
two-neuron circuits is given, along with a few specific results for larger
networks. This analysis provides both qualitative insight and, in many cases,
quantitative formulas for predicting the dynamical behavior of particular
circuits and how that behavior changes as network parameters are varied.
These results demonstrate that even small circuits are capable of a rich variety
of dynamical behavior (including chaotic dynamics). An approach to
understanding the dynamics of circuits with time-varying inputs is also
presented. Finally, based on this analysis, several strategies for focusing
evolutionary searches into fruitful regions of network parameter space are
suggested.
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Introduction

Continuous-time recurrent neural networks (CTRNNS) are networks of model neurons
of the following general form:
1 N
o= flomn) = = | vt Y wioly +6) + 1] i=1,2,... N ()
Ti j=t1

where y is the state of each neuron, T is its time constant (7 > 0), wj; is the
strength of the connection from the j* to the i* neuron, 6 is a bias term, o(x) =
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1/(1 + ¢7*) is the standard logistic activation function, and I represents a constant
external input. It will also sometimes be convenient to express Equation 1 in vector
notation: y = f{y; W, 0,1, 7), where y, f, y, 8, I, T are length N vectors of the
corresponding scalar quantities and W is the N x N matrix of connection weights.
Although variations of this basic model neuron were studied much earlier (e.g.,
Grossberg, 1969), a restricted form of Equation 1 was popularized by Hopfield
(1984) in his work on associative memories.

Within the autonomous agents community, there is a growing interest in the use
of dynamical neural networks for controlling the behavior of agents (Beer, 1990) and
in the evolution of such networks (Collins & Jefterson, 1991; Werner & Dyer, 1991;
Beer & Gallagher, 1992; de Garis, 1992; Spiessens & Torreele, 1992; Cliff, Harvey,
& Husbands, 1993; Yamauchi & Beer, 1994; Floreano & Mondada, 1994; Miller
& CIliff, 1994). In contrast to purely static feedforward networks, which support
only reactive behaviors, dynamical neural networks allow an agent to initiate action
independent of its immediate situation and to organize its behavior in anticipation
of future events (Beer, 1995a).

CTRNNS are an obvious choice for this work because (1) they are arguably the
simplest nonlinear, continuous dynamical neural network model; (2) despite their
simplicity, they are universal dynamics approximators in the sense that, for any finite
interval of time, CTR NN can approximate the trajectories of any smooth dynamical
system on a compact subset of R" (Funahashiand Nakamura, 1993); and (3) they have
a plausible neurobiological interpretation, where the state y often is associated with a
nerve cell’s mean membrane potential and the output o (y) is associated with its short-
term average firing frequency. CTRINNs are also being applied to a wide variety
of other problems, including associative memories (Hopfield, 1984), optimization
(Hopfield & Tank, 1985), biological modeling (Lockery, Fang, & Sejnowski, 1990),
and many others (Erlanson & Abu-Mostafa, 1991; Goudreau & Giles, 1992; Simard
& Cun, 1992). In addition, a variety of learning algorithms for CTRNNs have been
developed (for review, see Pearlmutter, 1990).

With the growing use of CTRNNE, there is a growing need for a comprehensive
understanding of their dynamical properties. What kinds of dynamical behavior can
a given network exhibit? How does a network’s dynamical behavior depend on its
parameters? Even partial answers to these questions would contribute significantly to
our understanding of existing networks and could help to guide the synthesis of new
networks for solving particular problems. This is especially true for evolved networks,
for which it is common to achieve a perfectly competent network whose operation
appears to be completely incomprehensible. Although a few attempts have been
made to understand the operation of evolved dynamical neural networks (Gallagher
and Beer, 1993; Cliff, Husbands, & Harvey, 1993; Yamauchi & Beer, 1994; Beer,
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1995a,b; Husbands, Harvey, & CIliff, in press), the results thus far obtained are highly
specific to the particular circuits considered. In addition, progress on these questions
may have implications for understanding the dynamics of more biologically realistic
networks.

The goal of this article is to illustrate how the mathematical tools of dynam-
ical systems theory can be used to gain significant insight into the dynamics of
CTRNNs. While a great deal of work has been done on these and closely related
models (e.g., Wilson & Cowan, 1972; Cohen & Grossberg, 1983; Hopfield, 1984;
Hirsch, 1989), no comprehensive description of the dynamics of even small un-
constrained CTRNNS is currently available. Because of the interest in associative
memory applications, a great deal of previous work has focused on the question of
how to constrain CTRINNS so that they exhibit only equilibrium points (for review,
see Grossberg, 1988). However, oscillatory (Atiya & Baldi, 1989) and chaotic (Som-
polinsky & Crisanti, 1988; Das, Schieve, & Zeng, 1991) dynamics are also possible
and are potentially very important in applications (e.g., rhythmical or evasive be-
havior in an autonomous agent). Although the particular results obtained here are
mostly specific to Equation 1, the general techniques can be applied to any CTRNN,
and analogous techniques for iterated maps can be applied to discrete-time recurrent
neural networks (Blum & Wang, 1992; Tino, Horne, & Giles, 1995).

This article is organized as follows. It begins with a fairly complete theory of ..

one- and two-neuron circuits in sections 2 and 3, respectively. Section 4 presents a
tew specific results concerning the dynamics of CTRNNs of arbitrary size, using
three-neuron circuits to illustrate particular results. An approach to understanding
the dynamics of CTRINNs with time-varying inputs is then described in section 5.
Finally, in section 6, I discuss some possible implications of these results for the
analysis and synthesis of CTRNNs produced by evolutionary algorithms. For those
unfamiliar with the formalism of dynamical systems theory, I have tried to augment
the mathematics with text and pictures throughout. Good tutorial introductions to
dynamical systems theory can be found in the books by Abraham and Shaw (1992),
Strogatz (1994), and Hale and Kogak (1991).

A Single Neuron with Self-Connection

The obvious place to begin the study is with a single neuron with a self-connection,
as it forms the basic building block for any larger network. For convenience, I will
drop the subscripts in this case and write Equation 1 as:

y=frw L) = Sy tuoly O ) @
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In the absence of a self-connection, Equation 2 reduces to a linear differential
equation whose solution is obviously just an exponential decay to I with time con-
stant 7. However, as we shall see, the presence of a simple nonlinear self-connection
endows an individual neuron with significantly more complicated behavior. Neu-
robiologically, this self-connection can be interpreted as either a very simple type
of active conductance or as a literal self-collateral. Furthermore, under certain con-
ditions, a self-connection can be interpreted as representing a larger circuit whose
dynamics have been adiabatically eliminated (Schieve, Bulsara, & Davis, 1991).

2.1 Qualitative theory

Ideally, we would like an explicit expression for the general solution (¢, yg, w,
0,1, 7) describing how the trajectories of Equation 2 evolve in time from a given
initial state y,. Unfortunately, no elementary expression for the solution of Equa-
tion 2 exists. Therefore, we must settle for a qualitative description of its dynamics.
Specifically, I will describe the limit sets of Equation 2, including their stability and
their dependence on the parameters, as well as the bifurcations that can occur as the
parameters are varied.

For a scalar dynamical system such as that presented in Equation 2, the only
possible limit sets are equilibrium points, which may be either stable or unstable.
Equilibrium points represent constant solutions of Equation 2 and correspond to
zeroes of f. The zeroes of f are clearly independent of 7, and so we will henceforth
assume that 7 = 1. The stability of an equilibrium point of Equation 2 is given
by the sign of f'(y,w,8) = wo'(y + 8) — 1, where f’ denotes 8f /0y and o’ (x) is
often written as o (x)(1 — o (x)). A given equilibrium point 7 of Equation 2 is stable
if f'(3,w,0) < 0 and unstable if f'(y,w,6) > 0 (Hale & Kogak, 1991). Because
0 < o'(x) < 1/4, f < 0for w < 4 and so only stable equilibria are possible in this
case. On the other hand, when w > 4, the sign of f' depends on y, wand 6. Thus, a
qualitative change in behavior can occur as w passes through 4, leading us to expect
at least two qualitatively different phase portraits in this system.

