
Corrected

Teacher: Prof. Dr. ETH Mathias Payer
CS-412 Software Security – Final Exam
30th May 2023
Duration: 120 minutes

1
Anon Ymous

SCIPER : 999999

Do not turn the page before the start of the exam. This document is double-sided, has 16
pages, the last ones possibly blank. Do not unstaple.

• Place your student card on your table.
• No other paper materials are allowed to be used during the exam.
• Using a calculator or any electronic device is not permitted during the exam.
• For each multiple-choice question, mark the box(es) corresponding to the correct answer(s). Each

question has one or more correct answers.
• For each multiple-choice question, we award:

2 points by default,
0 points if you give no answer,

− 2
3 point per incorrectly checked or missed answer.

Each question has a minimum of 0 points, we do not award negative points.
• For each open-ended question we provide the awarded number of points next to the question.
• Use a black or dark blue ballpen and clearly erase with correction fluid if necessary.
• If a question is wrong, we may decide to nullify it.

Corrected

First part: multiple choice questions

Question 1
Select all of the regions that ASLR randomizes the address when PIE is not enabled in x86-64 Linux:

The heap

The gdb server stub

The libraries

The stack

The executable

Explanation:

Question 2
Which of the following statements about code instrumentation is/are correct?

Binary rewriting-based coverage collection has lower runtime overheads than compiler-based instru-
mentation.

We should instrument basic blocks when collecting edge coverage.

The instrumentation code for coverage collection should not change the original functionality.

We can only do binary rewriting on position-independent code (PIC).

Explanation:

Question 3
Which of the below security policies are violated by the following code snippet?

1 char *foo(int b) {
2 char c = (char)(b & 0xff);
3 return &c;
4 }
5

6

7 int main(int argc , char *argv []) {
8 char buf [100] = {0};
9 int x = 0x539; // 1337

10 int y = (int)(*foo(x));
11 putc(buf[y]);
12 return 0;
13 }

Type safety

Spatial memory safety

None of the other answers

Temporal memory safety

Explanation: Temporal memory safety is violated because we access a variable that has gone out of scope
via a pointer to a stack object returned from function foo. Spatial memory safety is not violated because
(assuming that the undefined behavior introduced by the temporal memory safety violation does not cause
any issues here, which is a valid assumption based on how stack frames are allocated by compilers) the value
of y would be 1337 & 0xff == 0x539 & 0xff == 0x39 == 57 which is well in the bounds for buf. Type
safety is also not violated because none of the casts causes unintended memory accesses. Note that *(int
*)foo(x) instead of (int)*foo(x) could be considered a type safety violation because the char pointer
would be widened to an int pointer through which the dereference would access memory outside of the char’s
boundaries.

Corrected

Question 4
What is/are the goal/s of compartmentalization?

Make faults more severe as the surrounding code is smaller.

Better performance (i.e., lower overhead) since a compartment can fail without affecting others.

Allow easier abstraction of functionalities across components.

Isolate faults to individual (ideally small) components.

Explanation:

Question 5
Which of the following statements about mitigations are correct?

Shadow stacks can be implemented in software with zero overhead.

Safe stacks protect against corruption of all data on the stack.

Code-Pointer Integrity (specifically the implementation described in the slides) uses a separate stack
to protect code pointers.

Control-Flow Integrity can efficiently protect the forward edge but, when using target sets, is limited
on the backward edge

Explanation:

Question 6
Which of the following statements about libFuzzer is/are correct?

Unit tests may serve as foundation to create libFuzzer fuzzing stubs.

It is better to put narrow targets into the fuzzing stubs, e.g., if a target can parse several data formats,
split it into several targets, one per format.

In libFuzzer’s default mode (not fork-mode), the tested APIs must not contain exit().

libFuzzer can only test single-threaded targets.

Explanation:

Question 7
Current software is complex and often relies on external dependencies. What are the security implications?

Closed source code is more secure than open source code as it prohibits other people from finding
security bugs.

During the requirement phase of the secure development lifecycle, a developer must list all the required
dependencies.

It is necessary to extensively security test every executable on a system before putting it in production.

As most third party software is open source, it is safe by default since many people reviewed it.

Explanation:

Corrected

Question 8
Which of the following statements about testing is/are correct?

Tests prove the presence of bugs but not their absence.

Tests prove the absence of bugs but not their presence.

