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Games in the real world

@ Agents do not know each others’ payoff matrices.
@ Agents can cooperate to do better than a Nash equilibrium.
@ Agents learn to select the best strategies, or...

@ Agents negotiate to select their strategies.
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Uncertainty

Auction game

@ auction for one single item. Agent A bids one of
{1.5,2.5,3.5}, agent B bids one of {1,2,3}.

@ the agent with the higher bid gets the item and pays its bid.
@ let the value of the item be value(A)=3, value(B)=2.5

= game:

B
1 2 3
15| (150)(A) (0,05)(B) (0-0.5)(B)
A 25| (050)(A) (0.50)(A) (0-05)(B)
3.5 | (-0.5,0)(A) (-0.5,0)(A) (-0.5,0)(A)

NE: A plays 2.5, B plays 2
...but A and B do not know each other’s values!
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Uncertainty

Games with uncertain utilities

Many games have uncertain utilities, for example trading or
auctions:
@ utility for each agent depends on its value for the item.
@ this is private information.
@ agents type: all information that only the agent knows.
@ probability distribution of other agents’ types is common

knowledge.

How can agents play an equilibrium when utilities are not known?
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Uncertainty

Uncertain utilities

3 different ways of computing strategies with uncertain utility:

@ Ex ante: assumes no knowledge of any agent's type.
(what is known before the game even starts)

@ Ex interim: assumes knowledge of own type.
(what is known during the game)

@ Ex post: assumes knowledge of all agents’ types.
(what will be known in hindsight after the game)
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Uncertainty

Bayes-Nash equilibrium

Bayes-Nash equilibrium: Nash equilibrium in game with ex ante

expected utilities.

Example: assume p(1) =0, p(2) = p(3) = 1/2 for both A & B.

E[value(A)] = E[value(B)] = p(1) -1+ p(2) - 2+ p(3) - 3 =2.5.
= expected game:

B
1 2 3
15| (1.0)(A) (0.05)(B) (0-05)(B)
A 25| (0,0)(A) (0,0)(A) (0,-0.5)(B)
35 | ((1L0)(A) (-10)(A)  (-1,0)(A)

(weakly) dominated actions: A=3.5, A=2.5, B=3
Bayes-Nash Equilibrium: A plays 1.5, B plays 2.
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Uncertainty

Ex-post Nash equilibrium ?

@ Ex-post Nash equilibrium: strategies that gives the highest
utilities no matter what the uncertain information will turn
out to be.

@ Does not necessarily exist: strategies may be different
depending on other agents’ types.

@ Auction game: equilibrium is for A to bid
min(value(A), bid(B) + 1)

@ But bid(B) changes with value(B), so A's best strategy can
not be the same for all value(B).
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Uncertainty

Ex-post Nash equilibrium

@ Consider auction rule: winner pays second highest price.
@ Claim: bidding true value is an ex-post Nash equilibrium.
@ Assume bid(B) = value(B). Then only two payoffs for A:

s bid(A) > value(B) have the same payoff value(A) — value(B),
s bid(A) < value(B) have payoff zero.
Now consider the cases:
o value(A) > value(B): payoff of bid(A) = value(A) is > 0:
best response.
o value(A) < value(B): payoff of bid(A) > value(B) is < 0;
bid(A) = value(A) is a best response.

@ Same reasoning for B.
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s dilemma

General-sum games TR
d Equilibrium

General-sum games

@ In general-sum games, agents should cooperate to obtain a
higher payoff.

@ Cooperation may not be a Nash equilibrium = players need to
cooperate to achieve the best result.

@ Joint plan and payoffs can be fixed by a contract that
punishes deviation.

@ Agents have to negotiate to agree on a joint strategy.
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Prisoner’s dilemma

@ 2 suspects are arrested after a bank robbery and questioned
(individually) by the police.
@ Actions: choose between
s cooperation (with the other suspect): deny all involvement in
the crime.
@ defection: blame the other suspect for the crime.
@ Knowledge:
A et B don't know the other’s choice!
@ Payoffs:
if A and B both cooperate, they are held by police for 1 year,
and then can go off to enjoy their loot (utility 9). If both
defect, they get 5 years in prison before (utility 5). If only one
cooperates, he gets 10 years in prison (utility 0) while the
other goes free (utility 10).
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Business version

@ 2 partners each put in 5 CHF in a joint effort
@ Actions: choose between

@ cooperation: carry out the business together and each gain 9
CHF if successful.
o defection: take the money and disappear.