[ will use the notation ¥(I, w, #) to represent the surface of equilibrium points of
Equation 2 as a function of the parameters. By solving f(y,w,8,I) = 0 for I, it is
easy to see that this surface is implicitly defined by the expression I = y — wo(y+6).
Unfortunately, this expression cannot be algebraically solved for y. Assuming for
the moment that § = 0, Figure 1 shows the numerically computed equilibria of
Equation 2 as a function of I at w = —20 (Fig. 1A) and at w = 20 (Fig. 1B).
Note that, while Equation 2 exhibits a single stable equilibrium point for all I when
w = =20, it exhibits three equilibria for a range of I values when w = 20. In
the latter case, the outer two equilibria are stable and the inner one is unstable. In
this case, the unstable equilibrium point separates the basins of attraction of the
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Figure 1

The equilibria of
Equation 2 as a function
of I when (A) w = —20
and (B) w = 20. Solid
lines represent stable
equilibria, and dashed
lines represent unstable
equilibria. Dark curves
are for § = 0, and gray
curves are for § = —10.
The two possible phase
portraits of Equation 2 are
shown in C. Here filled
circles represent stable
equilibrium points, and
open circles represent
unstable equilibrium
points. The bottom phase
portrait occurs when the
input is within the fold
shown in B, whereas the
top phase portrait occurs
everywhere else.
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two stable equilibrium points. This corresponds to a neuron whose self-excitation

is sufficiently large that it is capable of remaining active through positive feedback

alone even in the absence of external input. These two distinct phase portraits are

shown in Fig. 1C.

Still assuming that @ = 0, the three-dimensional surface of equilibria 3(I, w, 0) is
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Figure 2

The (A) equilibrium
surface and (B) bifurcation
set of Equation 2 when

0 = 0. The curves shown
in Figure 1A and B
represent slices through
this surface corresponding
to particular values of w
and 6. Geometrically, B is
the projection of the edge
of the fold in A. B
Analytically, it is the curve
along which
f()'7w7971): 25 .
/(y,u,8) = 0. For
parameter values outside 20
the cusp, the system
exhibits a single stable w 1s
equilibrium point (top
phase portrait in Fig. 1C). 10
For parameter values
within the cusp, the 3
system exhibits a pair of
stable equilibrium points - 0 Y3 =0 s
separated by an unstable ‘
equilibrium point (bottom
phase portrait in Fig. 1C).

30

-10 -5 o

shown in Figure 2A. We can see that, as w increases through 4, this surface develops
a fold, the middle branch of which is unstable. The width of this fold increases with
increasing w. Whenever the values of I and w cross into or out of this fold, Equation 2
undergoes a bifurcation—that is, its dynamical behavior switches between the two
qualitatively different phase portraits shown in Figure 1C. Thus, the edges of the fold
form the bifurcation set of Equation 2. This set is a cusp (Cowan & Ermentrout,
1978) and is shown in Figure 2B. The point of the cusp occurs at (I, w) = (=2, 4).
When I and w cross the cusp at the cusp point, Equation 2 undergoes a pitchfork
bifurcation, while varying these parameters across any other point on the cusp results
in a saddle-node bifurcation (Hale & Kogak, 1991).
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It remains to understand the effect of 8 on the equilibrium points of Equation 2.
As can be seen for w = —20 and w = 20 in Figure 1, a nonzero § merely shifts the
location of the fold (or “kink™ if w < 4) both horizontally and vertically on the
equilibrium surface by —#. Thus, with respect to the bifurcation set of Equation 2,
the effects of varying @ or I are interchangeable, implying that the bifurcation set of
Equation 2 in the (¢, w) plane at I = ais identical to the bifurcation set in the (I, w)
plane at 6 = a. Of course, varying @ or I does affect the state space locations of the
equilibrium points in different ways.

2.2 AQuantitative theory .

2.2.1 Equilibrium surface There are obviously several limiting cases where ap-
proximate expressions for the equilibrium surface 3(I,w, @) can easily be derived.
For example, when either w &= 0 or I < —(w/2 + 8),

y(I,w,0) =~ I - o)

On the other hand, when I > —(w/2 + 8), then

V(I w,8) ~w+1 : @

We can also derive an approximate expression for (I, w,€) when y + 6 = 0,
which occurs along the line I = —(w/2 + ). When y + 8 ~ 0, o(y + 6) can
be replaced by its Taylor expansion: o(y+ 8) = (y + 6)/4 + 1/2. Substituting this
expression into f (y, w, 8, I) = 0 and solving for y, we obtain the following expression
for (I, w, ) in the neighborhood of the line along which y = —§:

— 4 5 :

yIlL,w,0)~ ——(I-1)—6 (5)

4—w

Note that the slope of F(I, w, #) along this line tends to 0 as w — 00, implying that
the central portion of the equilibrium surface becomes insensitive to I as w grows
very large either negatively or positively. Note also that, taken together, Equations
3, 4, and 5 give approximate expressions for each of the three “pieces” of a neuron’s
steady-state I/y relation y(I; w, 0) (see Fig. 1).

2.2.2 Bifurcation set We can also derive expressions for the cusp bifurcation set of
Equation 2 (Fig. 2B). By allowing us to calculate the location and size of the fold in
input space as a function of the other parameters, such expressions tell us where in
parameter space a single neuron with a self-connection will switch between unistable
and bistable behavior.
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Analytically, the cusp is defined by the simultaneous zeroes of f(y,w,6,I) and
f'(y, w,8) (Hale & Kogak, 1991). Because o (x) can be written as (tanh(x/2) + 1) /2,
f' can be written as: :

fy,w,0) = %sech2 (#) -1

If f'(y,w,0) = 0, then y = F2sech™ (2/y/w) — 6 (retaining only the real
solutions). Substituting this into f{y, w, 8, I) = 0 and solving for I gives:

I=+2sech™ <%> —wo (izsech‘ (%)) -6

This can be rewritten in terms of elementary functions as follows to give exact
expressions for the left (Ib) and right (rb) branches of the cusp valid for w > 4:

Ib(w,0) = 21n<ﬁ+2w_4>—w+ 1421(w—4)_9
h(w,0) = _21n<ﬁ+2w—4)_w— u;(w—4)_0 (6)

It will also be convenient to define an expression for the width of the fold (which
is independent of §) valid for w > 4 as:

d(w) = rb(w, 8) — Io(w, 0) = MW‘“‘“"(M) ?

For w > 4, these three expressions approach the following simpler forms:
b(w,8) =~ In{w)—w+1-—20
h(w,0) =~ —In{w)—1-16
dw) =~ w-—2In(w)—2

2.3 Generalizations
The single-neuron theory described here can be straightforwardly translated to any
model neuron related to Equation 2 by a linear affine change of variables. For
example, the model neuron y = (—y + o(wy + 6 + I))/7 can be transformed into
Equation 2 using the substitution y — (y — I)/w.

In addition, following the same basic derivation used earlier for o(x), it can be
shown that the bifurcation set of y = —y + wa)(y + 8) + I for an arbitrary smooth
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““““

activation function ¥)(x) will be given by the expression

o (2 ()

where ¥'~!(x) will, in general, be a relation rather than a function, with restrictions
on wand multiple branches. In the typical case where ¥(x) isabounded sigmoidal (S-
shaped) function, w must be greater than or equal to the reciprocal of the maximum
slope of 7(x), and %'~!(x) will have two branches. For example, when ¥(x) =
tan"!(x), w > Tand ¢/ (x) = +/(1 — x)/x.

e

Two-Neuron Circuits

KT

We now turn our attention to the dynamics of two-neuron circuits:

l

1
filynye) = T_1(—Y1 +wio(yr + 01) + wao(yz +62) + )

12

1
Lly,y) = 7_—2(—}’2 +wipo(y + 01) + wno(y, + 6:) + L) (8)

72

As we did for the single-neuron theory, we will attempt to characterize the range
of dynamical behavior that is possible in two-neuron circuits and to understand
how that behavior changes as parameters are varied. First, however, a way to relate

the dynamics of two-neuron circuits to the single-neuron theory described in the
previous section will be presented.

