
Advanced
Android

Archaeology:
Baffled By

Bloated
Complexity

Mathias Payer

Android Complexity is Beyond Imagination

Over 3 billion users across 190 countries

Almost ¾ market share for mobile phones

2.6mio apps in the App store

~1.5 billion devices sold per year

2

Several TB of system images

Roughly 11 TB of apps

Android Architecture Overview

3

4

Cheesing Android
Trusted Applications
🫖

5

Trusted Applications are authentic dynamically-loadable modules

Trusted Applications

6

TA

sig

TA

sig

TA Rollback Attacks exploit the authenticity of old and vulnerable TAs

TA Rollback Attacks

7

TA

sig

TA

sig TA

sig

TA Rollback Counters allow TEEs to enforce latest known TA version

TA Rollback Prevention is Essential for Security

8

TA

sig

TA

sig
1

2

TA

sig

Spill the TeA: Analysis of Correct Rollback Prevention

9

RC++ TAs

Vulnerable
TAs

TA
Extractor Public

Vulnerability
Review

Firmware
Images

Trusted
Applications Analyses

&
Results

Rollback
Counter

Extraction

● 5 OEMs >65% market share
over the last 4y

● firmware from < 4y
● group phones by ODM, pick at

least 2 phones per group
● at least 5 firmware images per

phone (over at least 2 years) ● 35,541 TAs (293 unique)
● 4 TEE implementations

● 2,582 vulnerable TAs
● 190 rollback counter usages

Spill the TeA: Summary

TA rollback prevention is incomplete with questionable TA vulnerability practices

● Internally patched TAs (without disclosure/rollback prevention)

● Security patches limited to one product, not shared across targets

Lack of transparency regarding TA rollback prevention

10
Spill the TeA: An Empirical Study of Trusted Application Rollback Prevention on Android
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24

TEEzz Fuzzing Pipeline: Stateful Interface Fuzzing

11

Type- and
State-Aware

Seeds

Client Application
Identification

Fuzzing EngineCA Interface
Processing

Seed Recording

CAlib1 CAlib2 CAlib3

libteec

AOSP
System
Service

App

Vendor
System
Service

App

CAlib
consumer

TU

iface
def AST

Type-Aware
Mutators

ifacehigh

in

011101011111…

outin

Fuzz Runner

Run interaction

Corpus Database

CAlib
consumer

CAlib
consumer

iface
def
iface
def

DBII
Recorder

ifacelow

11101010011…
in

out

out Mutation
Engine

CAlib
consumer

Fetch
Mutate

TEEzz: Fuzzing Trusted Applications on COTS Android Devices.
Marcel Busch, Mathias Payer, Aravind Machiry, Christopher Kruegel, Giovanni Vigna, and Chad Spensky. In Oakland'23

EL3XIR: 󰩃
Be Greedy and Dig Deep

The dwarves delved too
greedily and too deep. You

know what they awoke in the
darkness of Khazad-dum...

shadow and flame.

ARMv8-A TrustZone

13

Secure Monitor

Normal World / REE Secure World / TEE

Client Applications

Rich OS

Trusted Applications

Trusted OS

Shared
Memory

SMC
?

Fuzzing Secure Monitors - Challenges

C1 Limited Introspection

Rehosting: Execute firmware in an
emulated environment mimicking
(parts of) the original device

Secure
Monitor

Rich
OS

Trusted
OS

Boot-
loader

C1.1 Dependency on Software
Components

C1.2 Infeasibility of Manual
Peripheral Modeling

14

Fuzzing Secure Monitors - Challenges

15

SMC Dispatcher
x0: function ID

Rich OS

ARM Arch
Calls

CPU Service
Calls

SiP Service
Calls

OEM Service
Calls

Standard
Service Calls

Trusted
Apps Calls

Trusted
OS Calls

ARM Trusted Firmware BL31 SMC

C2 Complex Input Space

Several tens of runtime services with unique APIs…

EL3XIR’s Approach - Overview

16

Snapshot of
booted Secure Monitor

EL3XIR
Fuzzer

1

MMIO Access

Refined Fuzzing
Harness

Fuzz SMC

Reflected Peripheral
Modeling2

3

Feedback

Fuzz Input

Fuzz Input

Rich OS
stub

Trusted OS
stub

Contribution : Partial-Rehosting of Secure Monitors
C1.1 Dependency on Software Components

17

Snapshot of
booted Secure Monitor

Fidelity
Evaluation

Secure
Monitor
booted?

