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Android Complexity is Beyond Imagination

Over 3 billion users across 190 countries

Almost ¾ market share for mobile phones

2.6mio apps in the App store

~1.5 billion devices sold per year
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Several TB of system images

Roughly 11 TB of apps



Android Architecture Overview
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Cheesing Android 
Trusted Applications
🫖
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Trusted Applications are authentic dynamically-loadable modules

Trusted Applications
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TA Rollback Attacks exploit the authenticity of old and vulnerable TAs

TA Rollback Attacks
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TA Rollback Counters allow TEEs to enforce latest known TA version

TA Rollback Prevention is Essential for Security
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Spill the TeA: Analysis of Correct Rollback Prevention
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● 5 OEMs >65% market share 
over the last 4y

● firmware from < 4y
● group phones by ODM, pick at 

least 2 phones per group
● at least 5 firmware images per 

phone (over at least 2 years) ● 35,541 TAs (293 unique)
● 4 TEE implementations

● 2,582 vulnerable TAs
● 190 rollback counter usages



Spill the TeA: Summary

TA rollback prevention is incomplete with questionable TA vulnerability practices

● Internally patched TAs (without disclosure/rollback prevention)

● Security patches limited to one product, not shared across targets

Lack of transparency regarding TA rollback prevention
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Spill the TeA: An Empirical Study of Trusted Application Rollback Prevention on Android
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24



TEEzz Fuzzing Pipeline: Stateful Interface Fuzzing
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TEEzz: Fuzzing Trusted Applications on COTS Android Devices.
Marcel Busch, Mathias Payer, Aravind Machiry, Christopher Kruegel, Giovanni Vigna, and Chad Spensky. In Oakland'23



EL3XIR: 󰩃 
Be Greedy and Dig Deep

The dwarves delved too 
greedily and too deep. You 

know what they awoke in the 
darkness of Khazad-dum... 

shadow and flame.



ARMv8-A TrustZone
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Fuzzing Secure Monitors - Challenges

C1 Limited Introspection

Rehosting: Execute firmware in an 
emulated environment mimicking 
(parts of) the original device

Secure 
Monitor

Rich
OS

Trusted
OS

Boot-
loader

C1.1 Dependency on Software 
Components

C1.2 Infeasibility of Manual 
Peripheral Modeling 
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Fuzzing Secure Monitors - Challenges
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C2 Complex Input Space

Several tens of runtime services with unique APIs…



EL3XIR’s Approach - Overview
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Contribution      : Partial-Rehosting of Secure Monitors
C1.1 Dependency on Software Components
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Contribution      : Reflected Peripheral Modeling
C1.2 Infeasibility of Manual Peripheral Modeling
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Contribution      : Harness Synthesis
C2 Complex Input Space
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Evaluation - Bugs and CVEs
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7 targets from 6 different vendors
● 4 open-source, 3 closed-source

EL3XIR triggered 34 bugs (17 security relevant) in 5 targets
● Naive baseline comparison triggered 19 bugs (10 security relevant)

Responsible disclosure resulted in 6 CVEs plus 11 confirmed bugs

CVE-2022-38787, CVE-2023-22327 (5 different bugs), 
CVE-2023-49614, CVE-2024-22390, CVE-2023-31339, 
CVE-2023-49100



Evaluation - Coverage
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EL3XIR: Fuzzing COTS Secure Monitors
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github.com/HexHive/EL3XIR
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Rehosting Framework for 
proprietary TrustZone Firmware

Highly automated Fuzzing Pipeline 
including Harness Synthesis and 
Peripheral Modeling

Fuzz your own Secure Monitor

EL3XIR: Fuzzing COTS Secure Monitors.
Christian Lindenmeier, Mathias Payer, and Marcel Busch. In SEC'24



🌍󰷺 GlobalConfusion
Test Android Trusted Apps 23

Gandalf: A palantir is a dangerous tool, Saruman.
Saruman: Why should we fear to use it?
Gandalf: They are not all accounted for, the lost 
seeing stones. We do not know who else may be 
watching