3.1 Synaptic input space diagrams

The analysis of a planar dynamical system is typically performed by studying the
intersections of the nullclines (the curves along which either y1 = 0 or y, = 0) in
the state space (y1, y2). By setting 1 = 0 and y; = 0 in Equation 8 and solving for
y2 and yy, respectively, we can derive the following expressions for the nullclines:

y1 — w10 (y1 + 61) —11> o
-0

w1

The 7, nullcline: y, = o' (

' - 0,) — I
The j, nullcline: y; = o1 (}’2 wno(y: + 62) 2> — 8,
. w12

: -1 = _x
where 67 1(x) =In <1_x).

However, these nullcline expressions in state space suffer from some important
disadvantages for our purposes here. Because o~ !(x) is defined only for 0 < x < 1,

the preceding expression for the y; nullcline, for example, is defined only when
0< yl—W110'()/1+01)—I1 < wn (ifWQ1 > 0)01’“/21 <" —W11U(}'1+01)—11 <0
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(f wp; < 0). When wy; > 4, these inequalities may be satisfied by as many as three
disjoint ranges of y; values (Fig. 3C), complicating the phase plane analysis. It is
also not obvious how these multiple branches are related to the single-neuron theory
described earlier (Fig. 3A, B).

For these reasons, it will be more convenient to study the dynamics of Equation 8
in the synaptic input space (Ji, J») of the neurons, defined as J; = wy0(y2 +6;) and
J» = wipo(y1 + 61). That is, the synaptic input to a neuron in a two-neuron circuit
is just the input that it receives from the other neuron. Assuming that both wy; and
w1 are nonzero, Equation 8 can be reformulated in synaptic input space as:

2
1 (J1 - J_1> <@J1 —In <—J—1—> +L+L+ 92)
T2 Wat w2 wn — i

2
b o= L (Jz—Ji> (EUEJz—ln <—‘JL> +h+ 14 +91>
1 w12 w12 wiz — J2

By setting these expressions equal to 0 and solving for J, and J;, respectively, we

Ji

obtain the following expressions for the nullclines in synaptic input space:

The J;(§2) nullcline: b = In <171> - %jl —L—0

wn — Ji w1
- - _ NE w1

The J>(1) nullcline: Ji = h|{———|—-—h—-L—-6;
w2 — |2 w2

How are these expressions related to the steady-state I/y relations of the individual
neurons? Because, according to the single-neuron theory, the state of neuron 1 in
steady-state is given by ¥, (Ji + I, w11, 81 ), its steady-state synaptic input to neuron 2
isjust wi2o (7, (Ji + I, wir, 61) + 61 ). Similar considerations apply to the steady-state
synaptic input from neuron 2 to neuron 1. Using the linear nature of the effects of
0 o simplify these expressions, the nullclines in synaptic input space can thus also be
expressed as

Thej1 ()Iz) nullcline: j1 (]2; Wi, 02, 12, W21) = WQ10'(72(]2 + Iz + 02, WZZ))
Thejz(jq) nullcline: jz(_h Wi, 01, I] 5 wlz) = W120'(71 (]1 + 11 + 01 ) w“))

Thus, in synaptic input space, the nullclines (Fig. 3D) are just shifted, squashed,
and scaled versions of the steady-state I/y relations of each neuron (Fig. 3A,B), of
whose properties we have a very good qualitative and quantitative understanding
from the single-neuron theory. For example, we know the following about the j

nullcline J, (Ji):

e wiy controls the width and location of the fold (or “kink” if wy; < 4 ) of
J,(1) as described by Equation 6.
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Figure 3
Synaptic input space diagrams. The steady-state I/y relations for neurons with (A) w = 6, § = —3.4
and (B) w = 3, § = —2. (C) The state space nullclines of a circuit formed by connecting the neurons in

A (neuron 1) and B (neuron 2) with wi2 = wz1 = 1. Note that the nullcline of neuron 1 has two
distinct branches in state space. (D) The synaptic input space nullclines of the same circuit shown in C.
The gray box delimits the range of possible synaptic inputs that can occur in this circuit. Note that both
nullclines are continuous curves in synaptic input space.
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e 0, and I shift the location of the fold of J,(J;) horizontally by —6; and
—I, respectively.
e wj, controls the vertical scale and orientation of jz (h)-

Similar considerations apply to J,(J»). Of course, the intersections of J,(Ji)
and J,(J,) give the equilibrium points of Equation 8. If desired, the results of
this analysis can be mapped back into state space by 3, = o~! (jz / w12) — 6 and

=0~ (]1/“’21)

3.2 Phase portraits

What sorts of dynamical behavior are possible in a two-neuron circuit? It is relatively
easy to see that, under the transformations just described, the nullclines of a two-
neuron circuit can generically intersect only an odd number of times totaling between
one and nine inclusive. While two, four, six, or eight intersections are possible, they
are not structurally stable because they can be destroyed by infinitesimal perturbations
to the parameters. Thus, Equation 8 can generically exhibit only phase portraits with
one, three, five, seven, or nine equilibria (Ermentrout, 1995). The purpose of this
section is to characterize these generic phase portraits.

To simplify this task, we can distinguish between the “global” or overall qualitative
form of a phase portrait and the local behavior around each of the stable and unstable
equilibrium points (i.e., whether they are nodes or spirals). Taking into account the
various symmetries of the system, I have found only eleven qualitatively distinct phase
portraits in a two-neuron CTRINN. These are listed in Table 1 and have been labeled
1, 1k, 3a, 3b, 3l, 5a, 5b, 5¢, 5k, 7, and 9. The first number in these names simply
reflects the number of equilibrium points in the corresponding phase portrait. In the
case of three and five equilibrium points, an additional letter is used to distinguish
between distinct phase portraits having the same number of equilibrium points. The
suffix Ic signals the presence of a limit cycle.

Phase portraits 3lc and 5lc are particularly interesting. For example, in 5l a stable
limit cycle coexists with two stable equilibrium points, making it possible to switch
this system between rhythmical behavior and two different quiescent states with
appropriate input pulses. It is not known whether limit cycles can also occur in
conjunction with more than two stable equilibrium points, or whether more than
one limit cycle can occur simultaneously, though I have never found any examples
of such behavior.

In contrast to the small number of qualitatively distinct phase portraits, there are
many phase portraits with different local behavior. These local variations are denoted
by appending a number to the global name. For example, 3a.3 has the same global
layout as 3a.1, but the two stable nodes in 3a.1 are stable spirals in 34.3. Table 1
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Table 1 Names and configurations of the two-neuron phase portraits -

Global  Local Stable Stable Unstable  Unstable  Saddle Limit

name name  nodes  spirals nodes spirals nodes cycles
1 1.1 1
1.2 1
1lc 1le.1 1 1
1lc.2 1 1
3a 3a.1 2 s 1
3a.2 1 1 N 1
323 2 K 1
3b 3b.1 1 1 1
3b.2 1 1 1
3lc 3lc 1 1 1 1
5a 5a.1 3 2
5a.2 2 1 2
5b 5b.1 2 1 2
5b.2 2 1 2
5b.3 2 1 2
5b.4 1 1 2
5¢ 5¢ 2 1 2
5lc 5lc 2 1 2 1
7 7.1 3 1 3
7.2 3 1 3
9 9.1 4 1 4
9.2 4 k 1 4
9.3 -2 2 1 4
9.4 2 2 1 4

does not show all possible local variations. Rather, only those phase portraits that
actually appear in the bifurcation maps described in the next section, as well as a
few additional phase portraits that illustrate the range of possibilities, are listed in the
table.

