
Bypassing security mitigations
CS412 - Software security



2



NX/DEP

ASLR
Stack 

canarie
s

RELRO
ASAN

Today we will see how to bypass them!

3



Stack canary

4



Canaries: used in coal mines to detect deadly gas leaks 
(e.g., carbon monoxide)

In case of leak: canaries die quickly, humans have enough 
time to evacuate

Stack canaries: place before return address on the stack
⇒ stack buffer overflow overwrites canary
⇒ canary integrity checks before return cause early abort

5

Stack canary (history)



BYPASS:
Killing a canary each time was cruel (and expensive), so at 
some point, miners invented:

“The canary resuscitator”

Small sealed chamber hooked up to a tank full of oxygen
⇒ put canary in the chamber as soon as it blacks out
⇒ canary survives (most of the time)

Stack canary bypass: overwrite the canary with the 
correct value
⇒ pwned executable thinks our canary is “still alive”

6

Stack canary (history)



Stack canary (stack cookie, stack guard, …)

Random value, unique per process

Protected functions place it in between local variables and 
the return address

Before every ret instruction, the stack canary is checked to 
be intact

BYPASS:
- Leak it with another vulnerability
- Restore the correct value when overwriting stack

BYPASS:
- Bruteforce it in case a crash does not kill the program
- Bruteforce byte-by-byte, trying to overwrite only the 

first byte of the canary, checking for canary murder 
(e.g., in a forking server)

7



NX / W^X / DEP

8



NX (history)

Originally part of the PaX security patches to the Linux 
kernel maintained by grsecurity

PaX patches not merged into mainline Linux due to 
“unnecessary” features “slowing down the kernel”

From 2017 onward: open-source ⇒ closed-source, sold as 
proprietary blobs

In consequence: constant drama! :)
(and some stuff actually being implemented in the kernel 
nowadays)

9



NX 

NX = no execute, W^X = write xor execute, DEP = data 
execution prevention
⇒ no simultaneously writable and executable memory

No more “shellcode on stack → jmp rsp → shell” :(

BYPASS:
Code Reuse:

- ROP (Return Oriented Programming)
- JOP (Jump Oriented Programming)
- SROP (Sig-return Oriented Programming)
- BOC (Basic-block Oriented Programming)

BYPASS:
Abuse the JIT (e.g., RWX pages for javascript execution in 
browsers) 10



ASLR

11



ASLR (history)

Introduced by grsecurity in 2001, officially merged into the 
Linux kernel in 2005

Temporarily turn it off:
- sysctl -a “kernel.randomize_va_space = 

0” for the whole system
- setarch -R <binary> <arguments> for a single 

invocation

Kernel ASLR added to Linux in 2014
⇒ kernel addresses randomized in addition to userspace
⇒ only 6 bits of randomness, easily bruteforced

12



ASLR

Base address of mapped libraries, stack, heap, … randomized on 
each process execution

PIE != ASLR!!!
⇒ binary base address not necessarily randomized

Not included in checksec: OS feature, not encoded in the binary

Makes code reuse (ret2libc, ROP, …) harder

BYPASS:
Leak the ASLR base address with another vulnerability (e.g., libc 
address leak, stack address leak)

13



ASAN

14



ASAN (history)

AddressSanitizer (aka ASan) developed by Google as 
LLVM pass in 2014, later ported to GCC

Can be enabled with “-fsanitize=address” at compile 
time
⇒ incurs ~2x execution speed slowdown

Additional sanitizers:
- LeakSanitizer (memory leaks)
- ThreadSanitizer (data races and deadlocks)
- MemorySanitizer (uninitialized memory)
- HWASAN, or Hardware-assisted AddressSanitizer
- UBSan, or UndefinedBehaviorSanitizer

15



ASAN 

Keeps track of access permissions in “shadow memory”
⇒ 1 byte of shadow memory for 8 bytes of used memory

Bits in shadow memory encode whether bytes in 
program memory should be accessible

Code is instrumented to add “red zones” (non-accessible 
zones) around stack buffers

malloc and free are instrumented to add red zones 
around heap allocations

Every memory read or write first checks shadow 
memory to see whether access is allowed

BYPASS:
Controlled writes: do not overflow linearly but “skip” red 
zones

16https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm



Final Word on the CTF 

Deadline extended by a week to have one more exercise session for questions

Heap playground and heap meanu were borked ⇒ fixed now :)

If you encounter bugs/problems: let us know!!!

17