@ If both defect, they just get their money back.

@ This is a very common business scenario.
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Strategies

C| (9.9 (0.10)
A D (100) (55)

Choice:
@ cooperate: possible payoff = 0 or 9.
@ defect: possible payoff = 5 or 10.
= dominant strategies: both defect
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Local and global optimality

@ Dominant strategies: both players defect and get 5

@ However, if both would agree to cooperate, the gain could be
9 for both of them.

@ Not an equilibrium: either player can increase its gain from 9
to 10 by changing strategy.

= requires a contract between players so that defection carries a
punishment > 1.
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Mediated Equilibrium

Assume we have a mediator:
@ agents can ask the mediator to play or play themselves.

@ the mediator plays a known strategy as a function of the
agents who asked it to play.

@ mediator can be a vehicle to enforce a contract.
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Example: Prisoner’s dilemma

C D
C| (9.9 (0.10)
A D (100) (55)

Dominant strategy equilibrium at (D,D)
Suppose a mediator plays:

@ (C,C) if both players ask the mediator to play.

@ D if only one of the players asks the mediator to play.
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Prisoner’s dilemma

General-sum games = TR
& Correlated Equilibrium

Prisoners’ Dilemma with Mediator

B

M C D
M| (99) (10,0) (5.5)

A C|(0,10) (9,9) (010)
D| (55) (10,0) (55)

New dominant strategy equilibrium: (M,M)
Computers offer many possibilities to introduce mediators!
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

Correlated Equilibrium

Consider the "battle of the sexes”:

B
o S

0] (21 (00

A S|(00) (12)

@ 2 pure strategy Nash equilibria: (0,0) and (S,S):
unfair!

@ 1 mixed strategy Nash equilibrium: ([2/3,1/3],[1/3,2/3]):
fair, but expected payoff is only 4/3.

Can we do better?
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

Correlated Equilibrium

Assume that there is a “trusted” coordinator that proposes to each
agent i a choice of strategy s;.

(the player does not have to follow the suggestion)

Original definition:

A correlated equilibrium is a set of strategies {s;} such
that for each agent i, choosing s; as suggested by the
coordinator is a best response to the strategies of the
other agents (5_;).
Example:
@ fair coin flip = (0, 0) or (S, 5)
@ Equilibrium for player to stay with suggested strategy.
= correlated equilibrium with expected payoffs (1.5,1.5).
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

More complex situation

B

o S
0] (21 (00
A S| (00) (12)

@ Let signal be (0,0), (S,S), (S,0) each with probability 1/3.
@ When A is assigned O, B will play O for sure. = best

@ If A is assigned S, B plays O or S with equal probability.

= better to play O and get 1/2 - 2 rather than 1/2 - 1!

= not a correlated equilibrium!
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General-sum games Prisoner’s dilemma
g Correlated Equilibrium

Choosing the mapping signal — strategy

Suppose both players observe a binary random variable r € {0,1}
(for example, a coin flip) and choose mapping to strategies:

B

alwaysO 0—-+01—-S 0—51— 0 alwaysS

always O | (2.1) (1,0.5) (1,0.5) (0,0)
0—0

1,0. 1.5,1. 5,1

1S (1,0.5) (1.5,1.5) (0,0) (0.5,1)

A (1) - g (1,0.5) (0,0) (1515)  (0.51)
always S (0,0) (0.5,1) (0.5,1) (1,2)

= two fair pure-strategy Nash equilibria with payoff (1.5,1.5)!
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General-sum games

Latent Coordinator

@ Suppose correlation signal is latent, i.e. players know its
distribution but cannot observe it.

= Bayesian game: signal value is unknown.

@ Agents choose action that is best response to opponents’
observed play.

= equilibrium can be found through learning: always play best
response to strategies observed from others.