Examples of each of the eleven qualitatively distinct phase portraits, along with
their corresponding input space diagrams, are shown in Figure 4. Each intersection
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between the two nullclines in synaptic input space corresponds to an equilibrium
point in the associated phase portrait. Note how the stable and unstable manifolds
of the saddle points serve to separate the basins of attraction of the stable limit sets.
Of course, in general there are many different input space diagrams that give rise to
the same qualitative global behavior. However, it is clear that our understanding of
how the various parameters transform the input space diagrams gives us a great deal
of information. For example, in phase portrait 34, shifting the N-shaped nullcline
down and the S-shaped nullcline to the left by modifying the biases appropriately
will lead to phase portrait 1ic.

Reasoning about the geometry of synaptic input space diagrams can also lead to
quantitative conditions for the occurrence of various phase portraits. For example, it
1s obvious from the example of phase portrait 9 in Figure 4 that a necessary condition
for 9 equilibria is that the folds of both nullclines be sufficiently wide. However, even
setting d(wi1) > |wny| and d(w) > |wy2| (using Equation 7 for d(w)) is not sufficient
because the biases must also be set appropriately so as to compensate for the shift
in the location of the fold caused by the self-weights. Assuming that wyp, un; > 0,
sufficient conditions for 9 equilibria are that tb(wy1,01) < 0, b(uny,61) > wuny,
Ib(wy,0;) < 0, and rb(wyy,8;) > wyz. These conditions will be generalized to
networks of arbitrary size in section 4.2.

While synaptic input space diagrams allow us to understand the overall number
and location of equilibrium points, it is also important to know the local behavior
around each equilibrium point (i.e., do nearby trajectories approach or recede and in
what manner?). In general, the local behavior in the neighborhood of an equilibrium
point ¥ = (J,,7,) of Equation 8 is given by the eigenvalues of Df(y), the Jacobian
matrix of f evaluated at y (Hale & Kocak, 1991):

(')f — = 2] - — w al_+9 -1 w 0'/_+0
Df()) = ay‘l (Y17Y2) 8;12 (Y17Y2) = (Y;I ) 2 (-,-):2 2)

o /1— — Of (— — wio! (j1 46 Wy (3a+05)—

d‘J;Z,(Yl’Y2) ‘L(‘)YZZ(YUYZ) = (.,.y; 1) = (y;z 2)=1

The eigenvalues of this matrix (that is, the A that satisfy the characteristic equation
det(Df(y) — AL} = 0, where I is the identity matrix) can be written as:

w“Ul(?] +91) —1 T WZQO'/(yg + 92) -1

My =
! z 27'] 27'2
— — 2
(WHO',()M +91)—] _ wzza’(y2+02)—1>
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Figure 4a Examples of 11 generic, qualitatively distinct phase portraits that can occur in a two-neuron
circuit. For each example, the phase portrait is shown on the left and the corresponding synaptic input
space diagram is shown on the right. Stable equilibrium points are shown as solid disks, unstable
equilibrium points are shown as circles, and saddle points are shown as gray disks. Special invariant
trajectories (limit cycles and the stable and unstable manifolds of saddle points) are shown as thick lines.
In the case of phase portraits 1 and 1l only, sample trajectories are shown as thin lines. The gray boxes
in the synaptic input space diagrams delimit the ranges of possible synaptic mputs that can occur. All
examples have 1y = 7 = 1.
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Figure 4b Continued.
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Figure 4d Continued.

An equilibrium point ¥ of Equation 8 is stable if Re[A;], Re[Az] < 0, unstable if
Re[A], Re[A;] > 0, and a saddle if Re[A;] and Re[A;] have opposite signs (Hale
& Kogak, 1991). Furthermore, ¥ is a node if Im[\;] = Im[X;] = 0 and a spiral if
Im[A] # 0 and Im[);] # 0. From Equation 9, it can be seen that ¥ is a node if
the expression under the radical is positive and a spiral if this expression is negative.
Because 0'(x), 71,7 > 0, it is therefore obvious that spiral behavior can occur only
when wy> and ws; are of opposite sign.
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3.3 Bifurcations

Now that we understand the range of phase portraits that are possible in two-neuron
circuits, in this section we will study the layout of these phase portraits in parameter
space and the ways in which one phase portrait can change into another as network
parameters are varied. Because a two-neuron CTRNN has ten parameters, the
best that we can hope to do is examine selected slices through this ten-dimensional
parameter space and try to develop a general understanding of the effects of the
different parameters.

3.3.1 Connection weights Let us begin with the roles of the connection weights.
Recall that the self-weights affect the extent and location of the nullcline folds,
whereas the cross-weights merely scale the nullclines in input space.

To allow some analysis of the effects of these important parameters, we will study
networks in which the nullclines intersect at their exact centers. This can be achieved
by setting 87 = —(wy1+wy +1;)/2and 05 = —(wp+wia+h) /2, corresponding to
networks in which the sigmoidal activation function of each neuron is centered over
the range of net inputs that it receives. In this case, the central equilibrium point will
always occur at y* = (—67, —63). Because o' (7] + 67) = o'(y5 + 65) = 0'(0) =
1/4 (and assuming for now that 7y = 7 = 1), Equation 9 for the eigenvalues of §*
simplifies to:

2
;,,\;:%+@_1i\/<&_@) 4 2t (10)

8 8 8 16

Bifurcation maps showing the effects of varying wyy and wy; in center-crossing
networks with wypwy; = 1 and wiawy; = —1 are shown in Figures 5A and B,
respectively. The curves in these figures represent boundaries between regions with
qualitatively distinct phase portraits. Not surprisingly, the map for the wypwy; = 1
network is much simpler than that for the wy,un; = —1 network, because the many
local variations listed in Table 1 involve spirals that can only occur in the latter case.
Generally speaking, however, it is clear in both cases that increasing the self-weights
leads to phase portraits with larger numbers of equilibrium points in center-crossing
networks because nullclines with wide, deep folds can intersect more frequently than
can those with narrow, shallow folds or no folds at all.

The advantage of center-crossing networks is that we can fully analyze the stability
of the central equilibrium point y*. When wisun; > 0, ¥* must be a node because
the eigenvalues are always real. By setting expression (10) equal to 0, we find that the
critical surface across which y* changes stability is given by the following expression:

4uny + 4wy — wwy + wipwe = 16 . (11
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Figure 5

Self-weight bifurcation
maps of center-crossing
circuits with

(A) symmetric

(wiz = w21 =1)and

(B) antisymmetric

(w2 =—1,wp =1)
cross-connections. Thick
lines denote analytically
computed bifurcation
curves (see Section 3.3.1),
while thin lines denote
numerically computed
bifurcation curves. Solid
curves represent a single
zero eigenvalue (i.e., a
saddle-node bifurcation).
Gray lines represent purely
imaginary eigenvalues
(i.e., a Hopf bifurcation).
Dashed lines represent
critically real eigenvalues
(i.e., a change in local
behavior around an
equilibrium point). The
labels refer to phase
portraits listed in Table 1,
examples of which can be
found in Figure 4.
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As can be seen in Figure 5A for fixed coupling weights w2 = w»; = 1, this
expression defines a hyperbola in (w11, wz) space. When the self-weights are below
the lower branch of this hyperbola, ¥ is stable. Between the two branches, ¥* is a
saddle. Above the upper branch, ¥* is unstable. The remaining bifurcation boundary
shown in Figure 5A, which separates regions containing five and nine equilibrium
points, was computed numerically because it does not involve any change in y*.
Such saddle-node bifurcations, which occur whenever the edge of the fold of one
nullcline crosses the other nullcline, are a common feature of this system. A sequence
of synaptic input space diagrams illustrating the changes that occur along the diagonal
of this bifurcation map is shown in Figure 6.

