Advanced
Android
Archaeology:
Baffled By
Bloated

Complexity
Mathias Payer

E P :: L .8*,‘ hexhive : (T

Android Complexity is Beyond Imagination

Over 3 billion users across 190 countries
Almost % market share for mobile phones
2.6mio apps in the App store

~1.5 billion devices sold per year

-

Several TB of system images

Roughly 11 TB of apps
_

Android Architecture Overview

—
)
o
?

q

.
-
SR

\
i
-/

#/

[rustZone®

System Security by ARV

i
Op
oDy Ay

- o)
Weis ERED MITHRIN (Grer Mose
& Wideeod Heud

IRON HILLS

EiEp VN

A
ERED LITHUL (AS N

ANFALA (Langstes

&1 (P "w,l ’
o "if)
S

BELFAM

MIDDLE-EARTH

- , 2 - \ s
in the Third /\gc Rﬁ?‘fi\ o

om Mm wwm Wem Gwes Bem solepe :
7 & e

OLFALAS SOUTH =

Al GONDOR 7

NEAR HHARADY

Pirsscd Map Desiga by Chts Tarkee |
Pedinsal Dectgnarsons by Chete Graartne
Boed Upen the Wods o JRE Tlhisn

SEA A
BHUN

KHAND

Cheesing Android
Trusted Applications

&

L 4

Trusted Applications

Trusted Applications are authentic dynamically-loadable modules

TA Rollback Attacks

TA Rollback Attacks exploit the authenticity of old and vulnerable TAs

TA Rollback Prevention is Essential for Security

TA Rollback Counters allow TEEs to enforce latest known TA version

Spill the TeA: Analysis of Correct Rollback Prevention

Rollback | RC++ TAs
- Counter —~ amm> . -oooeeeoe-
Firmware
| T“.JSte.d Extraction Anal
mages RESEEces & Applications / - nalyses
: (o000 &
: Results
Vulnerable
TAs

e 5 OEMs >65% market share

over the last 4y

e firmware from < 4y

e group phones by ODM, pick at
least 2 phones per group

e 2,582 vulnerable TAs
e 190 rollback counter usages

e atleast 5 firmware images per
phone (over at least 2 years) e 35,541 TAs (293 unique)

& / e 4 TEE implementations .

Spill the TeA: Summary

TA rollback prevention is incomplete with questionable TA vulnerability practices

e Internally patched TAs (without disclosure/rollback prevention)
® Security patches limited to one product, not shared across targets

Lack of transparency regarding TA rollback prevention

>
> & ¢ &
2 o N &
Sl > S < o &
S S o > &P Q
N N R AD X &
& O @ §F & 3
AP > » NN
QO S L o <©

Spill the TeA: An Empirical Study of Trusted Application Rollback Prevention on Android
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24

10

TEEzz Fuzzing Pipeline: Stateful Interface Fuzzing

__

CllentAppllcatlon CA Interface ./ SeedRecording . Fuzzing Engine
Identification ; Processing | - -

m Run interaction

Fuzz Runner

1

1

1

1

1

. 1

1

i

i

1

i

Fetch !
Mutate 1
!

|

I

|

I

i

!

|

1

: CAlib {
i consumer

iface AST DBII |!| "] out
def
AOSP Vendor ; Rec!order

I
i System System !

1
1
1
1
1
1
1
1
i
> in !

1 1
P i
' ! !
o '
i i |acelow i
i i l i
i ; in out ;
i ; 011101011111 11101010011... ;
i i P i
! 1 T 1
i .

Service Service

! |

CAlib, CAlib, CAlib, : :

A

&
Mutation Va A
Engine v @ o

Corpus Database ;

libteec i

CAlib {'} Type-Aware 2 Type- and A+
consumer ' Mutators State-Aware

a Seeds

TEEzz: Fuzzing Trusted Applications on COTS Android Devices.
Marcel Busch, Mathias Payer, Aravind Machiry, Christopher Kruegel, Giovanni Vigna, and Chad Spensky. In Oakland' 23

The dwarves delved too \
greedily and too deep. You
know what they awoke in the
darkness of Khazad-dum...

shadow and flame.

