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Machine learning for agents

Often, effects of actions are not known a priori:

e self-driving car: how steering/acceleration/braking affects
trajectory.

o financial markets: market reaction.
@ recommendation: does the user like this item?
@ ad placement: select one of possible ads to display.

= agent has to learn them from observation.
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Learning to act

Different from learning from data:

@ gathering data requires exploration which may be costly or
even dangerous (e.g. medical trials).

@ actions may have to be part of a sequence of steps to be
beneficial.

@ world is often not static and model has to adapt.

@ other agents may change their behavior and invalidate the
model.

Different form of learning: reinforcement learning.
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Motivating Application - Medical Trial

@ Treat patients effectively for a new
strain of a disease.

o Actions: drugy, drug, ..., drug,
@ Reward:

o 1/ 0 for success or failure,
o Patient’s condition improvement (%) v
e 1/ time to heal, etc.

o Goal:

o Identify the efficiency of each treatment (exploration).
o Give each patient the best possible treatment (exploitation)
@ Trials:

o expensive (find qualified patients, cost of drugs, etc.)
e dangerous (patients may die or be ill)

= minimize needs for trials.
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Learning without state
ration-Exploitation
Multi-armed bandits

Model for learning agents

@ Agents maintain a Q-table that estimates the expected
cumulative future reward of each action:

!/

Q(s,a) ~r(s,a)+~ Z Pr(s', s, a) max Q(s', a)

S
@ Q-table is learned from the agent observing effects of its
actions.
@ optimal action a* = argmax,Q(s, a).

@ Simpler model than MDP: state transitions do not need to be
explicitly modelled.

First consider model without state: learn Q(a) = r(a).

Boi Faltings Learning Agents 5/48



Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Updating the Q-table

e Bayesian update: given observation r(a;) (e.g. 1 / time to
heal):

[ ar(a)+ (1 —a)@(a) fora=a;
Qe+1(a) = { Q:(a) otherwise

e Moving average: o = 1/n(a, t) where n(a, t) = number of
times a was taken up to time t.
@ Larger « gives more importance to recent observations.

@ Every action gets played a large number of times
= estimates become precise
= Q-table converges to correct values.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Exploration-Exploitation Tradeoff

@ We don't want to do random moves infinitely often!

@ Need a strategy so that we can balance the need for
exploration with the desire for exploitation what was already
learned!

@ Goal is to minimize overall regret: difference between the
payoff with the optimal policy vs. payoff with the current
policy.

e exploration: improve the model to reduce future regret.
o exploitation: use the model to reduce current regret.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Objective: minimize regret

@ Agent can only do as good as the environment lets it.
@ Regret | = difference in reward between

e action a* taken by the best static policy.

e action taken by the agent's policy .

@ Goal is to minimize cumulative regret Lt:

T T
LT = Z Iy = max, Z re(a) — Z re(m)
t=1 t=1 t=1
:T-rt(a*)

@ Learning without state
= optimal action does not change over time
= compare with best single action a* taken at every step.
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Learning without state

ration-Exploitation
Multi-armed bandits

The Multi-Armed Bandit (MAB) Problem

A slot machine (bandit) with multiple
arms:

e Each arm (move) generates rewards
with an unknown probability
distribution.

@ Rewards are only observed when
playing the it" arm.

@ A player uses a policy to choose the
next arm based on previous plays.

Maximize the sum of the rewards over
many plays.
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lel
Exploration-Exploitation
Multi-armed bandits

Learning without state

Example

@ Reward for each action is independent and identically
distributed.

e E.g. route selection:
(]

_f ar(a)+ (1 —a)Q(a) fora=a;
Qera(a) = { Q:(a) otherwise

o Assume max travel time 20 min = r(a) =1 — 27 o =0.1

o
RL
. Time (min) Qtable
iﬁ.‘ R RL - - 12 14 11 o094 o088
o R2| 18 - - - = 091 091 091 091..
R3 - 9 - - 1 096 09 096
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Example (2)

e E.g. slot machines:

Quala) = { i) L IQE) et

o Assume max prize 20CHF = r(a) = p;ige,oz =0.1

s \A Prize (CHF) Qtable

=] - 10 - 11 15 1 095 095 091 0.89%
— -»

xR

== 9 - 20 - - 0.945 0.945 0.951 0.951 0.951
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Epsilon-greedy Strategy

@ Choose best action according to current Q-table with
probability 1 — €, choose a random action otherwise.

@ As t — 00, clearly every action is tried an infinite number of
times.

= Q-learning will converge to the true table.

