Binary analysis and CTF

CS412 - Software security

(slides adapted from Luca and Flo's)

whatisa CTF?

it’s not this

it’s not this either

it’s not the movie

it is this!

Important facts

- Will be hosted at https://cs412.epfl.ch

- Register an account there. Only “@epfl.ch” emails allowed.

- Objective of almost every challenge is to “pop a shell” and then cat the flag.
The flag will always be in a file called “flag”.
The flag format Is “SoftSec{[0-9a-zA-Z -]+}"
Submit flags by copy-pasting them into the website.

- Challenge difficulty is inversely proportional to its score.
- You need to provide the writeup of the hardest chall you solve

- CTF starts now! Ends on March 20th 23:59

https://cs412.polygl0ts.ch

Exploitation: Disclaimer

@ This section introduces (simple) software exploitation

e We will discuss basic exploitation techniques (much more in
the labs!)

@ We assume that the given software has (i) a security-relevant
vulnerability and (ii) that we know this vulnerability

@ Use this knowledge only on programs on your own machine

It is illegal to exploit software vulnerabilities on remote machines
without prior permission form the owner.

Exploitation: Disclaimer

It is illegal to exploit software vulnerabilities on remote machines
without prior permission form the owner.

It is illegal to exploit software vulnerabilities on remote machines
without prior permission form the owner.

It is illegal to exploit software vulnerabilities on remote machines
without prior permission form the owner.

Cheating

- It's a hacking competition

- Like in real life, you can cheat as
long as you don't get caught

- There are some anti-cheat
measures we are running

- Good luck!

checksec

First rule of pwning - always run checksec first

checksec

Amazing bash script that lists which security mitigations are implemented into a binary

slimmo609/
checksec.sh

Checksec.sh Now integrated into pwntools (see later) as
pwn checksec

A 35 © 12 w 1k ¥ 242 O

Contributors Issues Stars Forks

checksec

You run it like pwn checksec <binary>. This is an example output of the script

[pwn-stack-bufov]$ pwn checksec chal

[*1 '/home/smolene/phd/cs412/cs412-SoftSec/labs/ctf/challenges/pwn-stack-bufov/chal’
Axch: amd64-64-1little

RELRO: Partial RELRO
Stack:

NX:

PIE:
SHSTK:
IBT:
Stripped:

The things you need to look out for are:
1. stack canaries
2. PIE (position independent executable).
3. stripped

The rest is not relevant for this lab.

GEF

gdb overdosing on steroids

String]

@ 0x0

GDB (Ieft) VS GEF (righ) igi20007ffff7ffcca0 5 0x0004095d00000000

: 0x0
H 0x0000000000000000
| ¥ &
1 0x00007ffff7dd1b78 X 00060 0 > 0x0000000000000000
1 0x20000
(gdb) info breakpoints : 2
: 0x00007ffff7fec700 > 0x00007ffff7fec700 > [loop detected]

Num Type Disp Enb Address What ¢ ol
. = t ? : ox
1 breakpoint keep y 0x000000000040053b in factorial at example.c:4 : 0x246
(gdb) run ;
Starting program: /home/akulkarni/projects/gdb-basics/factorial e
: [carry PARITY adjust ZERO sign trap INTERRUPT direction overflow resume virtualx86 identification]
: 0x002b : 0x0033 : 0x0000 : 0x0000 : 0x0000 : 0x0000

0x0000000000000001

Breakpoint 1, factorial (n=5, a=1) at example.c:4
: = : 3 0[+0x0000: 0x0000000000000000 ¢ $rsp
4 printf("Value of n is %d\n",n); 3 |+0x0008: 0x0000000000000000
P43 " +0X0010: "myfile.txt"
(gdb) condition 1 n== 8 |+0x0018: 0x0000000000007478 ("xt"?)