ARMVS-A TrustZone arm

TRUSTZONE
Normal World / REE Secure World / TEE
A Trusted Applications
\ 9,
() Trusted OS
—_—
I [Shared 1
I Memory
A\ | A
—SMC——~= _ -

— e — — —

e
v)'(? Secure Monitor

13

Fuzzing Secure Monitors - Challenges

C1 Limited Introspection

(O 0 — \
o
O

Rehosting: Execute firmware in an
emulated environment mimicking
(parts of) the original device

C1.1 Dependency on Software
Components

C1.2 Infeasibility of Manual
Peripheral Modeling

Secure
Monitor

14

ARM Trusted Firmware BL31

Fuzzing Secure Monitors - Challenges

C2 Complex Input Space

SMC Dispatcher

x0: function ID

ARM Arch
Calls

CPU Service
Calls

SiP Service
Calls

OEM Service
Calls

Standard
Service Calls

Trusted
Apps Calls

Several tens of runtime services with unique APls...

15

EL3XIR’s Approach - Overview

Fuzz Input

Feedback

EL3XIR -
Fuzzer

Refined Fuzzmg
Harness
Fuzz SMC

1 Rich OS | I Trusted OS '
! stub ! stub
Snapshot of

booted Secure Monitor
MMIO Access

Fuzz Input
Reflected Peripheral
2 Modeling

%43 /

16

Contribution @ Partial-Rehosting of Secure Monitors

C1.1 Dependency on Software Components

~

' Rich | Trusted !
1 OS 1, _0S_
Secure
Monitor
O " Boot- !

. loader_,

Refinement

Fidelity
Evaluation

gy

Root
Cause
Analysis

Secure
Monitor
booted?

Y

Snapshot of
booted Secure Monitor

17

Contribution @Reflected Peripheral Modeling

C1.2 Infeasibility of Manual Peripheral Modeling

Refined Fuzzing
Harness
Fuzz SMC
Snapshot of
booted Secure Monitor
MMIO Access
MMIO Watchpoints J_/
SMC Request
p A N

Fuzzing e
Input AN EEEEEEEEEEEEEEE

18

Contribution @ Harness Synthesis
C2 Complex Input Space

Fuzzing Seeds for
(- Calloc |) SMC function IDs

Ve Probing Harness N\

\ 7y
\ > store > l Probe SMC

Snapshot of
booted Secure Monitor
L y NS =/

Interface Coverage
Recovery Profile-based

Pruning

Rich OS
Source Code

Evaluation - Bugs and CVEs
SAMSUNG o),

AMDl Fave
[targets from 6 different vendors

e 4 open-source, 3 closed-source Intel x

EL3XIR triggered 34 bugs (17 security relevant) in 5 targets
e Naive baseline comparison triggered 19 bugs (10 security relevant)

Responsible disclosure resulted in 6 CVEs plus 11 confirmed bugs

CVE-2022-38787, CVE-2023-22327 (5 different bugs),

CVE-2023-49614, CVE-2024-22390, CVE-2023-31339, Y
CVE-2023-49100

20

Evaluation - Coverage

1750

1500

1250

1000

Edge Coverage
~
u
o

500

250

EL3XIR

HUAWEI KIRIN659

’/ —————————————————————— |
B ——
P’

I

i

n

u

"

i

I .

E‘ Naive Fuzzer

00:00 6:00 12:00 18:00 24:00

Time (hh:mm)

EL3XIR
INTEL STRATIX 10

Edge Coverage

I

14°

W

l

: Naive Fuzzer

[

i

, iface~ + mmio-

.' —— ifacet* + mmio-

! iface- + mmio™*

! —— iface* + mmio*
00:00 6:00 12:00 18:00 24:00

Time (hh:mm)

21

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

EL3XIR: Fuzzing COTS Secure Monitors pm | | g | | g

AVAILABLE REPRODUCED

Fuzz Input
Reflned Fuzzing
Harness]
Fuzz SMC Rehosting Framework for
—————————— proprietary TrustZone Firmware
I Rich OS ' : Trusted OS '
EL3XIR Feedback LS g S _ S
Fuzzer -~~~ "°° Highly automated Fuzzing Pipeline
1 Snapshot of including Harness Synthesis and
booted Secure Monitor Peripheral Modeling
;: uzzt * MMIO Access
npu

