Engineering JADE Agents with the Gaia Methodology

Pavlos Moraitis ', Eleftheria Petraki’, and Nikolaos I. Spanoudakis2

'Dept. of Computer Science
University of Cyprus
P.O. Box 20537, CY-1678 Nicosia, Cyprus
moraitis@ucy.ac.cy

*Singular Software,
26" October 43, 54626, Thessaloniki, Greece
{epetraki,nspan}@si.gr

Abstract. Agent Oriented Software Englneermg (AOSE) is one of the fields of
the agent domain wijth a e reagon is that the pos-
sibility to easily spe 2 2 d is of a great im-
portance for the recognition of the add- value of the agent technology in many
application fields. In this paper we present an attempt towards this direction, by
proposing a kind of roadmap of how one can combine the Gaia methodology
for agent-oriented analysis and design and JADE, a FIPA compliant agent de-
velopment framework, for an easier analysis, design and implementation of
multi-agent systems. Our objective is realized through the presentation of the
analysis, design and implementation phases, of a limited version of a system we
currently develop in the context of the IST IMAGE project.

1 Introduction

During the last few years, there has been a growth of interest in the potential of agent
technology in the context of software engineering. This has led to the proposal of
several development environments to build agent systems (see for example Zeus [3],
AgentBuilder [12], AgentTool [6], RETSINA [13], etc), software frameworks to
develop agent applications in compliance with the FIPA specifications (see for exam-
ple FIPA-OS [8], JADE [2], etc). These development environments and software
frameworks demanded that system analysis and design methodologies, languages and
procedures would support them. As a consequence, many of these were proposed
along with a methodology (e.g. Zeus [4], AgentTool [14]) while in parallel have been
proposed some promising agent-oriented software development methodologies, as
Gaia [15], AUML [1], Tropos [9] and MASE [14]. Also, the Aspect Oriented Pro-
gramming [11] can be used as a methodology for design and implementation of agent
role models. However, despite the possibilities provided by these methodologies, we
believe that a further progress must be made, so that agent-based technologies realize
their full potential, concerning the full covering of the software life cycle and the
proposal of standards to support agent interoperability.

R. Kowalczyk et al. (Eds.): Agent Technology Workshops 2002, LNAI 2592, pp. 77-91, 2003.
© Springer-Verlag Berlin Heidelberg 2003

http://sharon.cselt.it/projects/jade/

78 P. Moraitis, E. Petraki, and N.I. Spanoudakis

In this paper we present an attempt to use Gaia in order to engineer a multi-agent
system (MAS) that is to be implemented with the JADE framework. The only preten-
sion we have with this paper is to share our experience to conceive and develop a
MAS, by combining Gaia and JADE, in the context of the IST IMAGE project, with
people who are interested in the development of real life agent-based systems. The
Gaia methodology can be applied in a high level design. There is no given way to go
from a Gaia model to a system design model. System implementation is still done
through object-oriented techniques. Thus, the aim of this paper is to describe a kind of
roadmap for implementing a Gaia model using the JADE framework. Towards this
end, we provide some additional modeling techniques and make some slight modifi-
cations to the Gaia original specification, without obviously altering its philosophy
and concepts.

This paper is organized in the following way. In Sects. 2 and 3 we briefly present
the Gaia methodology and JADE framework. In Sect. 4 we provide a sample Gaia
model. In Sect. 5 we provide a methodology for converting the Gaia model to a JADE
implementation. Moreover, we propose some models useful for the detailed design
phase. Finally, we discuss on AOSE.

2 Gaia Overview

The Gaia methodology is an attempt to define a complete and general methodology
that it is specifically tailored to the analysis and design of MASs. Gaia is a general
methodology that supports both the levels of the individual agent structure and the
agent society in the MAS development process. MASs, according to Gaia, are
viewed as being composed of a number of autonomous interactive agents that live
in an organized society in which each agent plays one or more specific roles. Gaia
defines the structure of a MAS in terms of a role model. The model identifies the
roles that agents have to play within the MAS and the interaction protocols between
the different roles.