In static analysis, determining the correct target set of indirect calls is typically challenging but required
to minimize over-approximation of targets.

Concolic execution specializes in finding bugs close to the path of the provided concrete input.

Compared to dynamic analysis, static analysis is more susceptible to state space explosion.

Explanation:

Question 9
Which of the following attack vectors apply to mobile Android systems?

Overprivileged apps may be abused as a confused deputy, allowing malicious apps to steal access to
their privileges.

Hardware vendors like amung are primarily interested in making money and not in providing software
updates, resulting in outdated software that is vulnerable to attacks.

Malicious apps can intercept network traffic of benign apps.

Apps may maliciously declare intent filters to receive intents from benign apps.

Explanation:

Question 10
Which of the following statements about fuzzing is/are correct?

Greybox fuzzing is always the better alternative to blackbox fuzzing.

Generational fuzzing requires more manual work (to specify the generator policies) than mutational
fuzzing, but can generate high-quality seeds.

Greybox fuzzing keeps track of concrete program paths to abstract behavior.

Blackbox fuzzers can make use of initial seeds.

Explanation:

Question 11
For security reasons, you accept the performance and memory overhead introduced by common sanitizers
and deploy them in your user-facing production server software. Assuming that all memory safety bugs in
your software are detected by the sanitizers, which of the following properties do the sanitizers provide to
your code?

Confidentiality of the program data

Accountability of accesses to the program

Availability of the program

Integrity of the program data

Explanation: Given that there are no memory bugs not covered by the sanitizers and the program logic
itself is sound, data leaks (confidentiality) and unintended data modification (integrity) are prevented by
sanitizing data reads and writes. Availability however is not guaranteed: triggering a bug covered by a
sanitizer typically leads to program termination. Accountability is not something that common sanitizers
can provide. Accountability depends wholly on the program logic (and should already be part of the “sound”
program logic).

Corrected

Question 12
In x86-64 Linux, the canary is always different for every?

Process

Function

Thread

Namespace

Explanation:

Question 13
Which of the following statements are true about command injection?

To mitigate command injection, it is best to replace powerful shell commands (e.g., system()) with
less privileged alternatives such as read_file().

Command injection can be mitigated, in general, by prohibiting the ";" character.

Command injection allows the attacker to launch new processes or invoke internal shell commands.

The root cause of command injection is the lack of distinction between data plane and control/code
plane.

Command injection is unique to PHP web applications.

Explanation:

Question 14
What makes C++ inherently NOT type safe (i.e., unsafe casts may cause an object of type X be interpreted
as type Y even though types X and Y are not related)?

The absence of type information (and checks) for non-polymorphic objects at runtime.

Class and struct are indistinguishable at run-time due to their memory layout.

The polymorphic inheritance between interface and classes.

The use of function pointers makes static analysis intractable.

Explanation:

Question 15
For which kind of bugs does default LLVM provide sanitizers?

Race conditions between threads

Buffer overflows

Memory leaks

Logic bugs

Explanation:

Corrected

Question 16
Does AddressSanitizer prevent all use-after-free bugs?

No, because UAF detection is not part of ASan’s feature set.

Yes, because free’d memory is unmapped and accesses therefore cause segmentation faults.

Yes, because free’d memory chunks are poisoned.

No, because quarantining free’d memory chunks forever prevents legit memory reuse and could poten-
tially lead to out-of-memory situations.

Explanation: ASan can detect certain but not all UAF bugs. Free’d memory chunks are put in quarantine
and the corresponding memory is poisoned. However, the chunks are released from quarantine after a while
to allow memory reuse. While this drastically reduces the probability of undetected UAF bugs, it cannot
prevent all of them.

Question 17
Which defense(s) highlight the principle of least privilege in software security?

A stack canary because it will signal any stack-based attack.

DEP bits by disallowing execution on certain memory pages because code is restricted to code pages.

CFI protection on the forward edge because the check limits reachable targets.

Applying updates regularly because software updates always reduce privileges.

Explanation:

Question 18
Daemons are just long running processes. When applying mitigations to these processes, several aspects
change. Which ones?

DEP becomes less effective as compiler optimizations are turned on, allowing the attacker to inject
new code.

ASLR becomes less effective as multiple requests across different users are handled in a single process.

Stack canaries become less effective as multiple requests are handled by the same thread.