@ Much easier and realistic to reach than Nash equilibria!
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

No-Regret

@ Let s denote a joint strategy vector, i.e. s € S = x;5;
@ A sequence of plays {s?,s!, ... ,sT} is said to be no-regret for
i iff:

T T

Z ui(s") > maxyes, Z ui(x,st;)

t=0 t=0
@ At least as good as any fixed strategy in hindsight!
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

Coarse Correlated Equilibrium

@ A coarse correlated equilibrium is a probability distribution p
over the strategy vectors such that Vi

Zp s)ui(s) > maxyes, Zp s)ui(x,s_;)

s

= for all agents /, induces a sequence of plays that are
no-regret.
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

Coarse Correlated Equilibria (Examples)

Correlation device samples with equal probability from
distributions:
@ (0,0), (S,5): both play O, S with probability 1/2 each.
Expected payoff: (1.5,1.5)
Better than best fixed strategy for A (O, average payoff = 1).
Better than best fixed strategy for B (S, average payoff = 1).
@ (0,0), (5,5), (0,S), (S,0): both play O,S with probability
1/2.
Expected payoff: (0.75,0.75)
A is better off by always playing O, B by always playing S.
= not a CCE!
@ (0,0), (5,5), (0,5):
A plays O with prob. 2/3, B with prob. 1/3.
Expected payoff: (2/3,2/3) = the mixed Nash equilibrium.
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

CCE O CE

B
1 2 3
1] 1,1) (1-1) (00)
A 2| (-1-1) (11) (0,0)
3| (00) (00) (-1.1-11)

Consider playing (1,1), (2,2), (3,3) each with probability 1/3.
Elpayoff]=1/3-1+1/3-1+1/3-(~1.1) =0.3

Best fixed actions (1 or 2): E[payoff] = 0 = Coarse CE.
But not CE: when device suggests to play 3, agent is better off
playing 1 or 2.
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's dilemma

General-sum games AR
g Correlated Equilibrium

Hierarchy
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Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

The Price of Anarchy

@ Explicit coordination: agents can coordinate on any strategy
profile s € S with the highest joint reward R(s).

@ No coordination (anarchy): limited to equilibria s’ € E.

@ Worst-case efficiency loss characterized by Price of Anarchy:

pop . MsesR(S)
minsceR(s)

@ Alternative for best-case: Price of Stability:

pop_ McsR(S)
maxsceR(s)

@ Works for any kind of equilibria.



Prisoner’s dilemma

General-sum games AR
g Correlated Equilibrium

Bounding PoA

@ can we bound PoA for a certain type of game?

@ define: game with optimal strategy profile s* is (A, )-smooth
iff for every strategy profile s:

> ri(sfis_;) = AR(s") — uR(s)
ieA
= PoA of a (A, p)-smooth game is at most \/(1 + p).

@ many examples of smooth games: routing, facility location,
simultaneous auctions, etc.
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. h solution protocol
Negotiation . F
otonic concession protocol

Improving beyond PoA

To implement a coordinated solution, we need:

@ get agents to agree with prescribed strategy even when it is
not a Nash equilibrium.
@ find a solution that is fair to all agents.

= negotiation to find an agreement.
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tion protocol

Negotiation -
cession protocol

Example: warehouse robots

Slotted blocks world (Rosenschein):

initial state goal (A1)
Y ¥
goal(A2) joint plan

Each agent gets utility 5 when its goal is achieved.
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- Nash solutic ocol
Negotiation ’ .
Monotonic concession protocol

Negotiation setting

One joint plan:

Agent Al lifts white block, A2 moves three blocks
around.

Cost: 2 operations (agent Al) vs. 6 operations (agent A2)

B
N Al A2
N | (0,0) (0-2) (0-6)
A Al | (-20) (-2-2) (3-1)
A2 | (-6,0) (-1,3) (-6,-6)

Equilibrium (conflict deal): (N,N)
Negotiation should reach (A1,A2) or (A2,Al) and side payment to
compensate.
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. n protocol
Negotiation F
oncession protocol

Example 2: Sharing wireless spectrum

@ 2 agents A and B share a sequence of timeslots on a wireless
channel to transmit sensor data.