Root
Cause

Analysis

RefinementSecure
Monitor

Rich
OS

Trusted
OS

Boot-
loader

1

Contribution : Reflected Peripheral Modeling
C1.2 Infeasibility of Manual Peripheral Modeling

18

Fuzzing
Input

Snapshot of
booted Secure Monitor

MMIO Watchpoints

MMIO Access

Fuzz SMC

…

2

Refined Fuzzing
Harness

SMC Request

Contribution : Harness Synthesis
C2 Complex Input Space

19

Rich OS
Source Code

Interface
Recovery

const

SMC

params

alloc

load

store

…
…

19

Snapshot of
booted Secure Monitor

Probing Harness

Probe SMC

3

Coverage
Profile-based

Pruning

Fuzzing Seeds for
SMC function IDs

Evaluation - Bugs and CVEs

20

7 targets from 6 different vendors
● 4 open-source, 3 closed-source

EL3XIR triggered 34 bugs (17 security relevant) in 5 targets
● Naive baseline comparison triggered 19 bugs (10 security relevant)

Responsible disclosure resulted in 6 CVEs plus 11 confirmed bugs

CVE-2022-38787, CVE-2023-22327 (5 different bugs),
CVE-2023-49614, CVE-2024-22390, CVE-2023-31339,
CVE-2023-49100

Evaluation - Coverage

21

EL3XIR

Naive Fuzzer

EL3XIR

Naive Fuzzer

EL3XIR: Fuzzing COTS Secure Monitors

22

github.com/HexHive/EL3XIR

Snapshot of
booted Secure Monitor

EL3XIR
Fuzzer 1

MMIO Access

Refined Fuzzing
Harness

Fuzz SMC

Reflected Peripheral
Modeling2

3

Feedback

Fuzz Input

Fuzz
Input

Rich OS
stub

Trusted OS
stub

Rehosting Framework for
proprietary TrustZone Firmware

Highly automated Fuzzing Pipeline
including Harness Synthesis and
Peripheral Modeling

Fuzz your own Secure Monitor

EL3XIR: Fuzzing COTS Secure Monitors.
Christian Lindenmeier, Mathias Payer, and Marcel Busch. In SEC'24

🌍󰷺 GlobalConfusion
Test Android Trusted Apps 23

Gandalf: A palantir is a dangerous tool, Saruman.
Saruman: Why should we fear to use it?
Gandalf: They are not all accounted for, the lost
seeing stones. We do not know who else may be
watching

ARMv8-A TrustZone

24

Secure Monitor

Normal World / REE Secure World / TEE

Client Applications

Rich OS

Trusted Applications

Trusted OS

Shared
Memory

?
TEE Internal Core API

TEE_Result TA_InvokeCommandEntryPoint(void *sessCtx, uint32_t cmdId,
 uint32_t paramTypes, TEE_Param params[4])
{

 uint32_t exp_paramTypes = TEE_PARAM_TYPES(
 TEE_PARAM_TYPE_MEMREF_INPUT,
 TEE_PARAM_TYPE_MEMREF_OUTPUT,
 TEE_PARAM_TYPE_NONE,
 TEE_PARAM_TYPE_NONE);

 if (paramTypes != exp_paramTypes)
 return TEE_ERROR_BAD_PARAMETERS;

 size_t in_buf_sz = params[0].memref.size;
 char *in_buf = params[0].memref.buffer;
 size_t out_buf_sz = params[1].memref.size;
 char *out_buf = params[1].memref.buffer;

 if (in_buf_sz > out_buf_sz)
 return TEE_ERROR_BAD_PARAMETERS;

 TEE_MemMove(out_buf, in_buf, in_buf_sz);

 return TEE_SUCCESS;

}

25

Stores session state

Chooses TA cmd handler
Determines types of params.
If the type is a memref, then
the runtime system validates

the buffer location
Four TEE_Param parameters

typedef union {
struct {

void *buffer;
uint32_t size;

} memref;
struct {

uint32_t a;
uint32_t b;

} value;
} TEE_Param;

OPTIONAL

GPCheck

26

GP Function
Detection

Alerts

GPCheck

BIN Trusted
Application

Loading &
Decompilation

Taint Analysis Engine

Memref Usage
Detection

Param Type
Check Detection

Unchecked Memref Usage Analysis

● Ghidra-based

● Post-production binary
analysis/check

● Open-Source

https://github.com/HexHive/GlobalConfusion

https://github.com/HexHive/GlobalConfusion

Not checked, but
not interesting!

Not checked,
interesting!

Adversary may mark parameter
as TYPE_VALUE_INPUT, the
runtime system does not

validate the buffer address but
the TA code accesses it

Let’s Scan All Apps in the TA Ecosystem!

28

~6,900 TAs are GP-compliant (~131 unique TAs)

850 vulnerable TAs (33 unique vulnerable TAs)

9 publicly known 10 silently patched 14 0-days

CVE-2023-32835, CVE-2023-32834, CVE-2023-32848, CVE-2024-20078, …

> $ 12k bug bounty

GlobalConfusion: Mitigation

29

Change fail-open to fail-close design

● Mandatory type check
● Fail-safe abort without proper check

Sent proposal to GP; Draft for API update in progress

No changes to external API (backwards compatible)

Open-source and based on OPTEE

GlobalPlatform is
changing their API,

making checks explicit

GlobalConfusion: TrustZone Trusted Application 0-Days by Design.
Marcel Busch, Philipp Mao, and Mathias Payer. In SEC'24

📚🔥 Just Slap a Secure Allocator On It 30

Why do you lay these troubles
on an already troubled mind?

Scudo: the Hardened Memory Allocator

31

Scudo is..