Reflected Peripheral ‘ E@]E / Fuzz your own Secure Monitor
Modeling
2
O github.com/HexHive/EL3XIR

EL3XIR: Fuzzing COTS Secure Monitors.
Christian Lindenmeier, Mathias Payer, and Marcel Busch. In SEC'24

22

¥y

Gandalf: A palantir is a dangerous tool, Saruman.
Saruman: Why should we fear to use it?

Gandalf: They are not all accounted for, the lost
seeing stones. We do not know who else may be
watching

ARMvV8-A TrustZone

Normal World / RE

GLOBALPLATFORM'

arm
RUSTZONE

ure World / TEE

GlobalPlatform Technology

TEE Internal Core API Specification
Version 1.3.1

Public Release ;
n

July 2021
Document Reference: GPD_SPE_010

‘usted Applications

Trusted OS

Shared
Memory

| oA

~

S ’_(/

— e — — —

Secure Monitor

24

TEE Result TA InvokeCommandEntryPoint(void *sessCtx,

{

u[Stores session state

QP!

Determines types of params.
If the type is a memref, then
the runtime system validates

= TEE PARAN
AM TY' 1

TE @,“ 1’.&% QUF

uint32

=nc32 t paramTypes,

REF INPUT,
[(EMREEF OUTP

Chooses TA cmmd handler

]
RAMETERS ;

the buffer location

:[Four TEE Param parameters

—cf _ sivze;
ef.buffer;

cmdId,

7EE Param params[4])

typedef union {
struct {
void *buffer;
uint32 t size;
} memref;
struct {
uint32 t a;
uint32 t b;
} value;
} TEE Parany

25

GPCheck

e Ghidra-based lﬁ“ Trusted
_ . 1 Application
e Post-production binary =
analysis/check ~ prmermreeme e |
GPCheck |

e Open-Source

Unchecked Memref Usage Analysis

A

A A

Taint Analysis Engine

httos //github.com/HexHive/GlobalConfusion

GP Function
Detection

26

https://github.com/HexHive/GlobalConfusion

TEE_Result vuln(TEE_Param params[4] ,uint32_t param_types) {

uint32_t a;
uanE32. t b;

Wwwwwww
OCoOoNO UL W

para

TEE_Result vuln(TEE_Param params[4] ,uint32_t param Adversary may mark parameter
AL as TYPE_VALUE_INPUT, the
Ehe R dsanens R e R ey runtime system does not

validate the buffer address but

the TA code accesses it

WU W

S WWwwwwww

a = ((uint32_t*) buf)[0]; Not checked,
((uint32_t*)buf)[1] = a;

return TEE_SUCCESS; interesting!

TEE_Result TA_InvokeCommandEntryPoint(void __ _maybe unuS® -
uint32_t cmd_id, n(params, [param_types) ;
uint32_t |param_types, TEE_Param params[4])
._ERROR_BAD_PARAMETERS;

(void)&sess_ctx; /* Unused parameter */

switch (cmd_id) {
case TA_HELLO_WORLD_CMD_INC_VALUE:
"eturn vuln(params, 'param_types) ;
default:
1 TEE_ERROR_BAD_PARAMETERS;

}
TEE_SUCCESS;

Let’s Scan All Apps in the TA Ecosystem!

\ ~6,900 TAs are GP-compliant (~131 unique TAS)

%

850 vulnerable TAs (33 unique vulnerable TAs)

& A%

9 publicly known 10 silently patched 14 0-days

CVE-2023-32835, CVE-2023-32834, CVE-2023-32848, CVE-2024-20078, ...

> $ 12k bug bounty

28

GlobalConfusion: Mitigation

Change fail-open to fail-close design

e Mandatory type check

-

GlobalPlatform is
changing their API,

~

making checks explicit

e Fail-safe abort without proper check

)

Sent proposal to GP; Draft for APl update in progress

Open-source and based on OPTEE

GlobalConfusion: TrustZone Trusted Application 0-Days by Design.
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24

No changes to external API (backwards compatible)

29

Why do you lay these troubles

on an already troubled mind?

