
Software Security
63 73 - 34 31 32



The teaching assistants

2

Florian 
Hofhammer

Solène Husseini Philipp Mao Han Zheng



Introduction to
Software Development 

in 2025
CS412



Software development in 2025

Uses JS/Python/Scala Uses C (and rarely assembly)

Writes e.g. web applications, data analytics Writes system software (e.g., OS, servers)

Has 90% of the code generated by an LLM Doesn’t use LLMs because they don’t integrate well with vi

Abstractions, slow, difficult to map to machine Pedal to the metal, full speed no regrets

Unstable new tools, fancy new frameworks, 
move fast break things

Ancient toolchains written into stone by the gods of 
computer science

Cringe Based

4(this will be you when you get a job) (this will be you after this class)



5

“Hacker” tools dangerous due to death from cringe



This is not a course about pentesting!

6

This is a course about vulnerability research.



7

Tools that are useless for vuln research
- Anything that contains the phrase “ethical”, “whitehat”, and so on
- Anything that requires a GUI / mouse to use
- Anything that you find on “hacking forums”
- Anything that has good UX, a cool logo, or any fancy graphics

Instead, good security tools are:

- Unstable, buggy, constantly crash
- Made by a crazy schizophrenic (or other forms of neurodivergence) single dev 

with godlike coding skills (or, as we will see, by a three letter american agency)
- Vomit-looking, a punch to the eyes, made for machines, not humans



What is vulnerability research about

8

1. How does it actually work?

2. Can I mess with it?



Ancient toolchains

Sources (.c, .h)
● git
● linters

git tracks changes.
Linters enforce style 
rules.

Object files
● gcc/clang
● make
● ld

gcc compiles source files.
make tracks “recipes” and 
recompiles on source updates.
ld links object files to create 
executables, static or shared 
libraries.

Binaries (a.out, so, a)
● gdb
● objdump

gdb allows runtime debugging.
objdump is used to inspect binaries.

9



Tool #0

10



Linux

11



Linux
We are friends with the penguin

12



Linux
We are friends with the penguin

You need to be friends with the penguin

13



Linux
We are friends with the penguin

You need to be friends with the penguin

You’re not friends with the penguin
⇒ you will not be friends with this
    class’s labs

14



Linux
We are friends with the penguin

You need to be friends with the penguin

You’re not friends with the penguin
⇒ you will not be friends with this
    class’s labs

Install Linux
Use a VM
Use WSL
Use docker on Windows/macOS
Rent a Linux server 15



Linux
We are friends with the penguin

You need to be friends with the penguin

You’re not friends with the penguin
⇒ you will not be friends with this
    class’s labs

You cannot be “just friends”:
you need to be comfortable spending time 
with the penguin. 

16



x86? Arm? Wtf
If you have an Apple Silicon MacBook or another super scuffed Arm machine…

Lab 2 should run natively just fine

For x86 binaries in Lab 1: you will need to be able to run x86 Linux binaries!

17



x86? Arm? Wtf

18

Have a second x86 machine with Linux

Rent/get a free x86 VPS (e.g., free Azure credits, Oracle 
free tier)

qemu-user/Docker cross-arch

qemu-system

vdi.epfl.ch (no root!)

https://azure.microsoft.com/en-us/free/students
https://www.oracle.com/cloud/free/
https://www.oracle.com/cloud/free/
https://vdi.epfl.ch


QEMU User
qemu-x86_64 <your binary>

Might need to set flags for libraries and stuff,
e.g., qemu-x86_64 -L /usr/x86_64-linux-gnu <your binary>

19

x86



Cross-architecture Docker
First: if you can, use the Docker Engine, not Docker Desktop (applies to Linux, on 
macOS or Windows you don’t have a chance (but you should use Linux anyways))!

Then, follow the documentation to enable cross-architecture support via QEMU: 
https://docs.docker.com/build/building/multi-platform/#qemu

Last, check whether you can run x86 Docker images:
docker run --rm -it --platform=linux/amd64 alpine:latest uname -m
should print x86_64

The platform flag is the important flag for cross-arch execution!

Under the hood: qemu-user!

20

https://docs.docker.com/engine/install/
https://docs.docker.com/build/building/multi-platform/#qemu


Cross-architecture Docker
Advantage: no issue with libraries, library paths, etc.

Disadvantage:

Solution: qemu-x86_64 -g 1234 <your binary>, gdb -ex “target remote :1234”

Workarounds exist but are painful!