CFI becomes less effective as the concurrent clients cause more targets to be available.

Explanation:

Question 19
Which of the following statements about coverage-guided fuzzing is/are correct?

Due to the coverage feedback, a small random perturbation of a seed can have a significant impact on
further exploration.

Fuzzers that have higher code coverage always find more bugs.

Counting the number of times the covered code has been executed provides a more fine-grained view
of program behavior than only "covered/not covered" binary code coverage.

Redundant seeds in the corpus will reduce fuzzing efficiency.

Explanation:

Corrected

Question 20
Which of the following hold(s) true about update deployment in the secure development lifecycle?

Updates may bring new code that may be buggy, so additional monitoring is required after deploying
an update.

One motivation for automatic updates is for manufacturers to ensure that users have the latest code
installed.

You should always deploy third party updates automatically and immediately in your project.

Not allowing rolling back to previous versions is necessary in the Secure Development Lifecycle.

Explanation:

Question 21
Which of the following measures will always improve fuzzing executions per second?

Reducing overheads imposed by the fuzzing framework.

Performing structure-aware input generation.

Collecting code coverage as feedback.

Providing dictionaries for input generation.

Explanation:

Question 22
Which of the following hold true for cross-site scripting (XSS)?

XSS can only be used to leak private data of a user.

Reflected XSS requires that the server stores the injected code but the user does not need to click on
any special link.

XSS is a form of code injection that gives the attacker arbitrary code execution.

Client-side XSS is a unique problem of GMail.

Explanation:

Question 23
Which of the following in Linux x86-64 assembly snippets can be used as a gadget AND can be chained with
more gadgets (e.g., in a ROP/JOP chain)?

xor rbx, rbx; xor rbx, -1; push rbx; ret

mov eax, -1; call rax

pop rbx; pop rax; ret

pop rbx; pop rax; jmp rax

Explanation:

Corrected

Question 24
Which of the following apply to recent Android-based mobile systems but not to Linux-based desktop
systems?

All apps run in a strict container with only limited system calls available.

Apps should use the binder interface to communicate with other apps.

Arbitrary apps can exchange files through shared directories.

By default, each app runs as its own user.

Explanation:

Question 25
Given this program snippet which is part of a large (> 10000 LoC) codebase, which of these statements
are true, given that the contents of string "s" are attacker controlled, the attacker can run the function f
only once, the attacker has access to the binary and the binary is compiled for x86_64 on a modern Linux
system?

1 #include <string.h>
2 void f(char* s) {
3 char b[100] = {0};
4 memcpy(b, s, strlen(s));
5 printf("\%s", b);
6 }

If this program is compiled with no mitigations, an attacker can gain remote code execution.

If this program is compiled with DEP (Data-Execution Prevention) and no other mitigation, an attacker
can gain remote code execution.

If this program is compiled with stack canaries and no other mitigation, an attacker can leak the
canary.

If this program is compiled with stack canaries and no other mitigation, an attacker can reliably gain
remote code execution.

Explanation:

Question 26
Which of the following statements about symbolic execution is/are correct?

Symbolic execution requires actually running the target program.

Symbolic execution can efficiently handle and solve constraints in programs with simple logics but large
input space.

State space explosion is a common challenge for symbolic execution.

Symbolic execution can always accurately model a system’s environment (e.g., system calls, file I/O,
and network I/O).

Explanation:

Corrected

Question 27
Which of AddressSanitizer (ASan), MemorySanitizer (MemSan), UndefinedBehaviorSanitizer (UBSan) or
ThreadSanitizer (TSan) can detect bugs (if any) in the following code snippet?

1 int factorial(int x) {
2 // Calculate and return the factorial of a number
3 int result = 1;
4 for (int i = 1; i <= x; i++) {
5 result *= i;
6 }
7 return result;
8 }
9

10 int main(int argc , char *argv []) {
11 printf("%d\n", factorial (32));
12 return 0;
13 }

ASan

UBSan

MemSan

TSan

There are no bugs in the snippet.

There is at least one bug in the snippet, but none of the mentioned sanitizers can detect it.

Explanation: The integer overflow during multiplication is detected by UBSan.

Question 28
Which of AddressSanitizer (ASan), MemorySanitizer (MemSan), UndefinedBehaviorSanitizer (UBSan) or
ThreadSanitizer (TSan) can detect bugs (if any) in the following code snippet?

