&

AN WD

CS-412 Final Exam (Spring 2022)

May 31, 2022

SCIPER:

Last name:

First name:

. This is a closed book exam. No extra material is allowed. If you have a question, raise
your hand and wait for the proctor.

. You have 75 minutes, and there are 75 points. Use the number of points as guidance
on how much time to spend on each question.

. Be sure to provide (print) your name. Do this first so you don’t forget! Please write
or print legibly. State all assumptions that you make above those stated as part of a
question.

Write your answers directly in the dedicated boxes. If you need more space your
answer is probably too long.

. Leave your CAMIPRO card on the table so it can be checked.

. With your signature below you certify that you solved these problems on your own,
that you turn in your solution, and that there were no environmental or other factors
that disturbed you during this exam or that diminished your performance.

Signature:
Question Points
1 /120
2 /15
3 /20
4 /20
Total

cPrL

Q1) Containing Exploitation Challenge (20 points)

You’re a TA for the SoftSec lab, and you need to set up the infrastructure for the CTF lab. Each
challenge needs to run in its own separate environment, safe from possible exploitation from other
vulnerable challenges. The scoreboard service also needs to be separated from the challenges. The
scoreboard service manages the database with the current status of the ctf (e.g., score per user, login
information, or solved challenges) and serves the user-accessible website. Users can access and look
at challenges, scores, reset their passwords, and so on.

Describe how you would set up all the above services to compartmentalize and avoid
compromise. You are free to split services into multiple smaller ones. If your setup involves multiple
machines, draw a graph to represent their interactions. If your setup involves a containerization
mechanism (e.g., Docker, or virtual machines) state which one you picked and for what reason.

Hint: multiple users might want to try the same challenge at the same time. Make sure each one has
their own unique experience, without interference from other users.

Q2) HW-assisted Control-Flow Integrity (15 points)

Intel CET (Control-Flow Enforcement Technology) provides, among other elements, a new
instruction for forward-edge control-flow integrity (endbr64 and endbr32 for 64 and 32 bit
systems respectively). This instruction must be included right before all functions which are targets
for indirect calls or indirect jumps. For example, any target of an indirect control-flow edge must
necessarily start with the “endbr64” instruction. If an indirect call or branch lands on a different
instruction, the CPU will trigger a fault and stop execution.

Also, we encode the “endbr64” in such a way that older CPUs without this feature will just
interpret the “endbr64” as a NOP instruction, ensuring compatibility with older processors.

1. What are the performance disadvantages in the introduction of Intel CET endbr

instructions for protected applications (think about the binary, the operating system support,
the execution of the program, and the performance of the overall system)?

2. What kind of exploitation techniques does Intel CET endbr instruction mitigate?

3. Why can endbr not protect against Return-Oriented Programming?

4. Does endbr really stop jumping to any non-valid indirect branch target? Can you think of a
way how an attacker could still jump in the middle of a function?
(Hint: x86 is a weird architecture. For example, think about how there are many more ROP
gadgets than the number of compiler-generated ret instructions... why?)

5. What is the target set of this particular implementation of CFI? Why is it considered “easy” to
bypass such an implementation of CFI?

Q3) Mystery Mitigations (20 points)

The company you work for has messed up, they were transferring their whole infrastructure from one
server to another, and the process has corrupted a couple of files, making them illegible. One of the
corrupted files contained the compilation toolchain details, and your task is to identify the applied
mitigations back from the object files and tell what their concrete purpose is. There were two
mitigations in the toolchain, so you get the codebase’s simplest function source code and the 4
resulting compiled object files (without mitigations, with mitigation 1, with mitigation 2, and with
both mitigations).

You spot that, when applying these unknown concrete mitigations, there are major changes in the
functions. The following assembly snippets (Intel syntax) show the changes in the compiled function
(sections that have the same purpose between versions are highlighted in the same color).

Aside from identifying the mitigations, point out all the other existing mitigations you know that
offer similar safety guarantees. Your ability to read x86 assembly may have gotten a bit rusty,
luckily you find a cheatsheet you wrote back when you took CS-412:

x86 Cheat Sheet (Intel syntax)

[a]l] denotes the memory contents pointed by address a, a is an arithmetic
operation of registers and scalars (e.g., rax+rbx*8-0x10)

The FS segment is commonly used to address Thread Local Storage (TLS). When
referencing a TLS slot, we do so by fs:offset

All memory accesses are assumed to use QWORD PTR, which is for 4 words (64
bits) memory access granularity

<VAR> denotes a program variable. If a value doesn’t match with the C
function variables, it is given by the compiler (e.g., <M>)