= eventually, the average regret when selecting the optimal
action will approach 0.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Motivating Application - Medical Trial (2)

@ e-greedy exploration: =

e High probability: prescribe the most
successful drug.

o Periodically prescribe random ones.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Performance of e-greedy

After convergence:
o With probability 1 — €, agent takes optimal action.
@ However, takes a suboptimal action with probability e.
= cumulative regret increases linearly with time (O(cet)).

o Note: ¢ = max, yr(a) — r(a’): bigger differences between
actions cause bigger regret.

Average regret for an action only decreases as ¢.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Decreasing ¢

@ Growth of regret depends on €: decreasing ¢ with time can
reduce regret growth!

o Example: € ~ 1/t: cumulative regret L; = [, c/t = O(logt).

@ However, need to also ensure that Q-learning receives
sufficient samples to converge.

= rate should depend on an estimate of convergence.
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Learning without state
ration-Exploitation
Multi-armed bandits

Confidence Bounds

e Maintain confidence bounds on the CB(a1)
rewards r(a) of each action a based on
observations: Q{al)
Pr[LCB(a) < r(a) < UCB(a)] >1—¢

. o LCB(al)

@ Successive elimination: alternate aj, a» —_— = = =
until UCB7(a2) < LCB7(a1) = UCB(a2)
eliminate a, since optimal only with
small probability < 2. Q(a2)

@ Optimism under uncertainty: pick the
action with the best upper bound. LCB(a2)
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Learning without state
Exploration-Exploitation

Multi-armed bandits

Motivating Application - Medical Trial (3)

Successive Elimination:
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Learning without state
ation-Exploitation
Multi-armed bandits

Upper confidence bounds

@ Hoeffding bound (for random X scaled to [0..1], t samples):
PriXes1 > Xe + u] < e72%

@ Suppose we want Pr[Q* > Q; + u] <9, N; samples:

_ [—logd  [2logt
4@ =1\ 2@y~ \ NeGa)

where second equality holds when choosing § = t—*:

o (optimistic) UCBL1 algorithm: assume actual reward close to
upper bound; select best action according to Q:(a) + u(a).

= actions with small N; are played more often.
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Learning without state
ration-Exploitation
Multi-armed bandits

Bounding expected regret

Theorem: UCBL1 algorithm achieves expected cumulative

regret:
8logt

Za Aa

where gap A, is the difference maxyr(a') — r(a).

lim¢ oLy <

@ Logarithmic in t

@ Very similar rewards = learning takes longer to distinguish.
e No matter what the (fixed) distribution of rewards.
°

Agent only needs to observe reward for the action it has
actually taken.

Average regret of each action tends to zero: no-regret learning.
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Learning without state
ration-Exploitation
Multi-armed bandits

Complex rewards

Rewards can have complex structure, for example recommending
an event:

@ Choices = {F(ootball), B(asketball), O(pera), C(oncert)}

type:;?ports) type=C(ulture)
@ Actions of same type have similar rewards.
@ Can be modelled statistically with covariances...
@ ...but UCB model difficult to extend.
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Thompson sampling

@ Principle: play each action with the probability that it is
optimal.
@ Implementation:

@ sample rewards for each action according to distribution of
observed rewards.
@ then choose action that gives the highest reward.

@ Extends to cases where rewards are a function of an underlying
model: model can be fit to observations and sampled.

@ Regret bound is O(y/tlog t), worse than UCB.

@ However, performance in practice observed to be much better!
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Learning without state Model
Exploration-Exploitation
Multi-armed bandits

Example (Thompson sampling)

Observe rewards for each user and recommendation and fit
statistical model (of any complexity).

Sample one specific set of rewards from this model.

Choose action with maximum reward according to this sample.

Probabilistic choice means that each action has some
probability of being chosen.

@ Actions are reinforced in the statistical model when they
succeed.
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Adversarial learning

Adversarial bandits

@ What if rewards can change over time:
e randomly?
e set by an adversary to fool the
learning algorithm?
e.g. rewards: (0, 1), (1, 0), (0, 1), ...
@ Focus on adversarial setting as worst
case.