1 int sum_up_to(int x) {}
2 // Return sum of integers up to x
3 int result = x;
4 for (int i = x; i >= 0; i--) {
5 if (INT_MAX - i <= result) {
6 break;
7 }
8 result += i;
9 }

10 return result;
11 }

ASan

TSan

There are no bugs in the snippet.

MemSan

There is at least one bug in the snippet, but none of the mentioned sanitizers can detect it.

UBSan

Explanation: The double summation of x is considered a bug but it is not detected by a sanitizer since
sanitizers do not reason about program logic.

Corrected

Question 29
Which of AddressSanitizer (ASan), MemorySanitizer (MemSan), UndefinedBehaviorSanitizer (UBSan) or
ThreadSanitizer (TSan) can detect bugs (if any) in the following code snippet?

1 int sum_array(int *arr , size_t len) {
2 // Return sum of array elements
3 int result = 0;
4 for (size_t i = 0; i <= len; i++) {
5 result += arr[i];
6 }
7 return result;
8 }

UBSan

TSan

ASan

There is at least one bug in the snippet, but none of the mentioned sanitizers can detect it.

There are no bugs in the snippet.

MemSan

Explanation: The loop counts one element too far. The out-of-bounds-access is detected by ASan.

Question 30
Which of AddressSanitizer (ASan), MemorySanitizer (MemSan), UndefinedBehaviorSanitizer (UBSan) or
ThreadSanitizer (TSan) can detect bugs (if any) in the following code snippet?

1 int min_array(int *arr , size_t len) {
2 // Return the minimum value in an array
3 int result;
4 for (size_t i = 0; i < len; i++) {
5 if (arr[i] < result) {
6 result = arr[i];
7 }
8 }
9 return result;

10 }

There is at least one bug in the snippet, but none of the mentioned sanitizers can detect it.

MemSan

There are no bugs in the snippet.

TSan

ASan

UBSan

Explanation: Uninitialized variable is detected by MemSan.

Corrected

Second part: open-ended questions

Answer in the empty space below each question. Your answer should be carefully justified, and all the steps
of your argument should be discussed in details. Leave the check-boxes empty, they are used for the grading.

Question 31: This question is worth 10 points.

0 1 2 3 4 5 6 7 8 9 10

You got hired as a software engineer right after the software security lecture to work in a bank desperate for
talent. Your first mission is to implement some extra features on top of the customer database to handle
new privacy regulations forced by the EU coming into effect in three months. The implementation of these
features is time-critical and will fill up almost all your time.
You realize that the database was developed in-house in C 40 years ago (a few 10’000s LoC) and is running
without any mitigations as it was compiled with an ancient version of GCC running on a Linux virtual
machine from 2000. The other developers did not take any software security classes and were purely focused
on implementing features. Your boss tells you not to worry about code quality of this database engine as
the availability is good (>99.9%) and the bankers using the system really do not want instability.
Even if it is not part of your task, you are still worried and schedule a discussion with your boss to speak
about the security implications of the current implementation of the database.
During your preparation, you come up with two practical and acceptable ideas for improving the security of
the database (e.g.,unrelated to your primary task of implementing new features) that could be implemented
in the three next months in your spare time. What are they? What is their advantage? How would you
argue for them? Discuss trade-offs and reasons why these ideas are feasible compared to alternatives.

Corrected

Question 32: This question is worth 15 points.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

You’re a compiler engineer in a software company and you are tasked to develop a compiler for your company’s
new architecture RISC-X from scratch. RISC-X uses a 64-bit virtual address space similar to x86-64. Because
of the popularity of sanitizers on other platforms, you intend to develop support in your toolchain to detect
out-of-bound memory accesses.
Draft the design for such a tool and justify your design giving a high level overview over the policy in
general and the necessary instrumentation (not more than 100 words). Explain whether (and why) your
toolchain instruments the program only at compile time, only at run time, or both. Are there potential
drawbacks introduced by your instrumentation? If yes, which and why would they occur? Can you think of
optimizations that reduce the impact of potential drawbacks?

Corrected

Question 33: This question is worth 20 points.