The objective of the Gaia analysis process is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key attrib-
ute related to a role since they determine the functionality. Responsibilities are of two
types: liveness properties — the role has to add something good to the system, and
safety properties — the role must prevent and disallow that something bad happens to
the system. Liveness describes the tasks that an agent must fulfill given certain envi-
ronmental conditions and safety ensures that an acceptable state of affairs is main-
tained during the execution cycle. In order to realize responsibilities, a role has a set
of permissions. Permissions represent what the role is allowed to do and in particular,
which information resources it is allowed to access. The activities are tasks that an
agent performs without interacting with other agents. Finally, protocols are the spe-
cific patterns of interaction, e.g. a seller role can support different auction protocols.
Gaia has formal operators and templates for representing roles and their attributes and
also it has schemas that can be used for the representation of interactions between the
various roles in a system.

Engineering JADE Agents with the Gaia Methodology 79

The operators that can be used for liveness expressions-formulas along with their
interpretations are presented in Table 1. Note that in liveness formulas activities are
written underlined.

Table 1. Gaia operators for liveness formulas

Operator Interpretation

X.y x followed by y

xly X Or y occurs
x* x occurs 0 or more times
X+ . x occurs 1 or more times
x® x occurs infinitely often
[x] X is optional

xlly x and y interleaved

In the Gaia design process the first step is to map roles into agent types and to cre-
ate the right number of agent instances of each type. An agent type can be an aggre-
gation of one or more agent roles. The second step is to determine the services model
needed to fulfill a role in one or several agents. A service can be viewed as a function
of the agent and can be derived from the list of protocols, activities, responsibilities
and the liveness properties of a role. Finally, the last step is to create the acquaintance
model for the representation of communication between the different agents. The
acquaintance model does not define the actual messages that are exchanged between
the agents it is rather a simple graph that represents the communication pathways
between the different agent types.

3 JADE Overview

JADE is a software development framework fully implemented in JAVA language aiming
at the development of multi-agent systems and applications that comply with FIPA stan-
dards for intelligent agents. JADE provides standard agent technologies and offers to the
developer a number of features in order to simplify the development process:

¢ Distributed agent platform. The agent platform can be distributed on several hosts,
each one of them executes one Java Virtual Machine.

e FIPA-Compliant agent platform, which includes the Agent Management System
the Directory Facilitator and the Agent Communication Channel.

e Efficient transport of ACL messages between agents.

All agent communication is performed through message passing and the FIPA
ACL is the language that is used to represent the messages. Each agent is equipped

80 P. Moraitis, E. Petraki, and N.I. Spanoudakis

with an incoming message box and message polling can be blocking or non-
blocking with an optional timeout. Moreover, JADE provides methods for message
filtering. The developer can apply advanced filters on the various fields of the in-
coming message such as sender, performative or ontology.

FIPA specifies a set of standard interaction protocols such as FIPA-request,
FIPA-query, etc. that can be used as standard templates to build agent conversa-
tions. For every conversation among agents, JADE distinguishes the role of the
agent that starts the conversation (initiator) and the role of the agent that engages in
a conversation started by another agent (responder). According to the structure of
these protocols, the initiator sends a message and the responder can subsequently
reply by sending a not-understood or a refuse message indicating the inability to
achieve the rational effect of the communicative act, or an agree message indicating
the agreement to perform the communicative act. When the responder performs the
action he must send an inform message. A failure message indicates that the action
was not successful. JADE provides ready-made behaviour classes for both roles,
following most of the FIPA specified interaction protocols. Because the FIPA inter-
action protocols share the same structure, JADE provides the AchieveRElInitia-
tor/Responder classes, a single homogeneous implementation of interaction proto-
cols such as these mentioned above. Both classes provide methods for handling all
possible protocol states.

In JADE, agent tasks or agent intentions are implemented through the use of be-
haviours. Behaviours are logical execution threads that can be composed in various
ways to achieve complex execution patterns and can be initialized, suspended and
spawned at any given time. The agent core keeps a task list that contains the active
behaviours. JADE uses one thread per agent instead of one thread per behaviour to
limit the number of threads running in the agent platform. A scheduler, hidden to
the developer, carries out a round robin policy among all behaviours available in the
queue. The behaviour can release the execution control with the use of blocking
mechanisms, or it can permanently remove itself from the queue in run time. Each
behaviour performs its designated operation be executing the core method action().