: X +0x0020: 5 0x0000000000000001
(gdb) info breakpoints +0x0028: 0xd7c3f14d3cddbooo

Num Type Disp Enb Address What : KREE K
1 breakpoint keep y 0x000000000040053b in factorial at example.c:4
stop only if n==
breakpoint already hit 1 time , ; ; QuoF [rbp-0x28], ra
(gdb) continue Dxi007a2 <hainss, Daooroe <wainios
0x4007a4 <main+75> rax, [rbp-0x20]

0x4007a8 <main+79> i, rax
5 0x4007ab <main+82> edi, 0x400876

factorial (n=2, a=60) at example.c:4 i // pri}e:@xme@mfrfffrfesm > 0x0000000000000000, szFileName=0x00007fffffffe540 > “myfile.txt"
printf("Value of n is %d\n",n); if (pFile == NULL)
PrintFError ("Error opening '%s'",szFileName);
else

// file successfully open
[#0] Id 1, Name: "vsnprintf", , reason: SINGLE STEP
[#0] 0x400799 > Name: in()

gef>

GEF

Install it by executing one of the following: (instructions from https://github.com/hugsy/gef)

via the install script
using curl
$ bash -c "$(curl -fsSL https://gef.blah.cat/sh)"

using wget
$ bash -c "$(wget https://gef.blah.cat/sh -0 -)"

or manually
$ wget -0 ~/.gdbinit-gef.py -q https://gef.blah.cat/py
$ echo source ~/.gdbinit-gef.py >> ~/.gdbinit

GEF

Install it by executing one of the following: (instructions from https://github.com/hugsy/gef)

via the install script
using curl
$ bash -c "$(curl -fsSL https://gef.blah.cat/sh)"

using wget
$ bash -c "$(wget https://gef.blah.cat/sh -0 -)"

or manually
$ wget -0 ~/.gdbinit-gef.py -q https://gef.blah.cat/py
$ echo source ~/.gdbinit-gef.py >> ~/.gdbinit

After installation, it can be removed by removing the “source ...” line in your .gdbinit

GEF

> Provides a much better interface that updates on every prompt
Use command “context” to print it again

> The only dependencies are gdb (> 8.0) and python (> 3.6)
> Easily extensible in python

> So many new useful commands:
- “checksec”
- “vmmap”
- “heap chunks”
- “registers’
- “telescope”

> Try the demo live here (user: gef | pass: gef-demo)
> Not terrible gef documentation here

https://demo.gef.blah.cat/
https://hugsy.github.io/gef/

GEF

GEF is not the only steroid for GDB
Among the more famous, there are “Pwndbg” and “PEDA”.

Use whatever you want, they are basically all the same.

pwntools

Abbreviation for “Popping Shells Left And Right”

pwntools

Exploit wrapper: stack based

Goal: control the environment

#define BUFSZ 0x20

#define EGGLOC Ox7fffffffefd3

int main(int argc, char* argv[]) {
char shellcode[] = "EGG=..."; // shellcode
char buf [256] ;
// fill buffer + ebp with Ox4l's
for (int i=0; i <BUFSZ+sizeof (voidx*); buf[i++]='A');
// overwrite RIP with eggloc
char *xbuff = (char*x*) (&buf [BUFSIZE+sizeof (void*)]);
(buff++) = (void)EGGLOC; *buff = (void*)0x0;
// setup ezecution environment and fire exploit
char *args[3] = { "./stack", buf, NULL };
char *envp[2] = { shellcode, NULL};
execve("./stack", args, envp);
return 0;

VS

from pwn import *

nopsled = b"\x90"*100
shellcode = b"\x31\xdb\x89\xd8\xb0\x17\xcd\x80\x48\x31\x

padding = b"A"*(256-1len(shellcode)-len(nopsled))
padding += b"B"*8
padding += p64(0x7fffffffdec4)

payload = nopsled + shellcode + padding

p = process("./example")
p.recv()
p.sendline(payload)
p.interactive()

pwntools

Primary tool used to write exploits (for CTFs, but not only)
Manages all the boring bits of low-level talking with an executable / running process
Makes it very convenient to test an exploit locally and then running it on a remote endpoint
Other features:

- Automates parts of exploit writing

- Fancy debugging setup
- Automates some parts of binary analysis

let’s get started

Run the following in your shell:
$ pwn template <binary> > sploit.py

This will generate a nice template script you can use to get started

pwntools “tubes”

io = process(“./vulnerable executable”) # sploit local binary

io = remote(“cs412.epfl.ch”, 31337) # sploit some guy’s server
io.send(b”Hello\n”) received = io.recv(6)
io.sendline(b”Hello”) received = io.recvline()
io.sendafter(b”Hi”, b”Hello”) received = io.recvuntil(b”Hello”)

io.sendlineafter(...) received = io.recvall(timeout=1)

pwntools fancy logging log.debug(“aaargh”)

log.success(“aaargh”
log.info(“aaargh”) . (gh™)

log.failure(“aaargh”)
log.warn(“aaargh”)

log.warn_once(“aaargh”)
log.error(“aaargh”)

01 logging example.py
is an info line!
is an warn line!
is an success line!
] This is a failure line!
[CRITICAL] This is a critical line...
[ERROR] This is a fatal error... Better catch it!

Nice save!

This is an indented line! I have no bullet in front

log.info once() can make sure you don't see the same message more than once..
log.warn once() does the same thing as well!

You can see me for now!

Can you see this one with the context.log level change again?

pwntools playing with formats

b64e(bytes); b64d(str) # Base64 encode/decode

enhex(bytes); unhex(str) # Hex encode/decode

p64(integer); u64(bytes) # Pack / unpack integer in little endian
p32(integer); u32(bytes) # Same as above, but for 32 bits

Remember: every single number you send needs to be “packed”; every single
number you receive needs to be “unpacked” because of endianess.

Pointers included, they are numbers too!

Sequence of bytes do not need to be packed (e.g. strings)

pwntools playing with elves, binary analysis

b = ELF(“binary”)

b.symbols[“func1”] || b.symbols.funcl # addr of funcl
b.got[“puts”] # addr of got entry for puts

b.bss() # addr of bss section

b.checksec() # prints checksec

b.asan # True if compiled with AddressSanitizer

pwntools cyclic

>>> cyclic(16)
‘aaaabaaacaaadaaa’

>>> cyclic find(‘baaa’)
4

>>> cyclic find(‘aaca’)
6

>>>

pwntools fancy debugging

instead of io = process(“./binary”), we can do:

io = gdb.debug(“./binary”)

This will spawn a new terminal with gdb attached to your
exploit.

Amazing to debug what is wrong. You can even provide a gdbscript
optional arguments with commands to send to gdb,
e.g. gdbscript="b main”

pwntools fancy debugging

Warning! this will only work if pwntools know what is the
terminal

If you are using a custom terminal you need to tell pwntools how
to invoke it:

context.terminal = [“st”, “-e”, “bash”, “-c”]
io = gdb.debug(“./binary”)

Very often the best solution is to use pwntools inside tmux
(works out of the box)

Chad’s tips on pwning

%

You should listen to me
< Z

not to random people
on the internet

TIPS & TRICKS for pwning more stuff

- Local exploit working but not the remote one? Make sure you are sending (or
not) the right amount of newlines (\n), that you wait before sending data
(sendafter(...)), etc.

- Hackers descend from vampires. Most challs were written during the night.
Most flags are also caught in this timeframe. Don't waste those hours
sleeping!

- Working together is encouraged! Sharing solutions or flags is banned,
though.

- If your exploit is not working even locally, try to debug it verifying that each
step is correct (e.g. if you leak the canary, verify manually with gdb that it's
the correct value)

TIPS & TRICKS for pwning more stuff

- All challenges are hosted on a docker with Ubuntu 24.041 LTS. If your exploit
does not work remote, try to replicate the remote environment (run the
challenge in an Ubuntu 24.041 LTS container).