@ Insight: play needs to be random,
otherwise adversary can always make
the chosen action have the worst
payoff.
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Adversarial learning Full
Partial

Motivating Examples

o Medical trial:
e Same treatment to everyone = antibiotic resistant bacteria =
low reward.
e = maintain a mixture of antibiotics.
@ Financial investments:

e Want to minimize worst-case loss
e = diversify into different investments.
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Adversarial learning

Adversarial rewards

@ Adversary knows policy m(a) = Pr(a) and maximizes regret.
@ Baseline policy: agent always plays the same action a*
@ Regret of policy 7(a):
-
LT = maxgca Z re(a®) — Zﬂ(a)rt(a)
t=1 acA
@ Deterministic policy (7(a;) = 1):
adversary sets r¢(a:) = 0, re(a*) = 1 for some a* # a;.
e if Ja* with m(a*) =0, sets r(a*) =1,r(a # a*) = 0.
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Randomized strategy
Adversarial learning Fu i

Randomized strategy

@ Uniform policy (m(a;) = 1/k): expected reward 1/k no
matter what the reward function, adversary has no influence.

e To maximize regret, adversary picks an a* and sets r(a*) = 1.

@ All choices of a* give the same regret (k — 1)/k: no good
strategy.

@ However, regret is large: can we find better randomized
strategies?
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Randomized strategy
Adversarial learning y

Adversarial strategies

@ Counterfactual regret of action a when agent played m:
l(a)t = r(a)t — r(’ﬂ't)t

(= regret for not having taken action 7; instead of a)
@ Cumulative regret of action a:

;
Lr(a) = I(a):
t=1

@ Make all actions have the same cumulative regret =
adversary cannot pick a good a*.
@ Insight: whenever agent plays a, cumulative regret of a is
unchanged, and decreases relative to the rest.
= Regret matching: play a with the largest positive cumulative
regret to reduce its relative cumulative regret.
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Adversarial learning

Regret matching

@ Assumption: can observe rewards that would be obtained for
all actions (even if the action was not taken).

@ Regret matching: play action a with probability proportional
to its cumulative regret.

@ Adversary can choose rewards to hurt policy 7 (before
learning); policy converges to the best response.

@ But actions are deterministic and predictable: adversary could
exploit the exploration.
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Adversarial learning
Partial observability

Multiplicative weight update

e Policy = probability distribution P(a): action a is taken with
probability P.

Cw(a)
PE) = uid

e Initialize weights as w(a) = 1.
e Update weight of each action according to its reward r(a):

w(a)i+1 = w(a):(1 + ere(a)/B)
then adjust probabilities through normalization
(B = upper bound on possible rewards).
@ Bound on cumulative regret (assuming B=1):

.
log |A
Lr =) Epeayre(a) = Ep-(eari(a) < J’ +eT

t=1
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Adversarial learning

Regret bounds

@ Choose ¢ = 1/v/T = regret = O(log |A|vV/T)

@ Weaker bound than for UCB (O(log T)), but can handle
adversarial rewards.

@ Note: regret is against a single best policy played throughout
all T steps (not varied by adversary).
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Adversarial learning
Partial observability

Exponential weight update (exp-3)

@ Learning from only the rewards of the action actually taken =
distribution of samples is unbalanced.

@ Instead of multiplicative update, multiply weight w(a) by an

exponential:
w(a)ri1 = w(a)pe(2)/p(a)

= changes are stronger when action is not very likely, to even
out convergence.

@ best cumulative regret bound is O(1/ T|A|log |A|) (when
setting € oc 1/v/T).
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Rar
Adversarial learning Full ob
Partial

Example

@ Autonomous vehicles trying to acquire a charging station, or
parking spot (two available resources: si, ;).

@ Repeated interactions until successful access.

@ Binary reward 1 / 0 (success / failure).

o UCBI1 fails:
o Initially UCB(s;) = UCB(s,).

e Assume both initially select s g g2 B g
(collision) = UCB(sy) < UCB(sy) 2 /)\ a=
for both agents.

e Since UCB(s1) < UCB(s,), both

=&
select s, (collision). PN
o Next, both select s; (collision). ~ Q" 2N
o ...

@ EXP3 randomizes!
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Q-learning

h . Contextual bandits
Learning with state

Learning with state

@ Models so far learn to optimize instantaneous rewards.
e What if:

e rewards also depend on state, and
e actions also cause unknown state transitions?
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h . al bandits
Learning with state

Examples

@ Video Games
e Position of pac-man, ghosts,
dots
o Active power pellet?
o Time, #lives
@ Robotics
e Position
o Goal
o Teammates
o Obstacles
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Q-learning

h . Contextual bandits
Learning with state

Q-learning

@ Learn table Q(s,a) = sum of instantenous reward plus
discounted value of successor state.

@ start with arbitrary initial values.

@ Observations:
(s,a,rs’)

action a in state s gives reward r and leads to state s’.