@ if they both transmit at the same time, most of transmission
is lost (simultaneous defection).

= use a time-division scheme so that A gets « and B 1 — « of
the slots.

@ Strategies:

@ cooperate: agents transmit only in the assigned slots.
o defect: agents transmit all the time.

@ Defection is the dominant strategy (as in Prisoner’s dilemma).

@ Mediation requires agreement on «: negotiation.
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h solution protocol

Negotiation .
otonic concession protocol

Types of Negotiation

@ Strategic negotiation: agents make and accept/reject offers in
an unconstrained and self-interested manner.

@ Axiomatic negotiation: agents agree on a set of axioms that
the outcome should satisfy, then negotiate according to a
protocol that guarantees the axioms.
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Strategic Negotiation
P

- h solution protocol
Negotiation . F
otonic concession protocol

Strategic negotiation

]
]
]
]

Negotation = sequence of rounds.
Round: agent 1 makes an offer, agent 2 accepts or rejects.
Next round: agent 2 makes offer, agent 1 accepts or rejects.

Ends when an offer is accepted.
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ic Negotiation
rk

. on protocol
Negotiation F
concession protocol

Alternating offers

@ Consider scenario with 2 agents A and B.
@ Protocol proceeds in n rounds:

@ agent 1 makes a proposal P; for joint strategy S(P1) and
payoffs Ui(P1), U2(P1).
© agent 2 accepts or rejects the proposal.

where A and B take turns as agents 1 and 2.
@ If negotiation fails, agents get conflict payoffs U;(C), Ux(C)
= payoffs without coalition.
@ Example: cutting a cake
s Agent 1 proposes « € [0..1], Ur(a) = o, Ua(a) =1 — «
@ If no agreement, the cake is lost and both agents get 0.
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ic Negotiation

. protocol
Negotiation F
concession protocol

Alternating offers with 1 round

@ Assume selfish agents.
@ Agent 2 accepts the offer Py iff Ux(P1) > Ux(C).

@ Agent 1 should make an offer so that U;(P;) is maximized
and Ul(Pl) Z Ul(C), U2(P1) Z U2(C)

@ Best cake-cutting strategy for agent 1: propose 1- .
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ic Negotiation
rk

. n protocol
Negotiation F
oncession protocol

Alternating offers with several rounds

@ Let agent 1 be the one making the last offer.
@ = in the last round, agent 1 can force any ¢ it wants!
@ = agent 1 will not accept any offer of agent 2.

@ All rounds before the last one are irrelevant!
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ic Negotiation
rk

. on protocol
Negotiation F
concession protocol

Negotiation with time constraints

Suppose that the value of the cake decreases by factor d4 for agent
A and 0 for agent B at each round.
@ single round: agent 2 should accept anything.

@ 2 rounds: agent 1 proposes o < 1 — §, agent 2 accepts,
because even if it got the whole cake in the next round, it
would not get more utility than d> which is already gets.

@ many rounds: analyze as equilibrium.
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ic Negotiation

protocol

Negotiation
concession protocol

Infinite duration with discount factors

®

Agent A always offers x, agent B always offers y.

®

Agent B should accept a offer that gives it at least dgy:
(1—-x) > oy

@ Symmetrically for agent A:

(1—y)>dax

Equilibrium: maximize shares = inequalities hold with
equality:

: . 1
if 64 = dg = 0: X=y=15
Agreement in the first step: maximizes joint return.
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Strategic Negotiation
Fra rk

Negotiation

Problem with alternating offers

@ In all cases, the agent who makes the first offer (agent A)
gets a bigger share of the pie!

@ Who decides who gets to make the first offer? Choice of
protocol is not in equilibrium.
@ More realistic:

o both offers are made in parallel.
o if they are not compatible, negotiation fails.