Alignment issues or libc shenanigans can depend on the distro you use.

- checksec immediately, it's the first thing to know

The decompiler

“‘Reversing is a relaxing hobby” - no one

The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out.

Machine Code Source/Pseudo-Source Code

or > Decompiler > .
High Level Language
Byte Code (Hig guage)
|
£ |
' D '
| I \- Some alterations required I
——————————— -(CompilerIQ—-—-—-—---—q-—-—
\

.

~
-~

The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out.

Machine Code Source/Pseudo-Source Code

or > Decompiler > .
High Level Language
Byte Code (Hig guage)
|
£ _ |
: D '
| ' \- Some alterations required I
——————————— -{Compilerlﬂ—-—-—-—-—q—-—
\ W

SR

The best decompiler is the one which can produce an exact copy of the executable when recompiling
the source code. This is fantasy and very rarely happens.

The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out.

Machine Code Source/Pseudo-Source Code

or > Decompiler > .
High Level Language
Byte Code (Hig guage)
|
£ _ |
: D '
| ' \- Some alterations required I
——————————— -(Compiler /Q—————q——
\ W

SR

The best decompiler is the one which can produce an exact copy of the executable when recompiling
the source code. This is fantasy and very rarely happens.

A good decompiler is like a wet dream for a reverse engineer and it is sought after like the philosopher’s
stone. No good decompilers exist.

The decompiler

We strongly recommend Ghidra.

T e o] = st tre

For your irresistible Win 2000 vibes.
Outdated even for vaporwave.

The decompiler

We strongly recommend Ghidra. Or, in alternative, there’s IDA Free.

® IDA - C:\Users\media\Downloads\MODIFIED INTEL USB 3 DRIVER\MOD\iusb3hub.sys - X
File Edit Jump Search View Debugger Options Windows Help
Bhie-- i Hh S 3 e @@ dad et F e X > O O [Nodebugoer =] %l A i B

Library function | Data [l Regular function [l Unexplored [l Instruction ' External symbol

[F] Functions window oe& x E mAvew-A B [E HexView-1 [A] structures E Eums Exports
Function name 7 INIT:00061657 SourceString = dword ptr 6Ch .
iy INIT:00061657
[7] sub_sagee INIT:08861657 ; FUNCTION CHUNK AT INIT:88061266 SIZE 888802ES BYTES
[7] sub_sapce INIT: 800861657
(7] sub_sBs64 INIT:00061657 nov edi, edi
(7] sub_5B3A0 INIT:00061659 push ebp
[7] sub_sBADE INIT:00061650 nou ebp, esp
[7) sub.sCiEs INIT:8866165C call sub_6161E
& INIT:80661661 pop ebp

7] sub_scae0 INIT:00061662 jm loc 61266
(7] e scaee 11T 00561662 SRS
[7] sub_sc722 INIT: 00061662
(7] sub_sp41e INIT:88061662 ;
[F] sub_5D644 INIT: 00061667 align 4
(] sub_sD97F INIT:00061668 aHubinitdriverp db ‘HubInitDriverParameter',8 ; DATA XREF: sub_61066+F2To

INIT:0006167F align 16h
%z::'zggg INIT:00061680 aSelectivesuspe: ; DATA XREF: sub_61006+75To
1L sub_3DEST INIT: 00061680 unicode 8, <SelectiveSuspendHode>,®
L£] sub_SEOGE INIT:8688616AA aP_1 db P, 5 DATA XREF: sub_61686+61To
(7] sub_se1E1 INIT:0080616AC aframeters:
[7] StartRoutine INIT:0008616AC unicode 8, <arameters>,@
[F] sub_61006 INIT:660616C0 aDriverentry db ‘DriverEntry’,8 ; DATA XREF: sub_61550+ACto
(7] sub_61548 INIT:000616CC aCouldNotRegist db ‘Could not register performance coutners',
[7] sub61550 INIT:000616CC ; DATA XREF: DriverEntry-15Dto
(7] subLsiste INIT:000616F4 aDriverentryGlo db ‘DriverEntry - GlobalObjectListInitialize',®

% INIT:000616F4 ; DATA XREF: DriverEntry-28Cto

LZIDrmrEntry . A INIT:8866171D align 16h

0004D662 00061662: DriverEntry+B (Synchronized with Hex View-1) .
[Z] output window o0& x
28-01-2017 22:11:26 The application has been completely decompiled.]
Python
AU: idle Down Disk: 210GB

Much better. Alimost windows XP.

