
Binary analysis and CTF
CS412 - Software security

(slides adapted from Luca and Flo's)



what is a CTF?



it’s not this



it’s not this either



it’s not the movie



it is this!



Important facts

- Will be hosted at https://cs412.epfl.ch

- Register an account there. Only “@epfl.ch” emails allowed.

- Objective of almost every challenge is to “pop a shell” and then cat the flag.
The flag will always be in a file called “flag”.
The flag format is “SoftSec{[0-9a-zA-Z_-]+}”
Submit flags by copy-pasting them into the website.

- Challenge difficulty is inversely proportional to its score.

- You need to provide the writeup of the hardest chall you solve

- CTF starts now! Ends on March 20th 23:59

https://cs412.polygl0ts.ch






Cheating

- It’s a hacking competition

- Like in real life, you can cheat as 

long as you don’t get caught

- There are some anti-cheat 

measures we are running

- Good luck!





checksec
First rule of pwning - always run checksec first



checksec

Amazing bash script that lists which security mitigations are implemented into a binary

Now integrated into pwntools (see later) as
pwn checksec



checksec

You run it like pwn checksec <binary>. This is an example output of the script

The things you need to look out for are:
1. stack canaries
2. PIE (position independent executable).
3. stripped

The rest is not relevant for this lab. 



GEF
gdb overdosing on steroids



GEF

GDB (left) vs GEF (right)



GEF

Install it by executing one of the following: (instructions from https://github.com/hugsy/gef)

# via the install script
## using curl
$ bash -c "$(curl -fsSL https://gef.blah.cat/sh)"

## using wget
$ bash -c "$(wget https://gef.blah.cat/sh -O -)"

# or manually
$ wget -O ~/.gdbinit-gef.py -q https://gef.blah.cat/py
$ echo source ~/.gdbinit-gef.py >> ~/.gdbinit



GEF

Install it by executing one of the following: (instructions from https://github.com/hugsy/gef)

# via the install script
## using curl
$ bash -c "$(curl -fsSL https://gef.blah.cat/sh)"

## using wget
$ bash -c "$(wget https://gef.blah.cat/sh -O -)"

# or manually
$ wget -O ~/.gdbinit-gef.py -q https://gef.blah.cat/py
$ echo source ~/.gdbinit-gef.py >> ~/.gdbinit

After installation, it can be removed by removing the “source …” line in your .gdbinit



GEF

> Provides a much better interface that updates on every prompt
Use command “context” to print it again

> The only dependencies are gdb (> 8.0) and python (> 3.6)

> Easily extensible in python

> So many new useful commands:
- “checksec”
- “vmmap”
- “heap chunks”
- “registers”
- “telescope”

> Try the demo live here (user: gef  |  pass: gef-demo)
> Not terrible gef documentation here

https://demo.gef.blah.cat/
https://hugsy.github.io/gef/


GEF

GEF is not the only steroid for GDB

Among the more famous, there are “Pwndbg” and “PEDA”.

Use whatever you want, they are basically all the same.



pwntools
Abbreviation for “Popping Shells Left And Right”



pwntools

VS



pwntools

Primary tool used to write exploits (for CTFs, but not only)

Manages all the boring bits of low-level talking with an executable / running process

Makes it very convenient to test an exploit locally and then running it on a remote endpoint

Other features:
- Automates parts of exploit writing
- Fancy debugging setup 
- Automates some parts of binary analysis



let’s get started

Run the following in your shell:

$ pwn template <binary> > sploit.py

This will generate a nice template script you can use to get started



pwntools “tubes” 

io.send(b”Hello\n”)

io.sendline(b”Hello”)

io.sendafter(b”Hi”, b”Hello”)

io.sendlineafter(...)

received = io.recv(6)

received = io.recvline()

received = io.recvuntil(b”Hello”)

received = io.recvall(timeout=1)

io = process(“./vulnerable_executable”) # sploit local binary

io = remote(“cs412.epfl.ch”, 31337)       # sploit some guy’s server



pwntools fancy logging

log.info(“aaargh”)

log.warn(“aaargh”)

log.error(“aaargh”)

log.debug(“aaargh”)

log.success(“aaargh”)

log.failure(“aaargh”)

log.warn_once(“aaargh”)



pwntools playing with formats

b64e(bytes); b64d(str)  # Base64 encode/decode

enhex(bytes); unhex(str) # Hex encode/decode

p64(integer); u64(bytes) # Pack / unpack integer in little endian

p32(integer); u32(bytes) # Same as above, but for 32 bits

Remember: every single number you send needs to be “packed”; every single 
number you receive needs to be “unpacked” because of endianess.

Pointers included, they are numbers too!