When wpws; < 0, there are several cases to consider. By setting the portion of
Equation 10 under the radical to 0, we find that ¥* will switch type across the critical
surface defined by

(Wi — wp) = 4wizwa |

This condition gives rise to the two dashed diagonal lines in the bifurcation map
shown in Figure 5B. When the self-weights fall between these two lines, ¥* will be
a spiral. Outside, it will be a node.

When §* is a spiral, its critical stability surface can be found by setting the real
part of Equation 10 to 0:

Wiy +wp =38

This condition gives rise to the short gray line connecting the two dashed diagonals
in Figure 5B. As the self-weights cross from below this line to above it, ¥* undergoes
a Hopf bifurcation (Hale & Kogak, 1991), losing stability and giving birth to a limit
cycle.

On the other hand, when ¥* is a node (i.e., when wiwy; < 0 but (wyq — w22)2 >

4|wiawa1 |), the critical stability surface is once again given by Equation 11, derived
earlier, except in this case wipwy = —1. This expression defines the thick black
hyperbola branches shown in Figure 5B. The remaining bifurcation curves in this
map were computed numerically. Note that, as the product of the cross-weights
passes from -1 through 0 to 1, many of the bifurcation curves in Figure 5B merge

to produce the curves shown in Figure 5A.

3.3.2 Biases Another important set of parameters are those that shift the nullclines
in input space. Because the effects of the biases (61 and 6;) and the external inputs
(I; and L ) on the locations of the nuliclines in synaptic input space are identical,

we will study only the biases here. Bifurcation maps for the cases wpowy = 1
and wyawy = —1 are shown in Figures 7A and B, respectively. In Figure 7A, the
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A sequence of synaptic input diagrams taken from points along the diagonal of the self-weight
bifurcation map shown in Figure SA. These diagrams exhibit (A) one equilibrium point

(w11 = w22 = 2), (B) three equilibrium points (w11 = w2 = 4), (C) five equilibrium points
(w11 = wa2 = 5.5), and (D) nine equilibrium points (w1; = wyz = 6.5).

self-weights were chosen sufficiently large that nine equilibria were possible. In
Figure 7B, on the other hand, the self-weights were chosen sufficiently small that
limit cycles were possible (so that the folds of each nullcline “fit inside” one another).
Otherwise, regions with seven and nine equilibria would appear instead of limit
cycles. All bifurcation curves shown here were computed numerically. Once again,
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Figure 7

Bias bifurcation maps.

(A) Symmetric circuit
with w11 = way = 6.5
and w12 = uny = 1.

(B) Antisymmetric circuit
with w1 = w2 = 5.5,
wip = —land wy = 1.
Line style conventions are
the same as for Figure 5
except that all bifurcation
curves shown here were
numerically computed.
As described in the text,
narrow regions of
different local behavior
surround the central
diamond in (B). Although
these regions are labeled
with dotted lines for one
edge only, the other edges
should be identically
labeled.

the wyowp = 1 bifurcation map is simpler than the wyun; = —1 map. Generally
speaking, however, it 1s clear how the number of possible intersections increases and
decreases as the two nullclines slide past one another in input space.

Many interesting phenomena surround the central diamond in Figure 7B. For
example, there are narrow regions of different local behavior. The neighborhoods of
the gray bifurcation boundaries are especially noteworthy. Outside these boundaries,
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phase portrait 3a.2 appears. When this boundary is crossed, the stable spiral of 34.2
undergoes a Hopf bifurcation, giving rise to a limit cycle and an unstable spiral
(phase portrait 3k). The region of existence of 3l is smaller than the width of the
gray line in this figure and is therefore not shown. At the inner boundary of this
region, the limit cycle in 3ic swells until it touches the saddle point, undergoing a
homoclinic loop bifurcation (Hale & Kogak, 1991) (a global bifurcation in which
an unstable and stable manifold of a saddle point coincide without any change in
the local properties of any equilibrium points), leaving phase portrait 3b.1. Finally,
near the center of the map, the stable and saddle equilibrium points in 3b. 1 merge in
a saddle-node bifurcation on a loop (Hale & Kogak, 1991), leaving the stable limit
cycle and unstable spiral of phase portrait 1lc. 1.

3.3.3 Time constants The final parameters that need to be considered are the
time constants 73 and 72. 1 will not make any detailed study of the effects of these
parameters here. However, a few general observations can easily be made. First, it is
clear that only the ratio of these time constants matters because we can always elim-
inate one of the time constants by rescaling time appropriately. Second, because the
nullclines are independent of the time constants, varying the time constants cannot
change the number of equilibria. Finally, varying the ratio of the time constants
can affect the stability and type of equilibria. For example, changing this ratio can
cause transitions between phase portraits 1 and 1l (i.e., a Hopf bifurcation), as well
as transitions between local variations of a given phase portrait (e.g., 3b.1 and 3b.2).

3.3.4 Asymptotic forms of bifurcation curves Although the exact form of many
of the bifurcation curves described previously must be computed numerically, the
geometry of synaptic input space diagrams allows us to derive asymptotic expressions
for some of these curves. For example, consider the right-hand boundary between
regions of five and nine equilibria in both Figures S5A and 5B. In both of these
cases, this boundary is defined geometrically by the condition that the edges of
the fold of the y; nullcline are tangent to the lower and upper branches of the
y1 nullcline. As wyq increases, the location of these lower and upper branches in
synaptic input space approaches 0 and wy,. Thus, for a center-crossing network, the
asymptotic form of this bifurcation curve is defined simply by the condition that
the width of the fold in the ; nullcline be equal to the magnitude of wy,—that is,
d(w») = |wi2|. Numerically solving this equation for wyy with |wia] = 1 gives an
approximate asymptotic value for this boundary of wy, & 6.28755. Likewise, the
other numerically computed bifurcation curve shown in Figures 5A and 5B is defined
by the equation d(wyq) = |wy1|. Of course, the advantage of these equations is that
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we can compute the asymptotic location of these boundaries for arbitrary values of
the cross-weights. -
Using similar reasoning, the following asymptotic equations can be derived for
the eight numerically computed saddle-node bifurcation curves that extend beyond
the edges of Figures 7A and 7B: Ib(wyy,01) = 0, rb(wy1,6;) = 0, Ib(wy,60;) =
w12, rb(w11,01) = w12, lb(w22, 92) = 0, rb(W22, 02) = 0, lb(W22, 02) = o, and
th(una, 62) = wny. By substituting the particular weight values used in Figures 7A
and 7B and solving for the biases in these equations (which can be done algebraically
in this case as the biases enter only linearly), we can obtain exact asymptotic values
for these eight saddle-node bifurcation curves. :

Circuits of Arbitrary Size

Because three-neuron circuits already raise most of the difficulties of the general
case, let us now turn to a consideration of Equation 1 for arbitrary N. Before we
proceed, it is important to understand that general results are notoriously difficule
to achieve in nonlinear dynamical systems of dimension greater than two. Whereas
many of the local techniques of dynamical systems theory (e.g., the stability analysis of
equilibrium points through linearization) can be straightforwardly applied in higher-
dimensional systems, the range of phase portraits and bifurcations that can occur in
higher dimensions is bewildering. Consequently, this section presents only a brief
sampling of interesting results, and there is much room for further research. Where
appropriate, these results are illustrated with examples drawn from three-neuron

circuits.

4.1 Nullsurfaces

Assuming that the weight matrix is zero-diagonal nonsingular, we can always refor-
mulate Equation 1 in synaptic input space. Unfortunately, for N > 2 the correspond-
ing nullsurfaces in synaptic input space do not bear the straightforward relationship
to the individual neuron I/y relations that they did for N = 2, and thus the synaptic
input space diagrams we used there cannot be generalized to larger networks. In state
space, the y, nullsurface of an N-neuron circuit can be written as:

o wnoln +60) = S wio(y+ 6) - I

=0 -0,
Y w1

where this expression could have just as easily been solved for any of the other
state variables except y;. Analogous expressions can be derived for the N — 1 other
nullsurfaces. No detailed study of the properties of these surfaces is made here except
to note that, as for two-neuron circuits, these surfaces can exhibit distinct branches.
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Example y3 nullsurfaces for a three-neuron circuit. In all cases, w13 = wp3 = 1. (A) w33 = 4,

01 =6=03=-3. B)usy =6,0) =0, =03 =—4. (C)wy3 =6,0; = =3,6, =2,6; = —4.
(D) w33 = 8, 01 = 62 = 03 = —5. The j; and y> nullsurfaces are similar but orthogonally oriented.
The intersections of these three sets of nullsurfaces correspond to the equilibrium points of a

three-neuron circuit.