The decompiler

In alternative, there’s IDA Pro (between 5-10k $$$)

) £ . » = Remote GDB debugger v []

L . -
L IR [T TR RCATE A AR BTV TR VORCTRN 1T AR TR 1] (R Il_- 1

Library function [ll Regular function Instruction [ll Data Unexplored External symbol Lumina function
Functions = B IDA View-A x Pseudocode-A, Strings]
T8 Pseudocode-A o & x [strings
Functi

TR Length o sting
iz fmt_ptr_pp_fmtString
00000005 c @>\W\b"
00000005 *bool
00000005 *int8
00000005 *uint
00000005 Align
00000005 Alloc
2 00000005 Bytes
171 fml_p:rseArgNnmber i ol L . 00000006
B rghiamben v : rodata: oao 00000005
A fmt_ptr_pp_badArgNum e .rodata:080... 00000005
Fd fmt_ptr_pp_missingArg .rodata:080.. 00000005

Ed fmt_pp_doPrintf i i I .rodata:080.. 00000005
fmt_glob_funcl s rodata:080.. 00000005
B fmt_init Atizer 1

rodata:080.. 00000005
i type_hash_fmt_fmt) .rodata:080... 00000005
[type_eq_fmt_fmt : o & ~((format.len - i - 1) >> 31)]; rodata:080.

[main_Ex_cuteCouciCou_a - i rodata:080...

A main_UtiliserTypeD._fi - .rodata:080.

B main_main .rodata:080.

|71 !ype_hash mmlm dbgVar.11 N .rodata:080...

[type_eq_struct_main_membre_num_ro_1 rodata:080.

A type_hash_1_struct_main_membre_num_| .rodata:080... 00000005
A type_eq_1_struct_main_membre_num_ro_ .rodata:080.. 00000005
I type_hash_io_LimitedReader rodata:080... 00000005
¥ tuna_an main Panuathanann as

Line 1629 of 1648 Line 8 of 4549

00NN ONONNNOOOOOOOOOOO000000

B output

In general, the decompiler checks the segment permissions, class, and name
to deternine if it is read-onl:

BIE3F: variable 'v' is possibly undefined
undefined
undefined
undefined

'V10' is possibly undefined

Disk: 56GB

Almost no difference. The money is for the dark theme.

The decompiler

In alternative, there’s Binary Ninja (75 $$%)

Symbols t (Mach-O Debugger)
brintf

Quit |~ Steplntgy |* Step Step Return
ub_100000

Loaded File

100608e€0 rbp {
100000ee1

rbp, rsp { _rbp}

rd major]
r

minor]
il _build]
ord [rbp-0x4 {va
rdi, quord [rel _test]
i, Ir a_10000091]
10000¢ anf
, [rel _build]
rdx, [rel _minor]
rsi, [rel _major]
dword [rsi]
dword [rdx] {_minor
ecx, dword [rcx]
rdi, [rel Hatan
dword [rbp-C

100000F
100000f:

ound: %d, %d,

_printf
100000747
10000042
1000004

‘

ction: 0x100000ee1 to 0x100000ee4

Dark theme included!

The decompiler

In conclusion - you are free to use whatever you feel like.
Make sure you're comfortable in your tool, and you don’t waste endless time setting it up.

Challenges will be decompiler-agnostic.

The disassembler

Old, stubborn, and always right. Reminds me of my parents.