@ = improve current value of Q(s, a) using Q-learning rule:
Q(s,3) « (1 - a)Q(s, 3) + a(r + ymaxy Q(s', )

a = learning factor € [0..1), must decrease over time

@ Q-learning is guaranteed to converge to the optimum, as long
as sample is representative.
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Q-learning

h . Contextual bandits
Learning with state

Q = optimal policy

Optimal policy: take action that maximizes Q:

m(s)=""a " Q(s,a)

However, as before there is a tradeoff between exploration and
reward.
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Q-learning

h . Contextual bandits
Learning with state

Convergence of Q-learning

Let

@ Q*(s,a) be the true maximum reward reachable from state s by
taking action a.

@ Q:(s,a) the estimate at time t.
0 A; = maxs o Q:(s,a) — Q*(s, a)|.
@ s’ = state following s = A;1 = (1 — @)A; + ade, where:
8¢ = [{R+ymaxy Qi(s’,a")} — {R + vymaxyy Q*(s',a")} |
= v|maxy Qi(s’,a") — maxyy Q* (s, a")|
ymaxz|Q:(s’,a") — Q*(s’, ")
ymaxs: | Qe(s”, ") — Q*(s”,a")]

QZAY:

INIA

so that:
A1 < (1-a+ay)A,
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Q-learning

h . Contextual bandits
Learning with state

Convergence of Q-learning (2)

eay<l=(1l-a+ay)<l= A1 <A
@ Thus, in the limit, the difference between Q:(s, a) and
Q*(s, a) goes to zero!

@ However, requires that all states and actions are visited
sufficiently often.
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Q-learning

h . Contextual bandits
Learning with state

Exploration-Exploitation tradeoff in Q-learning

@ Convergence of Q-learning requires that all states and actions
are visited a sufficient number of times.

=- same issue as in bandit problems.

@ However, complicated by state transitions: not all states are
easily reachable.

@ Transitions cause dependencies between successive states that
contradict the independence assumptions of bandit algorithms.

@ Extreme case: transition graph is not connected = complete
exploration impossible.
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Q-learning

h . Contextual bandits
Learning with state

Initializing the Q-table

o Initialize all rewards to very high values = action selection
will pick actions that have not been tried a lot.

@ However, space is very large = will take a long time to
converge.

@ e-greedy may be a good alternative.

@ hard to prove optimality or even convergence: depends on
state transitions.
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bandits

Learning with state

Deep g-learning

@ Q-table can be very large, and
take a lot of data to fill in.

@ Assumption: entries in the Qtable
Q-table have a regular
distribution.

= represent by a deep neural net.

Deep Q table

@ Advantage: generalization
reduces need to try many similar
actions.
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Q-learning
Contextual bandits

Learning with state

Example
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Q-learning

h . Contextual bandits
Learning with state

Experience replay

@ Sequences of observed states follow state transitions.

= creates dependencies that destroy convergence of stochastic
gradient descent.

@ Avoid by rearranging observation tuples in random order.
@ Developed by Google Deep Mind to play Atari videogames.

Boi Faltings Learning Agents 43/48



Q-learning

h . Contextual bandits
Learning with state

Most difficult example
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Q-learning

h . Contextual bandits
Learning with state

Learning from a Teacher

/Environmenl

o Key to efficient Q-learning:
avoid trying bad actions.

@ Observing a teacher shows only (.
"good” transitions. Io @ =0 pois
. . .. T —
= learning is much more efficient. @-*

P
@ However, agent will not become
Next time avoid it.
I
better than the teacher! A/ i
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Q-learning

h . Contextual bandits
Learning with state

Exploration /exploitation with state

Straightforward solution: one bandit per state.

However, requires collecting data for each state:
convergence time multiplied by the number of states.

Not clear how to ensure that all states are reached.

Usually not feasible.
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Q-learning

h . Contextual bandits
Learning with state

Contextual Bandits

@ Define contexts = groups of states with similar features.
(e.g. medical trials: patient history, recommendation: user
profile, etc.)

@ Instead of one bandit per state, have one bandit per context.

= Learning requires less data, but quality depends on how well
contexts fit the problem.

o Example: EXP4 algorithm.

@ However, no consideration of state transitions between states
in same context!
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Q-learning

h . Contextual bandits
Learning with state

Summary

e Bandit problems: learn effect (reward) of each action.

o Exploration-Exploitation tradeoff.

e Fixed stochastic reward structure: greedy/UCB algorithms,
cumulative regret = O(log T).

@ Adversarial rewards: learn randomized strategy.

o regret matching/multiplicative weight update
e exponential weight update

cumulative regret = O(v/T).
No-regret learning: cumulative regret grows less than O(T):
average regret goes to zero.
@ Learning with state
e Q-learning
e contextual bandits
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