Several examples of the nullsurfaces for one neuron of a three-neuron circuit are

shown in Figure 8.
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4.2 Phase portraits :

Already in three-neuron circuits there are too many different phase portraits to enu-
merate explicitly, even if we restrict ourselves to qualitatively distinct ones and take
the various symmetries into account. Figure 9 shows some of the many interesting
phase portraits that can occur in three-neuron circuits, including a circuit with 27
equilibrium points (8 stable, 18 saddles, and 1 unstable [Fig. 9A]), a circuit with two
distinct periodic orbits (Fig. 9B), a circuit with a doubly periodic orbit (Fig. 9C),
and a circuit with chaotic dynamics (Fig. 9D). The latter three phase portraits were
obtained merely by varying a single time constant in the same circuit.

The largest Lyapunov exponent of the chaotic attractor is 0.010, and its Lyapunov
dimension is 2.021 (Parker & Chua, 1989). Roughly speaking, these numbers imply
that this circuit is mildly chaotic. To my knowledge, this is the smallest autonomous
CTRNN in which chaotic dynamics have been observed. It is also the smallest
possible, since a smooth dynamical system must be at least three-dimensional for
chaos to occur (Hale & Kogak, 1991). The chaotic circuit described by Das et al.
(1991) had four neurons, and the chaotic dynamics described by Sompolinsky and
Crisanti (1988) occurred only when the number of neurons was large.

The maximum number of equilibria that an N-neuron circuit can generically
exhibit is 3V, A sufficient (but not necessary) condition for 3" equilibria occurs
when the fold of each neuron in the circuit stretches beyond the range of synaptic
input that it receives from all the other neurons (i.e., for each neuron i, lb(w;, 6;)
must be less than the minimum synaptic input that it can receive and rb(wy, ;) must
be greater than the maximum synaptic input that it can receive). In this case, the
nullsurface of each neuron consists of three distinct (N — 1)-dimensional manifolds
(see Fig. 8D for the N = 3 case) that intersect a total of 3V times.

A particular family of N-neuron circuits with 3" equilibria can be designed as
follows. Suppose that the weight matrix takes the highly symmetric form w;; = w;
(with w, > 450 that a fold exists) and that wy; ;; = 1,6, = —(w,+ N—1)/2, [ = 0,
and 7; = 1. Given these constraints, the synaptic input received by each neuron is
in the range (0, N — 1) and each neuron’s fold is exactly centered over this range.
Thus, the sufficient condition mentioned earlier can be stated as d(w,) > N — 1.
When this condition is satisfied, the network will exhibit 3 equilibria. The central
equilibrium point will be unstable, 2V equilibria will be stable, and the remaining
3N — 2N — 1 equilibria will be saddle points (see Fig. 9A for the N = 3 case).

4.3 Bifurcations
The number and types of bifurcations that can occur in larger networks also defies

enumeration. Consequently, I will present no detailed bifurcation maps of the pa-
rameter space of larger circuits here. However, it is worth illustrating briefly how
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Figure 9

Example phase portraits of three-neuron circuits. The shading conventions for equilibrium points are
identical to those of Figure 4. Stable and unstable manifolds of saddle points are not shown here because
some of them are two-dimentional. Only stable nonequilibrium limit sets are shown. (A) A circuit with
27 equilibrium points. Here wy; = 10, wy; j#; = 1, 6; = —6, 7 = 1. (B) A circuit with three saddle
points and two stable limit cycles. Here w11 = 5.422, wy; = —0.24, wys = 0.535, w1 = —0.018,

wyp = 4.59, wy3 = —2.25, way = 2.75, w3y = 1.21, ws3 = 3.885, 6; = —4.108, 6, = —2.787,

03 = —1.114, 7y = 7 = 73 = 1. (C) A circuit with a doubly periodic limit cycle derived from (B) by
setting 72 = 1.92. (D) A circuit with chaotic dynamics derived from (B) by setting 75 = 2.5.
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the approach presented in section 3.3.1 to analyzing the central equilibrium point of
a two-neuron center-crossing network can be extended to larger circuits in certain
special cases.

A general center-crossing network is defined by the restriction that each neuron’s
activation function is exactly centered over the range of net input that it receives:

N
0* . ‘Ii + Zj=1 “{ji

i = ) ‘
The Jacobian matrix evaluated at an equilibrium point § of an N-neuron circuit

(12)

has the form:

wno' (1+60)—-t wni10” (In+8n)
T Tt
DA(y) =
wino’ (1461) L wana (G AOn) -1
TN ™™
For the central equilibrium point ¥* = (-6, -, —0%) of a center-crossing

network with 7; = 1, this Jacobian matrix becomes

i 1 ... WL
4 4

DA(Y") =

wiy oL
4 4

Even for a center-crossing network, it is only possible to analyze fully the stability
of ¥* in highly symmetric cases. We will consider the two simplest cases here.
First, suppose that wy; = w, and wy, jx; = w,. Then it can be shown that the N
eigenvalues of Df(y*) are:
. . WA (N—Dw —4 w—w —4 w, — w, — 4
R 2 , 2 ye e 2
Note that, because of the high degree of symmetry, only two of the eigenvalues

of Df(y*) are distinct. Because all the eigenvalues are real, y* is always a node.
When w, > 0, y* will be stable when w, < 4 — (N — 1)w,, a saddle with a
one-dimensional unstable manifold and an (N — 1)-dimensional stable manifold
when 4 — (N — 1w, < w, < w, + 4, and unstable when w, > w, + 4. On the
other hand, when w, < 0, " will be stable when w, < w, + 4, a saddle with an
(N —1) -dimensional unstable manifold and a one-dimensional stable manifold when
w, + 4 < w, < 4— (N — 1)w, and unstable when w;, > 4 — (N — 1)u,.

Now suppose that wy; = w; and wy, j#; = w, but wj; r; = —w,. Then it can be
shown that the eigenvalues of Df{(¥*) have the following form:

w,—4 w,—4 w, — 4
Nodd: Af,...,Ay, = — = + G-, — + Cnoai
4 4 4 2
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Neven: Al,...,Ay = M—;ﬁiCli,-'-,MT_z*:tC%i

where the coefficients Cj, are (not necessarily distinct) functions of w,. Because
Re[A}] = (w, — 4)/4, ¥* will be stable when w, < 4 and unstable when w, > 4.
In addition, because all of the complex conjugate pairs of eigenvalues will be purely
imaginary at w, = 4, §* will undergo a Hopf bifurcation there. Indeed, as multiple
eigenvalues are purely imaginary at w;, = 4 (and the single real eigenvalue is also zero
at this point when N is odd), this Hopf bifurcation is highly degenerate in larger
networks, raising the possibility of complex dynamics (e.g., invariant tori and chaos)
nearby in parameter space (Guckenheimer & Holmes, 1983).

5 Nonautonomous Circuits

Thus far, we have considered only the dynamics of autonomous circuits (i.e., circuits
whose inputs are fixed to constant values). However, we must also consider circuits
with time-varying inputs (i.e., those in which I; +— IL(¢) in Equation 1). Such
nonautonomous circuits are important for at least two reasons. First, any agent will
have sensors that provide time-varying signals from its environment. Second, when
trying to understand the operation of larger networks, it is sometimes useful to
decompose them into sets of smaller circuits that provide time-varying inputs to one
another. Unfortunately, there is little that can be said in general about the response
of nonlinear dynamical systems to arbitrary time-varying inputs. However, in this
section, [ will illustrate one simple strategy for achieving at least some qualitative
understanding of the dynamics of CTRNNs with time-varying inputs. I will also
present one example of the sort of new phenomena that can arise when time-varying
inputs are introduced.