Behaviour is the root class of the behaviour hierarchy that defines several core
methods and sets the basis for behaviour scheduling as it allows state transitions (start-
ing, blocking and restarting). The children of this base class are SimpleBehaviour and
CompositeBehaviour. The classes that descend from SimpleBehaviour represent atomic
simple tasks that can be executed a number of times specified by the developer. Classes
descending from CompositeBehaviour support the handling of multiple behaviours ac-
cording to a policy. The actual agent tasks that are executed through this behaviour are
not defined in the behaviour itself, but inside its children behaviours. The FSMBehaviour
class, which executes its children behaviours according to a Finite State Machine (FSM)
of behaviours, belongs in this branch of hierarchy. Each child represents the activity to
be performed within a state of the FSM, with the transitions between the states defined
by the developer. Because each state is itself a behaviour it is possible to embed state
machines. The FSMBehaviour class has the responsibility of maintaining the transitions
between states and selects the next state for execution. Some of the children of an
FSMBehaviour can be registered as final states. The FSMBehaviour terminates after the
completion of one of these children.

Engineering JADE Agents with the Gaia Methodology 81

4 A Gaia Model

In order to better understand our proposal on how GAIA and JADE can be combined
to conceive and implement a multi-agent system (MAS) we will present a limited
version of the system that is currently being implemented in the framework of the IST
IMAGE project. We will show how this system can be analyzed, designed and im-
plemented. For this system we have defined the following requirements:

e A user can request a route from one place to another. He can select among a variety
of routes that are produced by the Geographical Information System (GIS).

e The MAS maintains a user profile so that it can filter the routes produced by the
GIS and send to the user those that most suit him. The profiling will be based on
criteria regarding the preferred transport type (private car, public transport, bicycle,
on foot) and the preferred transport characteristics (shortest route, fastest route,
cheapest route, etc).

e The system keeps track on selected user routes aiming:

e To receive traffic events (closed roads) and check whether they affect the user’s
route (if that is the case then inform the user).
e To adapt the service to user habits and needs.

In the following sections this MAS will be analyzed, designed and implemented.

4.1 The Analysis Phase

The analysis phase has led to the identification of four roles: one role, called Event-
sHandler, that handles traffic events, one role called TravelGuide that wraps the GIS,
one role, called PersonalAssistant, that serves the user and, finally, a social type role,
called SocialType, that should be taken by all agents. A Gaia roles model for our sys-
tem is presented in Table 2.

Table 2. The Gaia roles model

Role: EventsHandler
Description: It acts like a monitor. Whenever a new traffic event is detected it
forwards it to all personal assistants.
Protocols and Activities: CheckForNewEvents, InformForNewEvents.
Permissions: read on-line traffic database, read acquaintances data structure.
Responsibilities:
Liveness:
EVENTSHANDLER = (PushEvents)®
PUSHEVENTS = CheckForNewEvents. InformForNewEvents
Safety: A successful connection with the on-line traffic database is es-
tablished.

82 P. Moraitis, E. Petraki, and N.I. Spanoudakis

Role: TravelGuide
Description: It wraps a Geographical Information System (GIS). It can query the
GIS for routes, from one point to another.
Protocols and Activities: RegisterDF, QueryGIS, RequestRoutes, Respon-
dRoutes.
Permissions: read GIS.
Responsibilities:
Liveness:
TRAVELGUIDE = RegisterDF. (FindRoutes) ®
FINDROUTES = RequestRoutes. QueryGIS. RespondRoutes
Safety: A successful connection with the GIS is established.