Scudo: the Hardened Memory Allocator

— Android 1
. 2008
Scudo is.. Dlmalloc (Performance first)

... a userspace memory allocator (@\

\E2 — Android 5
l;” 2014
Jemalloc

0 — Android 11
But is it -

Scudo (Security first)

... designed to prevent exploitation
of heap-based memory corruption
vulnerabilities

secure?

Exploiting the Allocator

%pMkﬁﬁon malloc

i free

Contains heap vulnerabilities:

manage
Alloy * V,

- Overflow Corrupt Allocator State
- Use-after-free

- Double free

Corrupt Inline Metadata

32

Is Exploiting the Allocator still possible for Scudo?

Hardened against such attacks

malloc

pplication

i free

Allocator manage Heap
(Scudo) Memory

Corrupt umator State

Threat Model: Able to corrupt heap memory

33

Randomization: Scudo Randomizes the Address of Allocations

Prevent attackers from arranging the heap in a particular layout.

for(int i=0; i<4; i++){

malloc(0x18); —
| L) @

Protection: Scudo protects inline Heap Metadata

Chunk headers are signed, Scudo verifies the signature before parsing the metadata

Before Overflow After Overflow
AAAA AAAAAAAAAAAAAA
AAAAAAAAAAAAAA
O &= g Re= T
VictimIEhunk AAAAAAAAAAAAAA
1 AAAAAAA 1
Continue Abort Process

Android’s Performance Optimization Weakens Scudo

Zygote (PID: 529) SurfaceFlinger (PID: 313)

‘ ASLR Scudo Secrets ASLR Scudo Secrets
AS LR a N d Layout Randomize Seed Layout Randomize Seed
@ 0Oxdeadbeef : l;*t OX;:aEf;ecafe K
Protect Secret Key rotect Secret Key
SC u d O S e C rEtS @ Oxfeedbeef @ Oxcafeefca

are shared! .«

fork
ASLR Scudo Secrets ASLR Scudo Secrets
Layout Randomize Seed Layout Randomize Seed
@ Oxdeadbeef @ Oxdeadbeef
Protect Secret Key Protect Secret Key
© = Oxfeedbeef © = Oxfeedbeef

Evil App (PID: 1337) Victim App (PID: 1234)

Feasible? Exploiting a Heap Underflow in the System Server

System Server is a highly privileged process, hosting multiple system services.
Apps interact with the system server over Binder IPC.
Backport CVE-2015-1528 to Android 14 (Heap overflow & underflow)

Use Forged Commitbase technique to allocate a chunk on the stack and hijack the PC (ROP)

IPC %l: #ﬁ

Malicious App 4P System Server

Scudo

Exploiting Android's Hardened Memory Allocator.
Philipp Mao, Elias Valentin Boschung, Marcel Busch, and Mathias Payer. In WOQOT'24 (best paper)

37

One of the elves commented
"[...] we call it lembas or

waybread, and it is more
strengthening than any food
by men, and it is more
pleasant than cram, by all
accounts."

Goal: Assessing the Android App Ecosystem

Our amazing 5 step plan:

Download some APKs
similarity thing

vk wnNn e

nes in the future SSS

39

Constructing a Dataset for Ground Truth Validation

Scraping diverse markets (PlayStore, PlayDrone, AppChina, Anzhi, Mi.com, F-Droid, ...)

We got 8.7 million APKs, 12.2% have native libraries, resulting in ~1mio unique libraries

First discovery: lots of code is shared (based on hashes):

® Top 50 binaries account for 14.3% of all native libraries
e Top 500 binaries account for 49.0% of all native libraries
® Top 5000 binaries account for 77.4% of all native libraries

40

How to Infer Library Names and Versions? Machine Learning!

Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search

—o— jTrans

—x— Genius —=— Gemini —+— Asm2Vec —e— SAFE —+— GraphEmb —a— OrderMatters

Steven H. H. Ding*, Benjamin C. M.