5.1 Time-varying inputs
A simple strategy for understanding the behavior of nonautonomous CTRNN:Ss is to
think of the time-varying inputs to a circuit as parameters that take on fixed values
at any given point in time. Thus, the dynamics of a nonautonomous circuit can be
instantaneously decomposed into a sequence of autonomous dynamics. At any given
instant, the state of the nonautonomous circuit will be moving toward the attractor in
whose basin it finds itself along a trajectory of the corresponding autonomous circuit.
Of course, because the inputs are changing in time, the instantaneous autonomous
dynamics will also be changing, with limit sets and boundaries between distinct basins
of attraction deforming and moving around, possibly even undergoing bifurcations.
When the inputs change relatively slowly compared to the timescale of the au-
tonomous dynamics, then the system state will always be found near an attractor of
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these dynamics. In the special case where this attractor is an equilibrium point and
the inputs are changing very slowly, the relationship between the nonautonomous
systemn and the corresponding parameterized autonomous system can be given a pre-
cise analytical formulation using so-called singular perturbation or quasistatic meth-
ods (Hoppensteadt, 1993). However, even when the attractors are not equilibrium
points or the inputs change very quickly (causing the system state to lag behind the
deforming and moving attractors by a considerable amount), it is often still useful to
attempt to relate the behavior of a nonautonomous system to the changing structure
of the underlying autonomous dynamics. Thus, by studying how the autonomous
dynamics of a circuit vary as a function of its input parameters and then decom-
posing a trajectory of the nonautonomous circuit in these terms, we can sometimes
gain significant qualitative insight into the response of a nonautonomous circuit to a
given family of input signals.

As a very simple concrete example of this strategy, consider a single neuron
with w = 5.5 and § = —2.75. We know from our analysis in section 2 that the
steady-state I,y relation of the neuron will exhibit a fold of width d(5.5) ~ 0.555
centered over I = 0. Now suppose that we sinusoidally drive this neuron back and
forth across its fold. If I(¢) varies sufficiently slowly, then the state of the neuron
will always track the location of one of the two autonomous equilibrium points,
switching between the upper and lower attractors whenever the attractor it is currently
following disappears in a saddle-node bifurcation as I{t) crosses the edges of the fold
at I = Ib(5.5,—2.75) ~ —0.277 and I = (5.5, —2.75) = 0.227. This gives rise to
a classic hysteresis diagram (Fig. 10A). The instantaneous autonomous phase portraits
of the neuron at selected points along this hysteresis curve are shown in Figure 10B.

When I(f) varies more quickly, the state of the neuron always lags behind the
moving attractors, but we can still understand the resulting trajectory qualitatively
in terms of the changing autonomous dynamics (Fig. 10C, D). For example, in
Figure 10D, I(t) is decreasing so quickly after it reaches its peak that the neuron state
never has a chance to move very far toward the upper attractor before it crosses the
unstable equilibrium point and falls back toward the lower attractor.

Because nothing in this decomposition strategy depends in any essential way on
the periodicity of the input, we can also use it to understand the response of the
neuron to nonperiodic signals. For example, the relationship between the magnitude
and duration of input pulse necessary to switch the neuron between its upper and
lower attractors can be directly related to the location of the unstable equilibrium
point that separates the two stable equilibria. Examples of the use of this strategy to
understand the response of larger nonautonomous CTRNNs with more complicated
autonomous dynamics to more complex input signals can be found in Gallagher and
Beer (1993), Yamauchi and Beer (1994) and Beer (1995a,b).
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Figure 10
Hysteresis in a single nonautonomous neuron (w = 5.5,8 = —2.75) driven by an external input of the

form I(t) = Asin(wt). Here the amplitude A was set to 0.33 so that the extrema of the sine wave
extend just beyond the edges of the folds in the neuron’s I/y relation. (A) w = 0.033. The system’s
trajectory (thick line) is shown superimposed on the neuron’s steady-state I/y relation. (B) The
instantaneous autonomous dynamics of the neuron at the four numbered points shown in A, with a
short horizontal line marking the instantaneous state of the neuron at each point. (C) w = 0.067.
D) w = 0.071.
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Figure 11
Limit cycles can y
sometimes be understood \ /
using the same approach
as that illustrated in ~ /
Figure 10 for hysteresis. ‘IZ 0.5 ~
Here two copies of the /N
neuron examined in p ~
Figure 10 are reciprocally s \
interconnected in a P

center-crossing circuit,
with w11 = wpp = 5.5,
w2 =1, upp = —1, —
6, = —2.25, 0
6, = —3.25. The system
trajectory (thick line) is -1 -0.5 0
shown superimposed on
the I/y relations of the J]
individual neurons in
synaptic input space.

5.2 Decomposing larger circuits

This same general strategy can sometimes also be used to decompose the dynamics of
a larger autonomous circuit into smaller interacting subcircuits. As a simple example
of this type of application, we will briefly examine how a limit cycle arises from a
reciprocal interaction between the autonomous dynamics of two neurons. As usual
for two-neuron circuits, it will be most convenient to work in the synaptic input
space (Ji, o) (Fig. 11). Here the horizontal motion of the system is governed by
the N-shaped nullcline (the J, nullcline) and the vertical motion is governed by the
S-shaped nullcline (the J; nullcline).

Now notice how the two nullclines are arranged. When the state of the system
is below the lower branch of the S-shaped nullcline, the N-shaped nullcline pulls |
it to the right because this is the only stable branch of the I/y relation of neuron
1. As the state moves toward the right, it “falls off” the edge of the right fold of
the S-shaped nullcline (because the synaptic input from neuron 1 takes neuron 2
through a saddle-node bifurcation that destroys this equilibrium point) and begins
moving upward toward its upper stable branch. This upward movement eventually
causes the state to fall off the edge of the upper fold in the N-shaped nullcline and
move toward its left stable branch, which in turn causes the state to fall off the left
edge of the fold of the S-shaped nullcline and move toward its lower branch. Finally,
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this downward motion eventually causes the state to fall off the lower edge of the
fold in the N-shaped nullcline, after which the entire process repeats.

Thus, we can see how a reciprocal interaction between the autonomous dynam-
ics of the individual neurons (which is fully described by the single-neuron theory)
generates the observed limit cycle by a mechanism very similar to the hysteresis illus-
trated in the previous section. In this relatively simple case, this decomposition can
be given a more precise analytical formulation using relaxation oscillator techniques
(Arnol'd, 1994). However, if a qualitative understanding is sufficient, then the basic
idea sketched here can be applied more generally.

5.3 Complex dynamics in nonautonomous circuits

When time-varying inputs to CTRNNs are allowed, qualitatively new dynamical
phenomena can arise. For example, though it is well-known that smooth two-
dimensional autonomous dynamical systems cannot exhibit chaotic dynamics (Hale
& Kogak, 1991), this limitation no longer exists in the presence of time-varying input
signals. One scenario for chaotic dynamics involves periodically forcing a planar
dynamical system that possesses a homoclinic loop (Wiggins, 1990). To illustrate
this behavior in the context of CTRNNs, consider the example 3lc phase portrait
shown in Figure 4. Although this phase portrait does not exhibit a homoclinic orbit,
a small variation of it does. Periodically driving such a circuit back and forth across
this homoclinic loop using a sinusoidal external input of the proper amplitude and
frequency produces the chaotic dynamics shown in Figure 12. The largest Lyapunov
exponent of this chaotic attractor 1s 0.023, and its Lyapunov dimension is 1.157
(Parker & Chua, 1989).