… a userspace memory allocator

… designed to prevent exploitation
of heap-based memory corruption
vulnerabilities

But is it
secure?

Exploiting the Allocator

32

Heap
Memory

Application Allocator
malloc
free

manage

Contains heap vulnerabilities:
- Overflow
- Use-after-free
- Double free

Corrupt Inline Metadata

Corrupt Allocator State

Is Exploiting the Allocator still possible for Scudo?

33

Heap
Memory

Application
Allocator
(Scudo)

malloc
free

manage

Corrupt Allocator State

Hardened against such attacks

Threat Model: Able to corrupt heap memory

Randomization: Scudo Randomizes the Address of Allocations

Prevent attackers from arranging the heap in a particular layout.

34

Protection: Scudo protects inline Heap Metadata

Chunk headers are signed, Scudo verifies the signature before parsing the metadata

35

Android’s Performance Optimization Weakens Scudo

36

Zygote (PID: 529) SurfaceFlinger (PID: 313)

Evil App (PID: 1337) Victim App (PID: 1234)

ASLR
Layout

ASLR
Layout

ASLR
Layout

ASLR
Layout

Scudo Secrets

Scudo Secrets Scudo Secrets

Scudo Secrets

forkfork

ASLR and
Scudo secrets

are shared!

Feasible? Exploiting a Heap Underflow in the System Server

System Server is a highly privileged process, hosting multiple system services.

Apps interact with the system server over Binder IPC.

Backport CVE-2015-1528 to Android 14 (Heap overflow & underflow)

Use Forged Commitbase technique to allocate a chunk on the stack and hijack the PC (ROP)

37

Malicious App System Server

Scudo

IPC

Exploiting Android's Hardened Memory Allocator.
Philipp Mao, Elias Valentin Boschung, Marcel Busch, and Mathias Payer. In WOOT'24 (best paper)

38🍞 Apps Need Sustenance. Are Shared Libraries Lembas or
Cram?

One of the elves commented
"[...] we call it lembas or
waybread, and it is more

strengthening than any food
by men, and it is more

pleasant than cram, by all
accounts."

Goal: Assessing the Android App Ecosystem

Our amazing 5 step plan:

1. Download some APKs

2. Build some binary similarity thing

3. Detect custom patches in Android Native libraries

4. They are for sure vulnerable! Bad vendors! Bad!

5. Publish & Profit! Many citations and good fortunes in the future $$$

39

Constructing a Dataset for Ground Truth Validation

Scraping diverse markets (PlayStore, PlayDrone, AppChina, Anzhi, Mi.com, F-Droid, …)

We got 8.7 million APKs, 12.2% have native libraries, resulting in ~1mio unique libraries

40

First discovery: lots of code is shared (based on hashes):

● Top 50 binaries account for 14.3% of all native libraries

● Top 500 binaries account for 49.0% of all native libraries

● Top 5000 binaries account for 77.4% of all native libraries

How to Infer Library Names and Versions? Machine Learning!

41

ML Works Great For Small Datasets, Breaks for Large Datasets

Toy dataset of 350 binaries:

12 hours to create embeddings

42

1,000 L

10 x

10 x 2.5 million L

Our dataset of 1 million libraries:

~38 years 4 months 8 days

(28’000 times longer)

Are Libraries Copy-Pasted? (1225x Zoom)

43

Steps indicate that
app developers

download tarballs
and stick to them

Ground Truth From Maven

Looking at Maven we match 29.2% of libraries

Adding heuristics for react native, we get to 59.5%

44

We can now instantly recognize 60% of
all libraries, no need for any AI!

Case Study: libpl_droidsonroids_gif.so

45

44,696 Android apps use this library.

CVE-2019-11932 is 6 years old.

How many apps remain vulnerable?

About 78% of apps remain vulnerable.
Filtering to only apps on the PlayStore,
58% of apps are vulnerable (2,968 apps)

Top 3 apps vulnerable to CVE-2019-11932

46

143 million downloads
screenrecorder.recorder.editor

242 million downloads
paint.by.number.pixel.art.coloring
.drawing.puzzle

403 million downloads
de.axelspringer.yana.zeropage

Exploiting these apps may be
hard or even impossible. We
only highlight that vulnerable

libraries remain used.

Software Testing
● Goal: prune bugs
● A tool for developers

Mitigation
● Goal: stop exploitation
● Last line of defense

Compartments
● Goal: least privilege
● Divide & conquer security

Join us on this research journey!

Android Security Remains an Elusive Target

Android developed into a complex ecosystem 🤯
● Secure: per-app compartmentalization 👍
● Private: Sensitive data remains in the trusted world 👍
● Expected: Bugs in the hypervisor 󰩃
● Unnecessary: Vulnerable communication APIs 🌍󰷺
● Terrible: forgetting rollback 🫖
● Naive: Unsafe allocators that create new attack surfaces 📚🔥
● Crazy: Just reusing apps without updates 🍞

Lots of opportunities for research across the software stack!

Join us: https://hexhive.epfl.ch

Mathias Payer (@gannimo on bsky/infosec.exchange) 49

https://hexhive.epfl.ch

