Bypassing security mitigations

CS412 - Software security

¥ checksec secureshell

[*] '/home/jlxip/secureshell’
Arch: amd64-64-1ittle
RELRO: Partial RELRO

Stack:

Today we will see how to bypass them!

Stack canary

Stack canary (history)

h &
g |
Canaries: used in coal mines to detect deadly gas leaks

(e.g., carbon monoxide) THE HISTORY CHANNEL

In case of leak: canaries die quickly, humans have enough
time to evacuate

Stack canaries: place before return address on the stack
= stack buffer overflow overwrites canary
= canary integrity checks before return cause early abort

Stack canary (history)

BYPASS:
Killing a canary each time was cruel (and expensive), so at
some point, miners invented:

“The canary resuscitator”

Small sealed chamber hooked up to a tank full of oxygen
= put canary in the chamber as soon as it blacks out
— canary survives (most of the time)

Stack canary bypass: overwrite the canary with the
correct value
— pwned executable thinks our canary is “still alive”

rv

) |

THE HISTORY CHANNEL

Stack canary (stack cookie, stack guard, ...)

Random value, unique per process

Protected functions place it in between local variables and
the return address

Before every ret instruction, the stack canary is checked to
be intact

BYPASS:
- Leak it with another vulnerability
- Restore the correct value when overwriting stack
BYPASS:
- Bruteforce it in case a crash does not kill the program
- Bruteforce byte-by-byte, trying to overwrite only the
first byte of the canary, checking for canary murder
(e.g., in a forking server)

Stack Growth

Local Variables

return address

Previous Function
Stack Frame

sassalppy Alowaspy

NX /W"X / DEP

NX (history)

Originally part of the PaX security patches to the Linux
kernel maintained by grsecurity THE HISTORY CHANNEL

PaX patches not merged into mainline Linux due to
" " . ., grsecurit
unnecessary” features “slowing down the kernel" g i

Alternatively, you could have started a build with make V=1, noticed the
mention of "rap" on all the commandlines, grepped the tree for those

From 2017 onward: open-source = closed-source, sold as strings, and found the source of the flags that way in a few seconds without
. ! having to ask even. Again, all beginner kernel stuff
proprietary blobs
~] Mathias Payer

In consequence: constant drama! :) ' Hindsight is 20/20. Given that there was no documentation, no public

. . . starting point (e.g., a patch dumped somewhere in a user directory), and no
(and some StU-H aCtua]-]-Y belng 1mp]-emented n the kerne]- readme's | think | did a good job. Write documentation and other people
nowadaYS) may use your tools. Stay friendly and reason, don't yell. §

grsecurity
' Does that mean I'm required to use patronizing and childish emojis with

every tweet? @ & &

NX

NX = no execute, W*X = write xor execute, DEP = data
execution prevention

= no simultaneously writable and executable memory Data Execution Prevention - Microsoft Windows

NO more "shellcode on StaCk -]mp I‘Sp - shell" :(To help protect your computer, Windows has closed this program.

MName: Spooler SubSystem App

Publisher: Microsoft Corporation

BYPASS:
Code Reuse:
- ROP (Return Oriented Programming)
- JOP (Jump Oriented Programming)
SROP (Sig-return Oriented Programming)

- Close Message -

- BOC (Basic-block Oriented Programming)
BYPASS:
Abuse the JIT (e.g., RWX pages for javascript execution in
browsers) 10

ASLR

,émmﬁwmm

M A

11

ASLR (history)) A §

) |

Introduced by grsecurity in 2001, officially merged into the

Linux kernel in 2005 THE HISTORY CHANNEL
Temporarily turn it off: e em—
- sysctl -a “kernel.randomize_va_space = stack
Q0" for the whole system
- setarch -R <binary> <arguments> for a single v
invocation
libl
Kernel ASLR added to Linux in 2014 b2

mmap files

— kernel addresses randomized in addition to userspace
= only 6 bits of randomness, easily bruteforced A

heap

exec

LOW

ASLR

Base address of mapped libraries, stack, heap, ... randomized on
each process execution

PIE = ASLR!!!
= binary base address not necessarily randomized

Not included in checksec: OS feature, not encoded in the binary

Makes code reuse (ret2libc, ROP, ...) harder

BYPASS:
Leak the ASLR base address with another vulnerability (e.g., libc
address leak, stack address leak)

LOW

VM space

stack

libl

lib2

mmap files

A

heap

exec

13

ASAN

ASAN (history)

AddressSanitizer (aka ASan) developed by Google as
LLVM pass in 2014, later ported to GCC THE HISTORY CHANNEL

Can be enabled with “-fsanitize=address" at compile
time
= incurs ~2x execution speed slowdown

Additional sanitizers:
- LeakSanitizer (memory leaks)
- ThreadSanitizer (data races and deadlocks)
- MemorySanitizer (uninitialized memory)
- HWASAN, or Hardware-assisted AddressSanitizer
- UBSan, or UndefinedBehaviorSanitizer

15

ASAN

Shadow bytes around the buggy address:

Keeps track of access permissions in “shadow memory” ox6¢0A71177b0: 60 60 00 00 00 60 60 00 0 60 00 00 00 60 0 00

0x0c047fff7fco: 00 60 00 60 0O 6O 0O 6O 0O 6O 00 60 00 60 60 00

:> 1 byte Of Shadow memor‘y for 8 bytes Of used memory 0x0c047fff7fdo: 00 60 0O 6O 00 6O 0O 6O OO 6O 0O 60 00 60 00 00

Bits in shadow memory encode whether bytes in
program memory should be accessible

0x0c047fff7fed: 00 00 00 60 0O 6O OO 6O 0O 6O 00 6O 00 60 00 00
0x0c047fff7ffo: 00 0O GO GO GO OO OO OO OO OO OO OO 0O 0O 00 00
=>0x0c047fFf8000: [fd]fd
0x0c047fff8010:
0x0c047fff8020:
0x0c047fff8030:
0x0c047fff8040:
0x0c047fff8050:
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00

Code is instrumented to add "red zones” (non-accessible R RGN

zones) around stack buffers

around heap allocations

Every memory read or write first checks shadow
memory to see whether access is allowed

BYPASS:

Controlled writes: do not overflow linearly but “skip”

zones

Heap left redzone:

Freed heap region: fd
Stack left redzone:

Stack mid redzone:

Stack right redzone:

Stack after return: f5

malloc and free are instrumented to add red zones Stack use after scope: 8

Global redzone:

Global init order: f6

Poisoned by user: f7

Container overflow: fc

Array cookie:

Intra object redzone: bb

ASan internal: fe

Left alloca redzone: ca

Right alloca redzone: cb
==5011==ABORTING

red

https:/github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm 16

Final Word on the CTF

Deadline extended by a week to have one more exercise session for questions
Heap playground and heap meanu were borked = fixed now :)

If you encounter bugs/problems: let us know!!!

17