21



Tool #1

22



Git: the bathroom of programmers
Track changes to source files

Featuring:
- Branches, checkout
- Push, pull (--rebase), merge
- Diff, patch
- Blame
- .gitignore

23



Git: the bathroom of programmers
Track changes to source files

Featuring:
- Branches, checkout
- Push, pull (--rebase), merge
- Diff, patch
- Blame
- .gitignore

Not knowing how to cleanly use git in 2025 is 
like not knowing how to cleanly use the toilet

24



Git: the porcelain and the plumbing

25

git status
git commit
git pull
git stash
git checkout

git ls-tree
git update-index
git write-tree
git commit-tree
Stuff inside the .git folder



Git: the porcelain and the plumbing

26

You don’t need to know how to do plumbing. It takes a long time and 
it’s usually full of disgusting stuff. 

BUT YOU DO NEED TO KNOW HOW TO USE THE TOILET

git status
git commit
git pull
git stash
git checkout



> You git pull without --rebase

> You get a merge conflict!

27



Git gud at git
Using all the features of git has a learning curve:

- Rebase your pulls
- Use aliases for your commands
- Use ssh auth
- Use branches and git diffs
- Use .git/hooks folder to run stuff on e.g. every commit
- Tweak your .gitconfig
- Integrate with tools: editor, plugins, shell prompt, etc
- Host your own git server

28



git

29

mercurialvs

Git compared to other versioning systems



Tool #2

30



Linters: looking fine, everytime
Enforce rules on source file formatting: E.g. clang-format
Examples of clang-format rules

- IndentWidth: 4

- PointerAlignment: Right

31



Tool #3

32



gcc: parlez-vous machine code?
Compiles (translates) C/C++/Assembly code to machine code

Phases:

- Preprocessor: source code transformations
- macros

- include

- #ifdef, #if, #elif, #else, #endif

- Compilation: Syntax checking, parsing, optimization,  code generation
- -O1/O2/O3/Osize for optimization

- -Wall -Werror for catching mistakes

- Linking (ld): Merge different files

33



Tool #4

34



make: to recompile or not to recompile
Build system using rules and recipes

Rules define
- Targets (what to build)
- Dependencies (what is needed to build)
- Recipes (how to build)

Only compile required files

file.o: file.c file.h
gcc -c file.c -o file.o

exe: file.o other.c
gcc file.o other.c -o exe

35



make: to recompile or not to recompile
I wish I could run this command on every compilation

I wish I could recompile only the files that changed

I wish I could compile multiple builds at the same time (e.g., an executable for every 
OS)

I wish I could provide a way to let other people easily compile my code

36



make: to recompile or not to recompile
I wish I could run this command on every compilation

I wish I could recompile only the files that changed

I wish I could compile multiple builds at the same time (e.g., an executable for every 
OS)

I wish I could provide a way to let other people easily compile my code

> Learn make. It takes you 20 mins. It saves you hours. 

37



Tool #5

38



gdb: black magic at its finest
Allows debugging of running programs

Features:

- Breakpoints
- Watchpoints
- Inspection
- Modification

39

GDB



Tool #6

40



Some kind of disassembler/decompiler
- Objdump
- Radare2
- Ghidra
- IDA Free
- …

Up to personal preference.

If you’re completely new to 
disassembly, we recommend Ghidra
⇒ hands-on introduction in a later lab

41



Tool #7

42



Manpages
Written by ancient gods, in unknown times

Read them like a religious text

Consult it on all kind of questions, self-doubts, 
and philosophical dilemmas

43



Manpages
Written by ancient gods, in unknown times

Read them like a religious text

Consult it on all kind of questions, self-doubts, 
and philosophical dilemmas

If you can, specify the section (man 1 printf vs 
man 3 printf)!

man man if you don’t remember

man gittutorial is to this day the best 
tutorial for git ever written (also the rest of the 
git manpages)

44



Tool #8

45



Docker
Containerization 

Quick testing of new tools

Clean environment to distribute your code into

A wrapper of linux namespaces (see bocker, 
implemented in bash)

Riddled with security pitfalls

46



Docker Podman
Containerization 

Quick testing of new tools

Clean environment to distribute your code into

A wrapper of linux namespaces (see bocker, 
implemented in bash)

Riddled with security pitfalls (but you can run it 
without root)

Same commands as docker

Made by RedHat
47



Graded Labs (40% of final grade)

CTF (find the vulns and pwn them) 

- Competition + KOTH finals

- Start: February 27th
- End: March 20th

Fuzzing (find the vulns but automatically)

- Start: April 10th
- End: May 8th

48



Further Resources
“The Missing Semester” from MIT: https://missing.csail.mit.edu/

49