Role: PersonalAssistant
Description: It acts on behalf of a profiled user. Whenever the user wants to go
somewhere it gets the available routes and determines which routes best match
the user’s profile. These routes are presented to the user. Moreover, it can adapt
(i.e. using learning capabilities) to a user’s habits by learning from user selec-
tions. Finally, it receives information on traffic events, it checks whether such
events affect its user’s route and in such a case it informs the user.
Protocols and Activities: InitUserProfile, UserRequest, InferUserNeeds, Pre-
sentRoutes, LearnByUserSelection, CheckApplicability, PresentEvent, Re-
questRoutes, RespondRoutes, InformForNewEvents.
Permissions: create, read, update user profile data structure, read acquaintances
data structure.
Responsibilities:
Liveness:
PERSONALASSISTANT = InitUserProfile. ((ServeUser) ® Il (Receive-
NewEvents) ©)
RECEIVENEWEVENTS = InformForNewEvents. CheckApplicability.
[PresentEvent]
SERVEUSER = UserRequest. RequestRoutes. RespondRoutes. [In-
ferUserNeeds]. PresentRoutes. LearnByUserSelection
Safety: true

Role: Social Type
Description: It requests agents that perform specific services from the DF. It also
gets acquainted with specific agents.
Protocols and Activities: RegisterDF, QueryDF, SaveNewAcquaintance, Intro-
ductsNewAgents.
Permissions: create, read, update acquaintances data structure.
Responsibilities:
Liveness:
SOCIALTYPE = GetAcquainted. (MeetSomeone) ©
GETACQUAINTED = RegisterDF. QueryDF. [IntroductNewAgent]
MEETSOMEONE = IntroductNewAgent. SaveNewAcquaintance
Safety: true

Engineering JADE Agents with the Gaia Methodology 83

Here it must be noted that another role is involved in the MAS operation. It is the Di-
rectory Facilitator (DF) FIPA role that is supported by JADE. However, this role concerns
the operational level of the MAS and not the application itself, that’s why a Gaia repre-
sentation is not supplied for this role. Moreover, interactions with it are not presented as
protocols, as they are defined in Gaia methodology, but as activities. Indeed, the activities
RegisterDF (denoting the registration to the DF) and QueryDF (querying for agents of spe-
cific types or that have registered specific services activities) are DF services provided
directly by JADE framework, provided not as a result of interaction between agents,
but as method invocations.

The Gaia interaction model denotes which action returns from a request along with

the roles that can initiate a request and the corresponding responders. Table 3 holds
the necessary information for our model.

Table 3. Gaia interactions model

Protocol Introduct- InformFor- RequestRoutes
NewAgent NewEvents
Initia- Social Type EventsHandler PersonalAssistant
tor(s)
Re- Social Type PersonalAssistant TravelGuide
ceiver(s)
Respond- - - RespondRoutes
ing Action
Purpose/ Introduce an agent to | Inform an assistant that | The assistant agent
Parame- other agents. Possible | a new traffic event has | requests a set of routes
ters content is the services | occurred. from one place to an-
and name associated other. The response in-
with the initiator cludes different routes
agent. with different charac-
teristics (shortest, fast-
est, cheapest) and for
different transportation
(private car, public
transport, on foot).

4.2 The Design Phase

During this phase the Agent model is achieved, along with the services and acquain-
tance models.

84 P. Moraitis, E. Petraki, and N.I. Spanoudakis

SocialType

Personal Assistant *

Events Handler *

Travel Guide 1

Legend

PersonalAssistant

EventsHandler

TravelGuide

[]:AgentTypes

< :Roles

Fig. 1. Gaia agent model

* . Zero or more Agent Type instances

The Agent model creates agent types by aggregating roles. Each emerging agent type
can be represented as a role that combines all the aggregated roles attributes (activi-
ties, protocols, responsibilities and permissions). The agents model for our system
will include three agent types: the personal assistant agent type, who fulfills the Per-
sonalAssistant and SocialType roles, the events handler agent type, who fulfills the
EventsHandler and SocialType roles and the travel guide agent type, who fulfills the

TravelGuide role.

There will be one travel guide agent, as many personal assistants as the users of the
system and zero or more events handlers. The Agent model is presented graphically in

Fig. 1.

The services model for our system is presented in Table 4.

Table 4. Gaia services model

Service Obtain route Get notified on a relevant to the
user’s route traffic event

Inputs Origin, destination -

Outputs A set of routes The description of the event

Pre-condition

A personalized assistant agent is
instantiated and associated with the
user

A personalized assistant agent is
instantiated and associated with
the user. The user has selected a
route to somewhere. A traffic
event that is relevant to the
user’s route has happened

Post-condition

User selects a route

Engineering JADE Agents with the Gaia Methodology 85

Finally we define the acquaintances model. For this model we propose a slight
modification compared to the original definition presented in Gaia.