ARMv8-A TrustZone
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TEE_Result TA_InvokeCommandEntryPoint(void *sessCtx, uint32_t cmdId,
                                      uint32_t paramTypes, TEE_Param params[4])
{

    uint32_t exp_paramTypes = TEE_PARAM_TYPES(
                    TEE_PARAM_TYPE_MEMREF_INPUT,
                    TEE_PARAM_TYPE_MEMREF_OUTPUT,
                    TEE_PARAM_TYPE_NONE,
                    TEE_PARAM_TYPE_NONE);

    if (paramTypes != exp_paramTypes)
      return TEE_ERROR_BAD_PARAMETERS;

    size_t in_buf_sz  = params[0].memref.size;
    char *in_buf      = params[0].memref.buffer;
    size_t out_buf_sz = params[1].memref.size;
    char *out_buf     = params[1].memref.buffer;

    if (in_buf_sz > out_buf_sz)
      return TEE_ERROR_BAD_PARAMETERS;

    TEE_MemMove(out_buf, in_buf, in_buf_sz);

    return TEE_SUCCESS;

}
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Stores session state

Chooses TA cmd handler
Determines types of params.
If the type is a memref, then 
the runtime system validates 

the buffer location
Four TEE_Param parameters

typedef union {
struct {

void *buffer;
uint32_t size;

} memref;
struct {

uint32_t a;
uint32_t b;

} value;
} TEE_Param;

OPTIONAL



GPCheck
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GP Function
Detection

Alerts

GPCheck

BIN Trusted
Application

Loading &
Decompilation

Taint Analysis Engine

Memref Usage
Detection

Param Type
Check Detection

Unchecked Memref Usage Analysis

● Ghidra-based

● Post-production binary 
analysis/check

● Open-Source

https://github.com/HexHive/GlobalConfusion 

https://github.com/HexHive/GlobalConfusion


Not checked, but 
not interesting!

Not checked, 
interesting!

Adversary may mark parameter 
as TYPE_VALUE_INPUT, the 
runtime system does not 

validate the buffer address but 
the TA code accesses it



Let’s Scan All Apps in the TA Ecosystem!
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~6,900 TAs are GP-compliant (~131 unique TAs)

850 vulnerable TAs (33 unique vulnerable TAs)

9 publicly known 10 silently patched 14 0-days

CVE-2023-32835, CVE-2023-32834, CVE-2023-32848, CVE-2024-20078, …

> $ 12k bug bounty



GlobalConfusion: Mitigation
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Change fail-open to fail-close design

● Mandatory type check
● Fail-safe abort without proper check

Sent proposal to GP; Draft for API update in progress

No changes to external API (backwards compatible)

Open-source and based on OPTEE

GlobalPlatform is 
changing their API,  

making checks explicit

GlobalConfusion: TrustZone Trusted Application 0-Days by Design.
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24



📚🔥 Just Slap a Secure Allocator On It 30

Why do you lay these troubles 
on an already troubled mind?



Scudo: the Hardened Memory Allocator
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Scudo is..

… a userspace memory allocator 

… designed to prevent exploitation 
of heap-based memory corruption 
vulnerabilities

But is it 
secure?



Exploiting the Allocator 
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Heap
Memory

Application Allocator
malloc
free

manage

Contains heap vulnerabilities:
- Overflow
- Use-after-free
- Double free

Corrupt Inline Metadata

Corrupt Allocator State



Is Exploiting the Allocator still possible for Scudo?
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Heap
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Application
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Corrupt Allocator State

Hardened against such attacks

Threat Model: Able to corrupt heap memory  



Randomization: Scudo Randomizes the Address of Allocations

Prevent attackers from arranging the heap in a particular layout.
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Protection: Scudo protects inline Heap Metadata 

Chunk headers are signed, Scudo verifies the signature before parsing the metadata
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Android’s Performance Optimization Weakens Scudo
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Feasible? Exploiting a Heap Underflow in the System Server

System Server is a highly privileged process, hosting multiple system services.