Sequence of bytes do not need to be packed (e.g. strings)



pwntools playing with elves, binary analysis

b = ELF(“binary”)

b.symbols[“func1”] || b.symbols.func1 # addr of func1

b.got[“puts”]  # addr of got entry for puts 

b.bss()        # addr of bss section

b.checksec()   # prints checksec

b.asan         # True if compiled with AddressSanitizer



pwntools cyclic

>>> cyclic(16)

‘aaaabaaacaaadaaa’

>>> cyclic_find(‘baaa’)

4

>>> cyclic_find(‘aaca’)

6

>>>



pwntools fancy debugging

# instead of io = process(“./binary”), we can do:

io = gdb.debug(“./binary”)

# This will spawn a new terminal with gdb attached to your 

exploit. 

# Amazing to debug what is wrong. You can even provide a gdbscript 

# optional arguments with commands to send to gdb, 

# e.g. gdbscript=”b main”



pwntools fancy debugging

# Warning! this will only work if pwntools know what is the 

terminal

# If you are using a custom terminal you need to tell pwntools how 

to invoke it:

context.terminal = [“st”, “-e”, “bash”, “-c”]

io = gdb.debug(“./binary”)

# Very often the best solution is to use pwntools inside tmux 

(works out of the box)



Chad’s tips on pwning

You should listen to me
not to random people

 on the internet



TIPS & TRICKS for pwning more stuff

- Local exploit working but not the remote one? Make sure you are sending (or 
not) the right amount of newlines (\n), that you wait before sending data 
(sendafter(...)), etc. 

- Hackers descend from vampires. Most challs were written during the night. 
Most flags are also caught in this timeframe. Don’t waste those hours 
sleeping!

- Working together is encouraged! Sharing solutions or flags is banned, 
though. 

- If your exploit is not working even locally, try to debug it verifying that each 
step is correct (e.g. if you leak the canary, verify manually with gdb that it’s 
the correct value)



TIPS & TRICKS for pwning more stuff

- All challenges are hosted on a docker with Ubuntu 24.04.1 LTS. If your exploit 
does not work remote, try to replicate the remote environment (run the 
challenge in an Ubuntu 24.04.1 LTS container). 
Alignment issues or libc shenanigans can depend on the distro you use.

- checksec immediately, it’s the first thing to know





The decompiler
“Reversing is a relaxing hobby” - no one



The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out. 



The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out. 

The best decompiler is the one which can produce an exact copy of the executable when recompiling 
the source code. This is fantasy and very rarely happens.



The decompiler

The decompiler is a mysterious black box you feed an executable and some C source code comes out. 

The best decompiler is the one which can produce an exact copy of the executable when recompiling 
the source code. This is fantasy and very rarely happens.
A good decompiler is like a wet dream for a reverse engineer and it is sought after like the philosopher’s 
stone. No good decompilers exist.



The decompiler

We strongly recommend Ghidra.

For your irresistible Win 2000 vibes.
Outdated even for vaporwave.



The decompiler

We strongly recommend Ghidra. Or, in alternative, there’s IDA Free.

Much better. Almost windows XP. 



The decompiler

In alternative, there’s IDA Pro (between 5-10k $$$)

Almost no difference. The money is for the dark theme. 



The decompiler

In alternative, there’s Binary Ninja (75 $$$)

Dark theme included!



The decompiler

In conclusion - you are free to use whatever you feel like.

Make sure you’re comfortable in your tool, and you don’t waste endless time setting it up. 

Challenges will be decompiler-agnostic. 



The disassembler
Old, stubborn, and always right. Reminds me of my parents.



The disassembler

One of the rules in reverse-engineering is “Don’t trust the black box thingy” (the decompiler)

Sometime the decompiler might get a few things wrong. 



The disassembler

One of the rules in reverse-engineering is “Don’t trust the black box thingy” (the decompiler)

Sometime the decompiler might get a few things wrong. 

It might be the case of hard-to-analyze binaries, binaries that self-modify at runtime (those are 
awesome), or just binaries that were not really written in “C”.

It also depends on the ISA (instruction set architecture) - x86, x86/64, arm, mips, etc.

Furthermore, malware is famous to have anti-reversing techniques that might be targeted against 
decompilers.



The disassembler

A lot of people recommend objdump. We don’t.

Older than your parents.



The disassembler

A better tool to do the job would be radare2

At least you get some cool ascii art action in your terminal



Chad’s tips on reversing

careful 
manual

reversing
of a binary



rev CTF tactics

- Take your time. Do not let yourself get stressed by the time limit of a CTF.

- Choose the tool that is best fit for the challenge.

- Before writing any exploit/code, make sure that you fully understand what the 
binary is doing. 



Cursed rev CTF tactics

- Take your time. Do not let yourself get stressed by the time limit of a CTF.
- Try to get the flag in the fastest, cheesiest way possible. A CTF is about getting first, not about 

letting your cpu collect dust. The absolute alpha move is to find an unintended easy solution.
- Choose the tool that is best fit for the challenge.