@ What are the best strategies in such a game?
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Negotiation

Framework for negotiation

Agents have a set of goals G = {g1,..,8n}
Agent i assigns each goal g a certain worth w;(g)

Agent i assigns each goal g a standalone cost c(g)

Deals D; are joint plans that achieve goals G(D;) at a certain
cost ¢;(D;) to agent i

In the conflict deal D. the agents do not cooperate and it has
cost ¢i(Dec) = > peqp,) €7 (8)
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. olution protocol
Negotiation ’ . F
onotonic concession protocol

Rational Action

Agents maximize their expected utility:
ui(D) = > wilg)| —c(Dy)
g€G(D))

Agents do not have to cooperate: if negotiation does not succeed,
they act independently and pursue the conflict deal.
Under what conditions is there a unique negotiation outcome?
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Negotiation

Criteria for a negotiation outcome

Chosen deal D should satisfy the criteria:
@ feasible through a joint plan of action.

@ pareto-optimal (non-dominated): there does not exist another
deal Dy such that for all agents, uj(Dy) > ui(D) and for at
least one agent, uj(Dy) > ui(D)

@ individually rational: for all agents, u;(D) > u;(D.)
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Negotiation

Criteria for the solution (Nash)

3 more technical conditions for a unique solution:
Feasiblity.

Pareto-Optimality.

Rationality.

00060

Independence of sub-optimal alternatives:

If De T C S, and D is optimal within the results in S, then
D is optimal in T.

© Independence of linear transformations:

If gains and losses are linearly transformed (v = au + 3), the
new solution is the transformation of the old one.

@ Symmetry: If the game is symmetric for both players, then all
agents get the same expected payoff.
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olution protocol

Negotiation ’ . N
onotonic concession protocol

Nash Bargaining Solution

@ If there is a strategy D that dominates D,:
there is one single unique solution to the negotiation which
satisfies all 6 criteria.

@ It is characterized by the condition:
(ur(D), ..., up(D)) = suppN?_; (u,-(B) — u,-(DC)))

where the maximization is carried out over all feasible deals.

@ = provided that agents agree on the axioms, this is the
outcome of the negotiation!

Boi Faltings Real-world Games 45/58



olution protocol

Negotiation ’ . N
onotonic concession protocol

Implementing the Nash Bargaining Solution

@ A mediator collects all utilities and computes the Nash
bargaining solution. But often no mediator (e.g. wireless
spectrum)!

@ Alternative without mediator:

@ cach agent A; proposes a deal D;.
@ the plan that maximizes the product of agents’ utility gains is
chosen.
Each agent has an interest in proposing the best plan for
everyone, since otherwise a suboptimal plan for itself might be
chosen.

@ Problem: every agent needs to know all others’ utilities and
strategies.
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ution protocol

Negotiation
nic concession protocol

Reaching the Nash Solution by Alternating Offers

@ Centralized mediation is very complex and requires detailed
knowledge of all possible agent strategies.

@ Q: Can we reach the Nash bargaining solution using
agent-to-agent negotiation?

@ A: yes, if agents follow certain rules.
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Negotiation

Monotonic concession protocol (Zeuthen)

@ Reach agreement through alternating offers.

@ Offers from each agent must montonically improve, i.e.
agents progress by making concessions.

@ Negotiation either ends when an offer is accepted, or fails
when no agent has an interest to make further concessions.

@ The agent that has the most to loose by negotiation failure
has to make the next concession.
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Nash solution protocol

Negotiation - .
g Monotonic concession protocol

Risk indicators

@ Suppose A; rejects offer D; and proposes D; instead.

@ This is rational only if:
ui(Dj) — ui(Dc) < pi(ui(Di) — ui(De))

@ p; = probability that negotiation will succeed in spite of
rejecting D;.

@ Risk tolerance of A;:

riski = 1—p;f
L (D)) = ui(De) _ ui(D;) — ui(Dy)
ui(Dj) — ui(Dc)  ui(Dj) — ui(Dc)

(p; = limit at equality)




Negotiation

Monotonic concession protocol (Rosenschein)

Protocol:
@ agents A;, A; both propose deals D;, D;.

@ if one agrees to a proposal of the other, negotiation ends in
agreement.

@ otherwise, both calculate their risk tolerances risk; and risk;;
the agent with the smallest risk tolerance makes a concession.