*Data Mining and Security Lab, School of Information
Emails: steven.h.ding @mail. mcgi

jTrans: Jump-Aware Transformer for Binary Code Similarity

(02,03)

recall@1

©
E=N
1

0.2

(7

0.0
0.0

1.0

2.0 3.0 4.0 1 by Ny
log,,(Poolsize) S 6 -1 6

d

1L 1S € M1rst so1uton mat €mpeas conrol How 1mniormauon or pi1- otk st o et b ok kb ot
nary code into Transformer-based language models, by using a
arral famnn anrava wansanantatinne af tha analimad hinasian and A 1 IN'TRDOANT TIOTTION

41

ML Works Great For Small Datasets, Breaks for Large Datasets

Toy dataset of 350 binaries:

12 hours to create embeddings
1,000 L

Our dataset of 1 million libraries:

~38 years 4 months 8 days

(28’000 times longer)

10 x 2.5 million L

Are Libraries Copy-Pasted? (1225x Zoom)

30000

4)
Steps indicate that

app developers
download tarballs
and stick to them

20000

Count

10000

Ground Truth From Maven

Looking at Maven we match 29.2% of libraries

Adding heuristics for react native, we get to 59.5%

We can now instantly recognize 60% of
all libraries, no need for any Al!

maven_artifact
react-native

react-android
imagepipeline

android-sdk

pdfium-android

carbon

nativeimagefilters
nativeimagetranscoder
sentry-android-ndk

fbjni

animated-gif
android-gif-drawable
imagepipeline-native
webpsupport

dali

conceal
android-database-sqlcipher
full-sdk

hermes-android

ucrop

rootbeer-1ib
bugsnag-plugin-android-anr
bugsnag-plugin-android-ndk
mmy-core

ttsdk-ttapplog
androidphotofilters
alcamera
mapbox-android-sdk

ndfium

count
1620891
L7782
185892
124471
118407
99096
89714
83641
71098
63556
50555
49129
42262
31965
24491
15543
13487
10686
10136
9944
9548
7686
7609
V556
6086
57/218
5154
5149
5136

Case Study: libpl _droidsonroids_gif.so

44,696 Android a pps use this libra ry. WhatsApp Remote Code Execution Vulnerability

. The vulnerability, tracked as CVE-2019-11932, is a double-free memory corruption bug that doesn't
CV E'ZO 19' 1 193 2 IS 6 yea rso I d . actually reside in the WhatsApp code itself, but in an open-source GIF image parsing library that

WhatsApp uses.

How many apps remain vulnerable?

About 78% of apps remain vulnerable.
Filtering to only apps on the PlayStore, -
58% of apps are vulnerable (2,968 apps) = -5

8 Payioad tor WhatsApp RCE (THN

45

Top 3 apps vulnerable to CVE-2019-11932

Screen Recorde?b‘-lﬁﬁ-/\m Paint by Number: Coloring
Recorder \Game

meesonvsossed Exploiting these apps may be
ot | e hard or even impossible. We
only highlight that vulnerable

libraries remain used.

‘Sereen Recorder With Clear Sound

- ternational

gggggg

1 n dov

ber.pixel.art.coloring
screenrecorde

zle

403 million downloads
de.axelspringer.yana.zeropage

46

@

o®: hexhive

Compartments
oy . e Goal: least privilege
Mitigation e Divide & conquer security

e (Goal: stop exploitation

Software Testing e Last line of defense

e Goal: prune bugs
e Atool for developers

I

Android Security Remains an Elusive Target

Android developed into a complex ecosystem &

Secure: per-app compartmentalization ﬁ

Private: Sensitive data remains in the trusted world £
Expected: Bugs in the hypervisor 3:
Unnecessary: Vulnerable communication APIs £ €®
Terrible: forgetting rollback oy

Naive: Unsafe allocators that create new attack surfaces &= ¢

Crazy: Just reusing apps without updates ¥

Lots of opportunities for research across the software stack!

Join us: https://hexhive.epfl.ch

@
E PF L Mathias Payer (@gannimo on bsky/infosec.exchange) .. ! h exX h i Ve

https://hexhive.epfl.ch