The disassembler

One of the rules in reverse-engineering is “Don’t trust the black box thingy” (the decompiler)

Sometime the decompiler might get a few things wrong.

The disassembler

One of the rules in reverse-engineering is “Don’t trust the black box thingy” (the decompiler)
Sometime the decompiler might get a few things wrong.

It might be the case of hard-to-analyze binaries, binaries that self-modify at runtime (those are
awesome), or just binaries that were not really written in “C”.

It also depends on the ISA (instruction set architecture) - x86, x86/64, arm, mips, etc.

Furthermore, malware is famous to have anti-reversing techniques that might be targeted against
decompilers.

The disassembler

A lot of people recommend objdump. We don't.

08048344 <while loop>:

8048344:) %ebp

8048345: 89 e5 %esp,%ebp

8048347: 8b 55 0x10 (%ebp) ,%edx

804834a: 85 d2 Sedx, sedx

804834c: 53 %ebx

804834d: 8b 45 0xc(%ebp) ,%eax

8048350: 8b 5d 0x8(%ebp) ,%ebx

8048353: 7e 1c j 8048371 <while loop+0x2d>
8048355: 89 dl %edx,%ecx

8048357 cl el $0x4,%ecx

804835a: 39 c8 %ecx,%eax

804835c: 7d 13 j 8048371 <while loop+0x2d>
804835e: 89 f6 %esi,%esi

8048360: 01 d3 %edx, %ebx

8048362: Of af i %edx, %eax

8048365: 4a Sedx

8048366: 83 e9 $0x10,%ecx

8048369: 85 d2 sedx, sedx

804836b: 7e 04 j 8048371 <while loop+0x2d>
804836d: 39 %ecx,%eax

804836f: j 8048360 <while loop+0xlc>
8048371: 89 %ebx,%eax

8048373: 5b %ebx

8048374: c9

8048375:

3804 N

Older than your parents.

The disassembler

A better tool to do the job would be radare2

0x08048481]> V 1. func2 (nodes 13 e s 17 zoo 0 M mouse:canvas-y movements-speed:5

84ac
v dword [ebp -

[ebp + arg_8h] / eax,
- shl eax,
d [ebp - local_4h], eax word [ebp - local_s4h

At least you get some cool ascii art action in your terminal

Chad’s tips on reversmg

careful
manual
reversing
of a binary
B

LIS A '
Eé'TA MOVE, E

O\\ BRO’ 7

rev CTF tactics
- Take your time. Do not let yourself get stressed by the time limit of a CTF.

- Choose the tool that is best fit for the challenge.

- Before writing any exploit/code, make sure that you fully understand what the
binary is doing.

Cursed rev CTF tactics

- Try to get the flag in the fastest, cheesiest way possible. A CTF is about getting first, not about
letting your cpu collect dust. The absolute alpha move is to find an unintended easy solution.

- Any kind of software that doesn’t make your laptop burst into flames is fair game. Symbolic
executors, advanced decompilers, experimental deobfuscators you just found on a shady
github, whatever. Use every single weapon in your arsenal.

- Are you crazy? If you have a slight hunch about what the hell is happening, roll with it and try,
usually you'll be right and finish in one tenth of the time of the guy who is reversing the whole
binary.

More material

Endless blogposts you can find on those topics.
- Trail of bits introduction: here
- Random security nerds’ blogs, such as this one

Look for “writeups” (solutions of previous challenges).
- CTFtime here

Zines
- Phrack here (where hacking was born)
- Inside out here
- International journal of Proof of Concept or Get the Fuck Out here

Youtube!

- LiveOverflow’s binary exploitation playlist: here
- pwn.college: here

https://trailofbits.github.io/ctf/
https://nebelwelt.net/blog/category/ctf.html
http://ctftime.org
http://phrack.org/
https://pagedout.institute/
https://pocorgtfo.hacke.rs/
https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://www.youtube.com/c/pwncollege

Challenge points

1121 total maximum points, inverse scoring

- 100 points “Is computer on”

- 80 points “easy”

- 50 points “medium”

- 20 points “challenging”

- 10 points “hard” (easy chall in a normal CTF)

- 5 points “real” (more or less the difficulty of an actual CTF)
- 1 point “we lost the solve script”

We reserve the right to release more challenges, in case stuff breaks. All added
challenges will not be worth more than 10 points.