Table 5. Gaia acquaintances model

Personal Assis- Travel Guide Events Handler
tant
Personal Assis- LA 1
tant
Travel Guide I
Events Handler LA
Legend:
I: Interacts (read “I” occurrences in rows, e.g. the personal assistant agent type inter-
acts with travel guide and events handler agent types).
A: Is acquainted, has the agent type in his acquaintances data structure (read “A” occur-
rences in rows, e.g. the personal assistant agent type knows travel guide agent
types).

We believe that this modification takes better into account the idea that an agent
can interact with another agent (e.g. just responding to a request) without having nec-
essarily any knowledge (information) about him. Therefore an analyst needs not only
to specify which agent interacts with which, but which agent is acquainted with whom
(i.e. knows whom) also. So, the personal assistants are acquainted and interact with
travel guides and just interact with events handlers. Events handlers are acquainted and
interact with personal assistants, while travel guides are not aware of the other agents
however they interact with (service requests of) personal assistants. The above scheme
is illustrated in Table 5.

At this point the abstract design of the system is complete, since the limit of Gaia
has been reached. More effort must be done in order to obtain a good design though.
At the end of the design process the system must be ready for implementation.

S Developing JADE Agents from a Gaia Model

When moving from the Gaia model to an implementation using the JADE framework
we have to make some assumptions and definitions.

Let’s consider the liveness part of each role as its behaviour (usually having the
same name with the role) in correspondence with the JADE terminology. Thus a sim-
ple or a complex behaviour represents each role. This behaviour is considered as the
top-level behaviour of the role. Each behaviour may contain other behaviours, as in
the JADE behaviours model. Let the contained behaviours be called lower level be-
haviours. The SocialType role of our system, for instance, has the SocialType top be-
haviour. This behaviour has two lower level behaviours, GetAcquainted and Meet-
Someone.

86 P. Moraitis, E. Petraki, and N.I. Spanoudakis

The ® and Il operators on Gaia liveness formulas now have the following meaning.
The ® means that a lower level behaviour is added by the behavior that contains it in
the Gaia liveness formula and is only removed from the agent’s scheduler when the
behavior that added it, is removed itself. If such behaviours are more than one, they
are connected with the |l symbol which denotes that they execute “concurrently”.
Concurrency in JADE agent behaviours is simulated. As noted before, only one
thread executes per agent and behaviour actions are scheduled in a round robin policy.

5.1 Detailed Design

Many important design issues have yet to be covered when trying to implement a
Gaia model with the JADE framework. Some of them are: a) ACL Messages (ontolo-
gies, protocols, content), b) Data structures, c) Algorithms and software components.

The ACL messages should be defined with respect to the FIPA ACL Message
Structure Specification [7] and the JADE ACL Message class fields. The ACL Mes-
sages RequestRoutes and RespondRoutes are presented in Fig. 2. It is obvious that
FAILURE and REFUSE ACL messages should be defined for global use in cases that, an
action failed, is not supported or is denied.

ACL Message: RequestRoutes ACL Message: RespondRoutes

Sender: Personal Assistant Agent Sender: Travel Guide Agent

Receiver: Travel Guide Agent Receiver: Personal Assistant Agent

FIPA performative: REQUEST FIPA performative: INFORM

Protocol: RequestRoutes Protocol: RequestRoutes

Language: SL Language: SL

Ontology: ImageOntology Ontology: ImageOntology

Content: Ontology action: RequestRoutes Content: Ontology concept: Routes

Fig. 2. ACL messages definition

Finally, the designer of the MAS will easily implement agents whose internal
structures and methods are pre-defined. To that end, the data structures and the Al
tools that are to be used should be defined in this stage. For our system the following
structures and methods should be clarified at this point:

e The acquaintances structure: It will contain information about other agents. Some of
this information might include names, types (or services) and addresses (as will see
in the following in JADE address and name are quite the same). The SocialType role
maintains this structure (see the permissions field of the role definition in Table 2).

e The user profile structure: What information will be known about the user, how is it
organized. Such questions must be answered at this point. The PersonalAssistant role
maintains this structure (see the permissions field of the role definition in Table 2).