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Consider the following code snippet:

1 int maze_game(char* input , unsigned int input_len){
2 unsigned int ox , oy , rand_num , i = 0, x = 0, y = 0, score = 0;
3 unsigned char *maze = (unsigned char*) malloc (512*512);
4 if (maze == NULL) return -1;
5 // For simplicity , we omitted the maze initialization which you can assume to be ←↩

correct.
6 // Maze initialization: bytes are initialized as ' ' (pass , multiple), '|',
7 // '-', (wall , multiple , appear at random locations on the boundaries of the
8 // maze and inside the maze), 'x' (bomb , multiple), '#' (treasure , only one ,
9 // with coordinates (511, 511))

10

11 // cheat code: win directly!
12 if (crc32(input , input_len) == 0xdeadbeef) {
13 // `crc32 ()` returns a 32-bit crc of the passed in char* array
14 score = 1024 / i;
15 printf("Congratulations , you've won the game! Your score is: %u.\n", score);
16 free(maze);
17 return 1;
18 } else {
19 while(i < input_len) {
20 ox = x; oy = y;
21 switch (input[i]) {
22 case 'w': y--; break;
23 case 's': y++; break;
24 case 'a': x--; break;
25 case 'd': x++; break;
26 default: i++; continue;
27 }
28 switch (maze[y*512+x]) {
29 case 'x':
30 srand ((unsigned)time(NULL));
31 rand_num = rand();
32 if (rand_num < 10) { // the bombs explode with small probability
33 printf("The bomb explodes! Game over :(");
34 return 0;
35 }
36 break;
37 case '|':
38 case '-':
39 x = ox; y = oy;
40 break;
41 case '#':
42 score = 1024 / i;
43 printf("Congrats , you found the treasure! Your score is: %u.\n", score←↩

);
44 char treasure_str [101] = {0};
45 FILE* treasure_file = fopen("treasure", 'r');
46 fgets(treasure_str , 100, treasure_file);
47 printf("Your treasure is: %s\n", treasure_str);
48 fclose(treasure_file);
49 free(maze);
50 return 1;
51 }
52 i++;
53 }
54 }
55 free(maze);
56 return 0;
57 }

Corrected

(a) Provide the line numbers for four lines introducing bugs and state their bug type [stack overflow, heap
overflow, integer overflow, use after free, double free, bad free, memory leak, format-string bug, division
by zero, NULL pointer dereference, unchecked system call return value]. For memory leaks, also list the
maximum line number before which the missing free() can be inserted; for other bug types, also list
the line number of where the bug would manifest (e.g., crash because of NULL-pointer dereference).

(b) Which bug(s) is/are hard for symbolic execution to find? List the line number(s) and justify.

(c) Which bug(s) is/are hard for fuzzing to find (the fuzzer mutates the content of ‘input‘)? List the line
number(s) and justify.

(d) When fuzzing this function, for which bug(s) is the code coverage feedback not helpful in finding them?
List the line number(s) and justify.

Corrected

Question 34: This question is worth 15 points.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Describe, step by step, how an attacker could get arbitrary code execution on a binary compiled from the
source code below. You are not required to write the full exploit code, but you are required to provide low-
level details of how the attack works. Be precise in your description (i.e., what you do and why). Generic
explanations will not be given points (e.g., "the attacker will find a libc leak somewhere on the stack" is not
precise enough, you need to specify where and how).
The binary is compiled with the following mitigations:

• RELRO: full

• ASLR: enabled

• PIE: not enabled

• FORTIFY: not enabled

• CANARIES: enabled

Important notes:

• You may assume there is a win() function in the binary that spawns a shell, but if you use this you
are awarded only 50% of the points for this question. For full points, use conventional exploitation
methods such as ret2libc.

• You know the exact version of the libc used, and know the offsets between symbols inside said libc.

• The binary is very small, and does not contain almost any useful gadget for ROP chains. The only
one you found is a "pop rdi; ret".

1 void win() {
2 system("/bin/sh"); // only 50% of the points if you use this!
3 }
4

5 int ask_question () {
6 char buf [16];
7 gets(buf);
8 return 2;
9 }

10

11 char buf [100];
12 int main() {
13 char* p_buf = buf;
14 char not_really [42];
15

16 puts("Hello , What's your name?")
17 read(1, not_really , 200);
18 printf("Hi %s, here's your cookie: %s", not_really , p_buf);
19 printf("So %s, do you like this exam?", not_really);
20

21 ask_question ();
22

23 printf("Wow , %s, no need to be salty ...", not_really);
24

25 return 0;
26 }

Corrected