@ if none of the agents can rationally make a sacrifice,
negotiation fails.
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Negotiation

Limit case

@ When ui(D;) = ui(D.), risk; is undefined

@ Agent A; cannot make any further concessions without
violating rationality! When should A; make a concession?

uj(Dj) — ui(Di)

uj(Dy) = uj(De)

@ If riskj > 1, conflict deal offers better utility to A;, so A;
should not make a concession and negotiation should end with
conflict.

risk; =

o If riskj < 1, D; is still more interesting to A; so it should make
a concession to approach it.

= set risk; = 1 to get the correct behavior
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- co
Negotiation
g Monotonic concession protocol

Properties of montonic concessions

Smallest risk makes concession: eliminate deal D; with largest p;:

ui(D;) — ui(Dc) S ui(Di) — ui(Dc)
ui(D;) — ui(Dc) uj(Dj) — uj(Dc)
(ui(Dj) — ui(De))(uj(Dj) — uj(De)) > (ui(Dr) — ui(De))(uj(Di) — uj(De))

= maximizes product of utility gains
= converges towards Nash solution!
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@ Agents goals: transmit packets of data.

@ Utility for agent A: 3 per packet of data, for agent B: 9 per
packet of data.

@ Cost of transmission (for each packet): 1

@ Conflict deal: both transmit their data all the time, success
rate = 10% = payoff = (-0.7,-0.1).

@ Goal of negotiation: decide v € [0..1] so that A uses « of the
slots and B uses 1 — a.
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on protocol

Negotiation 7
concession protocol

Nash Bargaining Solution

o Utilities: Ua(a) = a(3—-1),Ug(a) =(1 —«a)(9—-1)

@ Nash solution: maximize (2ac — (—0.7))(8(1 — o) — (—0.1))
= a=10.6/32 =0.33

@ Note: A gets a smaller share of the channel.

= incentive to lie and declare higher value
(A declares 9 = a = 0.5).

@ Makes sense only if claims can be verified.
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on protocol

Negotiation 7
concession protocol

Fairness of the Nash Bargaining Solution

@ Utility gains over the conflict deal:

Ua(0.33) — Ua(Dc) = 0.66 — (—0.7) = 1.36
Up(0.33) — Ug(D.) = 5.28 — (—0.1) = 5.38

B gains about 4 times as much as A, since
B's utility per slot (9 —1 = 8) is 4 times that of A (3—1 = 2).

@ Due to the scale-invariance property!
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Nash solution protocol

Negotiation - .
g Monotonic concession protocol

Proposals...

@ Initial proposals: Dpy:a =1, Dg:a=0.
= risks:
o ua(Dg) =0,ua(Da) =2 = riska = 2/2.7=0.74
® UB(DA) = 0, UB(DB) =8 = riskg = 8/8.1 =0.99
= A has smaller tolerance and makes a concession!
@ Next proposals: Dag:a =05 Dg:a=0
= risks:
® UA(DB) = 0, UA(DA) =2 = risky = 1/1.7 = 0.69
o ug(Da) =4,ug(Dg) =8 = riskg = 4/8.1 =0.49
= B has smaller tolerance and makes a concession!
@ Next proposals: Dy :a=0.5 Dg:a=0.25
= risks:
o ua(Dg) = 0.5, ua(Da) = 1 = riska = 0.5/1.7 = 0.29
o up(Da) = 4, up(Dg) = 6 = riskg = 2/6.1 = 0.32
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on protocol

Negotiation F
c concession protocol

Generalization to > 2 agents

@ Nash bargaining solution generalizes to n agents: maximize
product of all agents’ utility gains.

@ Zeuthen protocol hard to extend.

@ Use Nash formula to compute which proposal has lowest
product of utility gains and ask that agent to make a
concession.
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Negotiation .
g Monotonic concession protocol

Summary

@ Uncertainty:
ex-ante/ex-interim: Bayes-Nash equilibria.
ex-post: only exists in certain cases.

@ Correlated and coarse correlated equilibria.

@ The best coordinated strategies are often not equilibria =
require agreement by agents to act other than self-interested.

Alternating offers protocol.
@ Nash bargaining solution, monotonic concession protocol.
@ Incentives for lying.
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