Engineering JADE Agents with the Gaia Methodology 87

o The route structure: What is a route, what attributes are associated with a route.
This structure is needed by both the TravelGuide and PersonalAssistant roles, the
former instantiates such objects by information that it gets from the GIS (QueryGIS
activity), while the latter filters the route structure objects according to the user
profile (InferUserNeeds activity).

o The traffic event structure: What is a traffic event, what attributes are associated
with it, how is it associated with a route. Both the EventsHandler and PersonalAssis-
tant roles use this structure. The former instantiates such objects by information
that it gets from external sources (CheckForNewEvents activity), while the latter
checks whether a traffic event structure object is in a user’s active route (CheckAp-
plicability activity).

e The learning method: What will be learned about the user, how, where is it going to
be stored, which machine learning algorithm will be used (different goals can indi-
cate different algorithms). A learning method will be used by the LearnByUserSe-
lection activity of the PersonalAssistant role.

e The components and technologies that will enable communication with external
systems. Such systems are the on-line traffic database and the GIS. If the GIS
services are available as web services then a suitable SOAP (Simple Object Access
Protocol) client must be developed along with an XML parser that will translate
the SOAP message content to an ontology concept or a JAVA object.

5.2 The JADE Implementation

At this point the MAS designer should have the full plan on how to implement the
system. In our case the framework is JADE and the purpose of this paragraph is pre-
cisely to explain how the Gaia model is translated to a JADE implementation.

The procedure is quite straightforward. All Gaia liveness formulas are translated to
JADE behaviours. Activities and protocols can be translated to JADE behaviours, to
action methods (which will be part of finite state machine - FSM like behaviours) or to
simple methods of behaviours. The JADE behaviours that can be useful for our model
are the SimpleBehaviour, FSMBehaviour, AcheiveREResponder and AchieveREInitiator.

The behaviours that start their execution when a message arrives, can receive this
message either at the beginning of the action method (simple behaviours) or by
spawning an additional behaviour whose purpose is the continuous polling of the
message box (complex behaviours). For behaviours that start by a message from the
Graphical User Interface (GUI), a GUI event receiver method should be implemented
on the agent that starts the corresponding behaviour. Finally, those behaviours that
start by querying a data source, or by a calculation, should be explicitly added by their
upper level behaviour. For example, the SocialType role adds both the GetAcquained
and the MeetSomeone behaviours. The difference is that GetAcquained will set itself as
finished after executing once, while the MeetSomeone will continue executing forever
—or until the agent is “killed”.

The safety properties of the Gaia roles model must be taken into account when de-
signing the JADE behaviours. Some behaviours of the role, in order to execute prop-
erly, require the safety conditions to be true. Towards that end, one at least behaviour
is responsible for monitoring each safety condition of a role. Whenever a safety con-

88 P. Moraitis, E. Petraki, and N.I. Spanoudakis

dition is found to be false, the functionality of the behaviours that depend on this
safety condition is suspended and the monitoring behaviour initializes a procedure
that will reestablish the validity of safety conditions. This procedure, for instance, can
be the addition to the agent scheduler of a specific behaviour that will address the task
of restoring the validity of safety conditions. In general, this procedure depends on the
nature of the implemented system and the safety conditions. When the safety condi-
tions are restored, the suspended functionalities are reactivated.

In our case, the safety requirement of the TravelGuide role is the establishment of
communication with the GIS. The FindRoutes behaviour is responsible for monitoring
the validity of this safety requirement. Whenever a connection fails to be established
the FindRoutes behaviour sends to the agent GUI an event that results in a connection
failure message, while responding to the personal assistant agent with a FAILURE
ACL message. The system administrator must act in order to restore the GIS commu-
nication.