- Any kind of software that doesn’t make your laptop burst into flames is fair game. Symbolic 
executors, advanced decompilers, experimental deobfuscators you just found on a shady 
github, whatever. Use every single weapon in your arsenal.

- Before writing any exploit/code, make sure that you fully understand what the 
binary is doing. 

- Are you crazy? If you have a slight hunch about what the hell is happening, roll with it and try, 
usually you’ll be right and finish in one tenth of the time of the guy who is reversing the whole 
binary.



More material

- Endless blogposts you can find on those topics. 
- Trail of bits introduction: here
- Random security nerds’ blogs, such as this one

- Look for “writeups” (solutions of previous challenges). 
- CTFtime here

- Zines
- Phrack here (where hacking was born)
- Inside out here
- International journal of Proof of Concept or Get the Fuck Out here

- Youtube!
- LiveOverflow’s binary exploitation playlist: here
- pwn.college: here

https://trailofbits.github.io/ctf/
https://nebelwelt.net/blog/category/ctf.html
http://ctftime.org
http://phrack.org/
https://pagedout.institute/
https://pocorgtfo.hacke.rs/
https://www.youtube.com/playlist?list=PLhixgUqwRTjxglIswKp9mpkfPNfHkzyeN
https://www.youtube.com/c/pwncollege


Challenge points

1121 total maximum points, inverse scoring

- 100 points “is computer on”
- 80 points “easy”
- 50 points “medium”
- 20 points “challenging”
- 10 points “hard” (easy chall in a normal CTF)
- 5 points “real” (more or less the difficulty of an actual CTF)
- 1 point “we lost the solve script”

We reserve the right to release more challenges, in case stuff breaks. All added 
challenges will not be worth more than 10 points.



Prize for the winner



king of the hill challenge

Top 10 players on the scoreboard invited to 
final KOTH challenge. 



king of the hill challenge

Top 10 players on the scoreboard invited to 
final KOTH challenge. 

Fight between hand-written assembly bots
One cycle per turn, the first to crash loses

Does not count for the grades.
Game is played in teams of 2.

Final date still to be determined but shortly 
after final exam. 

Prize for participation: polgyl0ts stickers
Prize for winner: premium polylg0ts stickers

More details in next exercise session!



In conclusion



Rules!

1. Only one account per person.
2. No cheating. No flag sharing.
3. No bruteforcing. There is only a poor single server doing all the job. He does 

not like people, so leave him alone. 
4. You find a bug in our infrastructure. It could be used to dump all the flags:

a. You report it privately to us. You get bonus points.
b. You use it to dump flags. Pray that we do not catch you. 

5. You need to submit the writeup of the hardest challenge you solved (the 
challenge for which you got the least points. If there are multiple, any of 
them is fine.)



Even more final tips

- Google, google, google everything. Google in case of doubt. Google for similar 
problems. Google for writeups of similar challenges. Google to check if the 
challenge was stolen from another ctf!

- To make grades more fair, the harder a challenge is, the less it is worth.  
- Do not attempt challenges worth < 20 points, unless you know what you’re 

doing. 
- Do not share flags. Remember that you need to provide the writeup of the 

hardest challenge you solved.
- We will cover more material next week! some chals will be easier to solve 

with that in mind



FREQUENTLY ASKED QUESTIONS

Q: Did you enjoy writing the challenges?
> A: No, but we do enjoy watching the students suffer over them. 

Q: Are you going to release more challenges? 
> A: Maybe, we have a few challs that are almost done and we might release them with 
only 20 points of score, so that it will not affect anyone’s grade.

Q: Well, I don’t think I like CTF. It’s full of cryptic stuff and hidden details.
> A: That’s not a question.

Q: Where can I find more challenges like these? 
> A: <answer in the next slide>



The “meta” of CTFs

- CTFs are hacking competitions
- We are pretty competitive 

(organizers, the team of ETH+EPFL, 
placed 6thin the world last year)

- CTF usually last 48 hours, over the 
weekend

- Say goodbye to sleep schedule, 
friends, relationship, social life

- But they are overrated anyway



DEFCON CTF FINALS

- Hacking world championship
- Held in Las Vegas
- Top-tier hackers go there to 

show off who’s best
- Attack/defense style CTF: 

teams do not need to hack 
another server; they need to 
hack other teams.
Extra cool, very salty. 



Join us!

https://polygl0ts.ch

-> join our discord server

-> join the weekly meetings

-> participate in weekly minor CTFs

-> git gud

-> participate in high-ranking CTFs 

-> organize your own CTF to witness other ppl suffering on your challs 

http://polygl0ts.ch


Demo time
pwn time





Join us!

http://polygl0ts.ch

Friday meetings for tutorials

We start from basics and then move to 
more advanced topics!

FIRST FRIDAY MEETING TOMORROW
17:00 BC 410

http://polygl0ts.ch


Binary analysis and CTF
CS412 - Software security

CTF