1: label where to jump/call

call a pc = a push a rsp -= 8 pop a a = [rsp]

push rsp [rsp] = a rsp += 8
mov a, b |[a=>b lea a, [b] |[a =b add a, b|la=a+ b
cmp a, b EQ = a ==»b jne a pc = a if not EQ |sub a, b|la =a - b

C function snippet

uint64_t A[L];

void dumb(size_t n, uint64_t e) {
uint64_t array[L];
memcpy(array, A, L*sizeof(uint64_t));

array[n] = e;
memcpy(A, array, L*sizeof(uint64_t));
return;

No mitigation

Mitigation 1

hitigation 2

hitigation 1&2

push r15 push r15 ush rbp ush rbp
push r14 push r14 ush r15 ush r15
push r12 push r12 ush r14 ush r14
push rbx push rbx ush r13 ush r13
ush r12 ush r12
ush rbx ush rbx
ush rax ush rax
sub rsp,<L>+8 sub rsp,<L>+8
hov ri4, rsi mov rl14,rsi ov rl14,rsi ov rl14,rsi
ov rbx, rdi mov rbx, rdi ov ri15, rdi ov r15, rdi
ov ri13, [<M>] ov rax, [<M>]
ov rbp, fs:[r13] ov rbp, fs:[rax]
lea rbx, [rbp-<L>] lea rbx, [rbp-<L>+0x10]
mov fs:[r13], rbx ov fs:[rax], rbx
mov rax, fs:0x28 Eov r13, fs:0x28
mov [rsp+<L>], rax ov [rbp-06x8],r13
lea r15,[<A>] lea r15, [<A>] lea r12, [<A>] lea r12, [<A>]
ov rl12,rsp mov r12,rsp
ov edx,<L> mov edx,<L> ov edx, <L> ov edx, <L>
ov rdi,r12 mov rdi,ri12 Eov rdi, rbx Eov rdi, rbx
ov rsi,ri15 mov rsi,r15 ov rsi, ri12 ov rsi,ri12
call <memcpy@plt> call <memcpy@plt> [call <memcpy@plt> call <memcpy@plt>
ov [rsp+rbx*8], r14mov [rsp+rbx*8],r14mov [rbp+r15*8-<L>],r14mov [rbp+r15*8-<L>+0x10],r14
ov edx,<L> mov edx,<L> ov edx, <L> ov edx, <L>
ov rdi,r15 mov rdi,r15 ov rdi, r12 ov rdi,r12
ov rsi,ri12 mov rsi,ri12 ov rsi, rbx ov rsi, rbx
call <memcpy@plt> call <memcpy@plt> all <memcpy@plt> all <memcpy@plt>
mov rax, fs:0x28
cmp rax, [rsp+<L>] mp r13,[rbp-0x8]
jne f jne f
ov rax, [<M>]
ov fs:[r13], rbp ov fs:[rax],rbp
add rsp,<L>+8 add rsp,<L>+8 dd rsp, 6x8 dd rsp,0x8
pop rbx pop rbx op rbx op rbx
pop r12 pop ri12 op ri12 op ri12
pop rl14 pop ri14 op ri13 op ri13
pop r15 pop ri15 op ri4 op ri14
op ri15 op ri15
op rbp op rbp
ret ret ret ret
f: call <fail> : call <fail>
1. Name and explanation of Mitigation 1:

2. Name and explanation of Mitigation 2:

3. Comparison with other mitigations that offer similar safety guarantees

Q4) Better Crash Debugging (20 points)

We aim to design a human-in-the-loop crash debugger that facilitates identifying the root cause of a
crash. The debugger would require the developer’s intervention whenever an assumption needs to be
made or an ambiguity resolved. Starting from a crashing test case, the debugger should help the
developer trace the execution back to the root cause. The root cause of a bug is the first point in the
code where an assumption is violated or unexpected behavior is observed.

1. How can the debugger leverage concolic execution to identify the culprit? What is the role of
the developer in guiding concolic execution?

2. Is concolic execution sufficient to identify the root cause of ANY bug? Justify.

3. The developer is now interested in determining whether a certain assumption in their code can
be broken by some input. The assumption can only be evaluated inside a function buried deep
in their code. To assist in such scenarios, the debugger should also support backward-slicing.
Backward-slicing is the process of symbolically constructing partial paths (slices) that reach
or affect a certain location or variable in the program. How can backward-slicing be helpful in
this case?

4. What data structure must the debugger build from the program to identify and explore the
different paths that could reach the function in question?

5. In practice, results obtained from the described backward-slicing method may be unsound.
What are the reasons and sources for such unsoundness? Justify.

6. What is the main challenge for ensuring that this analysis is complete? Give an example from
your experience where you encountered incompleteness of symbolic execution.