All behaviours of the lowest level are implemented first:

® PushEvents: A SimpleBehaviour that queries a database and if it gets a new event
prepares an ACL message and sends it to all personal assistant agents.

e FindRoutes: It is a SimpleBehaviour that waits until it receives a specific ACL mes-
sage, queries the GIS and sends back to the original sender a responding ACL mes-
sage.

e ReceiveNewEvents: A SimpleBehaviour that waits until it receives a specific ACL
message verifies if it is of interest for the specific user and sends an appropriate
event to the GUL

e ServeUser: a complex behaviour more like an FSMBehaviour with three states. At
the first state it gets the user request (it is added to the agent scheduler as a conse-
quence of that request) and sends an ACL message to the travel guide agent. Then it
waits for its response. Alternatively, after getting the user request it could add an
AchieveREInitiator behaviour. When it gets the response (second state) it infers on
which routes should be forwarded to the user, forwards them and terminates its
execution. If the user selects a route through the GUI, the GUI event catcher
method of the agent starts this behaviour, but sets it immediately at the third state,
which employs the learning algorithm in order to gain knowledge from the user
action.

® GetAcquainted: This is a SimpleBehaviour that registers the agent to the DF, gets all
needed agents from the DF and finally sends appropriate IntroductNewAgent ACL
messages to all agents whom this agent wants to notify about his appearance. After
the execution of these tasks the behaviour removes itself.

e MeetSomeone: a SimpleBehaviour that waits until it receives a specific ACL message
then updates its acquaintance data structure with a new contact and the services that
the new contact provides.

A good architecture paradigm contains no functionality at the top-level behaviour,
instead, the agents tasks are embedded in lower level behaviors. Thus, the top-level
behaviours that represent the actions performed in the setup phase of the agent are:

e EventsHandlerAgent: initialize the Acquaintances data structure, add the PushEvents,
GetAcquainted and MeetSomeone behaviours.

Engineering JADE Agents with the Gaia Methodology 89

e TravelGuideAgent: register to the DF and add the FindRoutes behaviour.

® PersonalAssistantAgent: initialize the Acquaintances data structure, get the initial user
profile, add the GetAcquainted, MeetSomeone, ServeUser and ReceiveNewEvents be-
haviours.

Summarizing, the following steps should be followed in order to easily translate a
Gaia model to a JADE implementation:

—_—

. Define all the ACL messages by using the Gaia protocols and interactions models.

2. Design the needed data structures and software modules that are going to be used
by the agents by using the Gaia roles and agents models.

3. Decide on the implementation of the safety conditions of each role.

4. Define the JADE behaviours. Start by implementing those of the lowest levels,
using the various Behaviour class antecedents provided by JADE. The Gaia model
that is useful in this phase is the roles model. Behaviours that are activated on the
receipt of a specific message type must either add a receiver behaviour, or receive a
message (with the appropriate message filtering template) at the start of their ac-
tion. Gaia activities that execute one after another (sequence of actions that require
no interaction between agents) with no interleaving protocols can be aggregated in
one activity (behaviour method or action). However, for reusability, clarity and
programming tasks allocation reasons, we believe that a developer could opt to im-
plement them as separate methods (or actions in an FSM like behaviour).

5. Keep in mind that Gaia roles translated to JADE behaviours are reusable pieces of
code. In our system, the same code of the behaviours GetAcquainted and Meet-
Someone will be used both for the personal assistant and events handler agents.

6. At the setup method of the Agent class invoke all methods (Gaia activities) that are

executed once at the beginning of the top behaviour (e.g. RegisterDF). Initialize all

agent data structures. Add all behaviours of the lower level in the agent scheduler.

6 Discussion

In this paper we have presented the analysis, design and implementation phases of a
limited version of a system developed in the context of the IST IMAGE project. As
we already have said before, the only pretension we have with this paper is to share
our experience on how one can combine the Gaia methodology and the JADE devel-
opment environment in order to implement a real multi-agent system. Gaia methodol-
ogy is an easy to use agent-orient software development methodology that however
presently, covers only the phases of analysis and design. On the other hand JADE is a
FIPA specifications compliant agent development environment that gives several
facilities for an easy and fast implementation. Our aim was to reveal the mapping that
may exists between the basic concepts proposed by Gaia for agents specification and
agents interactions and those provided by JADE for agents implementation, and there-
fore to propose a kind of roadmap for agents developers. Presently we have intro-
duced a slight modification for the Gaia acquaintances model and our future work,
through our main work on IMAGE project, will be to examine if there could be pro-

90 P. Moraitis, E. Petraki, and N.I. Spanoudakis

posed some modifications in both, Gaia and JADE, that would help to make more
efficient their combination.