Prize for the winner

king of the hill challenge

Top 10 players on the scoreboard invited to
final KOTH challenge.

king of the hill challenge

Top 10 players on the scoreboard invited to
final KOTH challenge. 5 -4 [pPMARS 8.5 (2/20/96) X11 version - [] X

neKa

Fight between hand-written assembly bots
One cycle per turn, the first to crash loses

Does not count for the grades.
Game is played in teams of 2.

Final date still to be determined but shortly
after final exam.

Prize for participation: polgylOts stickers
Prize for winner: premium polylgOts stickers

More details in next exercise session!

In conclusion

Rules!

1. Only one account per person.

2. No cheating. No flag sharing.

3. No bruteforcing. There is only a poor single server doing all the job. He does
not like people, so leave him alone.

4. You find a bug in our infrastructure. It could be used to dump all the flags:

a. You report it privately to us. You get bonus points.
b. You use it to dump flags. Pray that we do not catch you.

5. You need to submit the writeup of the hardest challenge you solved (the
challenge for which you got the least points. If there are multiple, any of
them is fine.)

Even more final tips

- Google, google, google everything. Google in case of doubt. Google for similar
problems. Google for writeups of similar challenges. Google to check if the
challenge was stolen from another ctf!

- To make grades more fair, the harder a challenge is, the less it is worth.

- Do not attempt challenges worth < 20 points, unless you know what you're
doing.

- Do not share flags. Remember that you need to provide the writeup of the
hardest challenge you solved.

- We will cover more material next week! some chals will be easier to solve
with that in mind

FREQUENTLY ASKED QUESTIONS

Q: Did you enjoy writing the challenges?
> A: No, but we do enjoy watching the students suffer over them.

Q: Are you going to release more challenges?
> A: Maybe, we have a few challs that are almost done and we might release them with
only 20 points of score, so that it will not affect anyone’s grade.

Q: Well, I don’t think I like CTF. It's full of cryptic stuff and hidden details.
> A: That's not a question.

Q: Where can | find more challenges like these?
> A: <answer in the next slide>

The “meta” of CTFs

- CTFs are hacking competitions

- We are pretty competitive
(organizers, the team of ETH+EPFL,
placed 6thin the world last year)

- CTF usually last 48 hours, over the
weekend

- Say goodbye to sleep schedule,
friends, relationship, social life

- But they are overrated anyway

Team

Blue Water

C4T BuT S4D
kalmarunionen
justCatTheFish
r3kapig

organizers

Never Stop Exploiting
WreckTheLine

SKSD

if this doesn't work we'll get more for next year

Country

E E I &

Rating
1450.673
1333.859
1271.614
1103.182
904.799
812.430
811.348
791.363
764.609

750.387

DEFCON CTF FINALS

- Hacking world championship

- Held in Las Vegas

- Top-tier hackers go there to
show off who's best

- Attack/defense style CTF:
teams do not need to hack
another server; they need to
hack other teams.
Extra cool, very salty.

Join us!

https://polyglOts.ch

-> join our discord server
-> join the weekly meetings
-> participate in weekly minor CTFs

-> git gud

-> participate in high-ranking CTFs

-> organize your own CTF to witness other ppl suffering on your challs

http://polygl0ts.ch

Demo time

pwn time

Join us!

http://polyglOts.ch

Friday meetings for tutorials

We start from basics and then move to
more advanced topics!

FIRST FRIDAY MEETING TOMORROW
17:00 BC 410

http://polygl0ts.ch

Binary analysis and CTF

CS412 - Software security

SO THE. CTF IS
TOMORROW...