Apps interact with the system server over Binder IPC.

Backport CVE-2015-1528 to Android 14 (Heap overflow & underflow)

Use Forged Commitbase technique to allocate a chunk on the stack and hijack the PC (ROP)
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Malicious App System Server

Scudo

IPC

Exploiting Android's Hardened Memory Allocator.
Philipp Mao, Elias Valentin Boschung, Marcel Busch, and Mathias Payer. In WOOT'24 (best paper)



38🍞 Apps Need Sustenance. Are Shared Libraries Lembas or 
Cram?

One of the elves commented 
"[...] we call it lembas or 
waybread, and it is more 

strengthening than any food 
by men, and it is more 

pleasant than cram, by all 
accounts."



Goal: Assessing the Android App Ecosystem

Our amazing 5 step plan:

1. Download some APKs

2. Build some binary similarity thing

3. Detect custom patches in Android Native libraries

4. They are for sure vulnerable! Bad vendors! Bad!

5. Publish & Profit! Many citations and good fortunes in the future $$$
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Constructing a Dataset for Ground Truth Validation

Scraping diverse markets (PlayStore, PlayDrone, AppChina, Anzhi, Mi.com, F-Droid, …)

We got 8.7 million APKs, 12.2% have native libraries, resulting in ~1mio unique libraries
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First discovery: lots of code is shared (based on hashes):

● Top 50 binaries account for  14.3% of all native libraries

● Top 500 binaries account for  49.0% of all native libraries

● Top 5000 binaries account for  77.4% of all native libraries



How to Infer Library Names and Versions? Machine Learning!

41



ML Works Great For Small Datasets, Breaks for Large Datasets

Toy dataset of 350 binaries:

12 hours to create embeddings
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1,000 L

10 x

10 x 2.5 million L

Our dataset of 1 million libraries:

~38 years 4 months 8 days

(28’000 times longer)



Are Libraries Copy-Pasted? (1225x Zoom)
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Steps indicate that 
app developers 

download tarballs 
and stick to them



Ground Truth From Maven

Looking at Maven we match 29.2% of libraries

Adding heuristics for react native, we get to 59.5%
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We can now instantly recognize 60% of 
all libraries, no need for any AI!



Case Study: libpl_droidsonroids_gif.so
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44,696 Android apps use this library.

CVE-2019-11932 is 6 years old.

How many apps remain vulnerable?

About 78% of apps remain vulnerable. 
Filtering to only apps on the PlayStore, 
58% of apps are vulnerable (2,968 apps)



Top 3 apps vulnerable to CVE-2019-11932
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143 million downloads
screenrecorder.recorder.editor

242 million downloads
paint.by.number.pixel.art.coloring
.drawing.puzzle

403 million downloads
de.axelspringer.yana.zeropage

Exploiting these apps may be 
hard or even impossible. We 
only highlight that vulnerable 

libraries remain used.



Software Testing
● Goal: prune bugs
● A tool for developers

Mitigation
● Goal: stop exploitation
● Last line of defense

Compartments
● Goal: least privilege
● Divide & conquer security



Join us on this research journey!



Android Security Remains an Elusive Target

Android developed into a complex ecosystem 🤯
● Secure: per-app compartmentalization 👍
● Private: Sensitive data remains in the trusted world 👍
● Expected: Bugs in the hypervisor 󰩃
● Unnecessary: Vulnerable communication APIs 🌍󰷺
● Terrible: forgetting rollback 🫖
● Naive: Unsafe allocators that create new attack surfaces 📚🔥
● Crazy: Just reusing apps without updates 🍞

Lots of opportunities for research across the software stack!

Join us: https://hexhive.epfl.ch 

Mathias Payer (@gannimo on bsky/infosec.exchange) 49

https://hexhive.epfl.ch