Other works in this volume address also the modeling of agent systems (see [5,
10]) and the transition from models to implementation [5]. More precisely in [5],
authors use UML-like diagrams in order to model multi-agent systems. They also
provide a tool that produces JADE or FIPA-OS implementation assistance. Their
major difference with Gaia is that they first model agents and then their roles-
behaviours. Besides this, they also define patterns in system, agent, behaviour and
action levels. They use patterns as components in multi-agent system design and im-
plementation, as Gaia uses services (agent interactions), agents and behaviours. Fi-
nally, in [10] the author extends UML in order to address the problem of multi-agent
system modeling.

Acknowledgements. We gratefully acknowledge the Information Society Technolo-
gies (IST) Programme and specifically the Research and Technological Development
(RTD) “Intelligent Mobility Agent for Complex Geographic Environments” (IMAGE,
IST-2000-30047) project for contributing in the funding of our work.

References
1. Agent UML: http://www.auml.org/
2. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer’s Guide. JADE 2.5

(2002) [http ://sharon.cselt.it/proj ects/jade/l

3. Collis, J. and Ndumu, D.: Zeus Technical Manual. Intelligent Systems Research Group, BT
Labs. British Telecommunications. (1999)

4. Collis, J. and Ndumu, D.: Zeus Methodology Documentation Part I: The Role Modelling
Guide. Intelligent Systems Research Group, BT labs. British Telecommunications (1999)

5. Cossentino, M., Burrafato, P., Lombardo, S., Sabatucci, L.: Introducing Pattern Reuse in
the Design of Multi-Agent Systems. In this volume

6. DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In: Castel-
franchi, C., Lesperance Y. (Eds.): Intelligent Agents VII. Agent Theories Architectures and
Languages, 7th International Workshop (ATAL 2000, Boston, MA, USA, July 7-9, 2000),.
Lecture Notes in Computer Science. Vol. 1986, Springer Verlag, Berlin (2001)

7. FIPA specification XCO00061E: FIPA ACL Message Structure Specification (2000)
http://www.fipa.org

8. FIPA-OS: A component-based toolkit enabling rapid development of FIPA compliant
agents : http ://fipa-os.sourceforge .net/l

9. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Methodol-
ogy: Processes, Models and Diagrams, in AAMASO02

10. Huget, M. P.: Agent UML Class Diagrams Revisited. In this volume

11. Kendall, E.A.: Role Model Designs and Implementations with Aspect Oriented Program-
ming. Proceedings of the 1999 Conference on Object- Oriented Programming Systems,
Languages, and Applications (OOPSLA'99)

12. Reticular Systems Inc: AgentBuilder An Integrated Toolkit for Constructing Intelligent
Software Agents. Revision 1.3. (1999) http: //www.agentbuilder.com|

13. Sycara, K., Paolucci, M., van Velsen, M. and Giampapa, J.: The RETSINA MAS Infrastruc-
ture. Accepted by the Journal of Autonomous Agents and Multi-agent Systems (JAAMS)

http://sharon.cselt.it/projects/jade/
http://fipa-os.sourceforge.net/
http://www.agentbuilder.com/

Engineering JADE Agents with the Gaia Methodology 91

14. Wood, M.F. and DeLoach, S.A.: An Overview of the Multiagent Systems Engineering
Methodology. AOSE-2000, The First International Workshop on Agent-Oriented Software
Engineering. Limerick, Ireland (2000)

15. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems Vol. 3.
No. 3 (2000) 285-312

	1	Introduction
	2	Gaia Overview
	3	JADE Overview
	4	A Gaia Model
	4.1	The Analysis Phase
	4.2	The Design Phase

	5	Developing JADE Agents from a Gaia Model
	5.1	Detailed Design
	5.2	The JADE Implementation

	6	Discussion
	References