6 Discussion

Dynamical neural networks are being used increasingly as simple model nervous
systems in autonomous agents research. As their use grows, a thorough understanding
of the dynamical capabilities of such networks will become essential. In this article,
I have illustrated how the mathematical tools of dynamical systems theory can be
used to gain significant insight into the operation of small continuous-time recurrent
neural networks. Using a combination of elementary analysis and numerical studies,
[ have given a fairly complete description of the possible dynamical behavior and
bifurcations of one- and two-neuron circuits, along with a few specific results for
larger networks. These results provide both qualitative insight and, in many cases,
quantitative formulas for predicting the dynamical behavior of particular circuits
and how that behavior changes as network parameters are varied. The synaptic input
diagrams described in section 3.1 are especially useful for understanding the dynamics
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Figure 12

Chaotic dynamics in a
sinusoidally driven
two-neuron circuit
possessing a homoclinic
loop. This circuit is very
close to the 3l example
shown in Figure 4 except
that here 8y = —3.23596.
Neuron 1 is driven with a
time-varying external
input of the form I (f) =
0.25sin(t/2.45) +
0.06205.

of two-neuron circuits. In addition, I have illustrated one simple method for gaining -
a qualitative understanding of CTRNNs with time-varying inputs and presented an
example of the complicated dynamics that can arise in such cases.

The analysis described in this article demonstrates that even small CTRINNs are
capable of complicated dynamical behavior. Indeed, it appears that an N-neuron
CTRNN can exhibit all the qualitatively different sorts of behavior that are possible
in smooth N-dimensional dynamical systems. Although this certainly makes their
analysis more difficult, this demonstration is important because, although Funahashi
and Nakamura (1993) proved that sufficiently large CTRNNs can approximate the
dynamics of arbitrary smooth dynamical systems for finite time, their result tells
us little about the capabilities of the relatively small CTRNNs that are currently
evolved in autonomous agent research. In addition, the fact that even small and
simple dynamical neural networks can exhibit dynamics of significant complexity
may have important neurobiological implications. ‘

Whatimplications do these results have for the researcher faced with understanding
a particular CTRNN (e.g., an evolved neural controller for an autonomous agent)?
If one wishes to understand the dynamics of particular single neurons or two-neuron
circuits, then the results presented in this article are obviously directly applicable. Of
course, it will be more typical that one is presented with the problem of understanding
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the dynamics of larger networks. In this case, the results presented here should be
viewed as illustrating how the mathematical tools of dynamical systems theory can
be applied to particular CTRNNE. In addition, one important question in tackling
the dynamics of larger systems is whether each individual neuron in the network has
a fold in its steady-state I/y relation and, if so, where that fold lies relative to the
range of synaptic inputs that neuron receives. This is exactly the kind of information
provided by the single-neuron theory presented in section 2.

The results presented here can also be viewed as providing a first step toward a
more systematic, comprehensive theory of the dynamics of CTRNNs. It is likely
that significant further progress can be made on small to moderate-sized CTR NNs.
In addition, if a larger network has a natural decomposition into subcircuits of one
or two neurons, then the one- and two-neuron theories combined with the strategy
presented in section 5 may provide some insight into the dynamics of the larger
circuit. Finally, progress can sometimes be made if a circuit is highly symmetric (see
also Collins & Stewart, 1994, for examples of the use of group theoretical techniques
to analyze the dynamics of symmetric circuits).

What are the implications of the results presented here for attempts to synthesize
CTRNNs with desired properties? Once again, if the desired dynamical behavior
can be generated by one- or two-neuron circuits, then the results presented here are
directly applicable. Furthermore, two-neuron circuits may serve as powerful building
blocks for the modular construction of larger networks with desired dynamics. Thus,
an evolutionary algorithm could evolve larger networks by evolving the coupling
between a set of canonical two-neuron circuits exhibiting each of the eleven distinct
phase portraits shown in Figure 4. As our understanding of three- and four-neuron
CTRNNs improves, this canonical set could be expanded. Given the dynamical
richness of coupled oscillators, another possibility would be to start with canonical
two-neuron circuits exhibiting oscillations of different frequencies and amplitudes
and evolving their coupling to achieve some overall dynamics of interest.

More generally, the results of the analysis presented here can be used to focus
an evolutionary search into regions of parameter space most likely to yield desired
behavior. From the structure of an individual neuron’s steady-state 1/y relation, it is
clear that unless a neuron has a fold that intersects the range of synaptic inputs that
it receives, its input-output behavior will be monotonic. Indeed, the overwhelm-
ingly most likely phase portrait of a randomly generated CTRNN is a single stable
equilibrium point. Even in two-neuron circuits, all the other phase portraits shown
in Figure 4 require the coordination of the self-weights, the cross-weights, and the
biases (note the way that most of the interesting behavior that a two-neuron circuit
can exhibit occurs in a neighborhood of the center of the bifurcation maps in Fig-
ures 5 and 7, which provides a graphical illustration of this point). In larger networks,

504 Adaptive Behavior Volume 3, Number 4

Downloaded from adb.sagepub:com-at EPFL Scientific information and libraries on March 13, 2016


http://adb.sagepub.com/

Continuous-Time Recurrent Neural Networks Randall D. Beer

this coordination only becomes more difficult to achieve and therefore less likely to
be found by a stochastic search technique. For this reason, it would be extremely
fruitful to focus the search into regions of parameter space where most, if not all, of
the qualitatively different dynamics that a network can possibly exhibit are relatively
nearby. Such regions are called organizing centers (Golubitsky & Schaefer, 1985).

One possibility would be to search in the neighborhood of center-crossing net-
works as specified by Equation 12. This can be accomplished in one of two ways:
(1) Seed an initial population with small perturbations of randomly generated center-
crossing networks and then allow the search to proceed normally (i.e., search the
parameter vector W|8|7). (2) “Anchor” the search on center-crossing networks by
searching not the biases themselves but rather perturbations from the center-crossing
values (i.e., search the parameter vector W|A@* |7, where 8* depends on W as
described by Equation 12). Preliminary experiments using the latter approach to
evolve oscillatory circuits suggest that significant improvement over an unbiased and
unconstrained search can be obtained, both in terms of the overall success of the
search and in terms of the number of generations required to achieve a given level of
performance. However, further experiments are required to determine the general
utility of this approach.

Another possibility would be to focus on networks with the following structure:
W*: wy; = 4, wy iz = 0, 0 6, = =2, 7*: 7, = 1. Such networks exhibit a
single equilibrium point ¥* = (2,...,2). Because this equilibrium point is highly
degenerate (the N eigenvalues of DE(¥") are all 0 and critically real), relatively
small changes in the weight and bias parameters will cause this phase portrait to
bifurcate into more complex dynamical behavior. Indeed, one would expect many
of the qualitatively different dynamics that a network can exhibit to occur in the
neighborhood of this point in parameter space. Once again, we can either seed an
initial population with random perturbations of these highly degenerate networks
and allow the search to proceed normally or search perturbations from the degenerate
values (i.e., search the parameter vector AW*|AQ™|Ar™).

To date, attempts to evolve dynamical neural controllers for autonomous agents
have been exclusively empirical in nature. It is common to place the entire burden
of finding circuits with useful dynamics on an evolutionary algorithm, with the re-
sult that these algorithms often fail on even simple tasks unless the fitness function,
parameter encoding, population size, mutation rate, and so on are carefully chosen,
and they do not scale well to more difficult tasks. It is also common to treat the
networks that do evolve as mysterious black boxes. However, this article has shown
how the mathematical tools of dynamical systems theory can be used to gain sig-
nificant insight into the dynamics of CTRNNS;. Although fairly exhaustive analysis
of the sort presented here for one- and two-neuron circuits is not generally possible
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for larger networks, these and other techniques can be applied to particular circuits
or highly symmetric classes of circuits. I have also suggested ways in which the sort
of analysis presented here can be used to focus evolutionary searches into fruitful
regions of parameter space and thereby improve the performance and yield of such
searches.
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