ABOUT

This notebook illustrates how to run an Analysis of Variance (ANOVA) in R. It is used as a
companion for a lecture in the CS-411 course "Digital Education". Patrick Jermann, CEDE,
EPFL

TOOLS TO RUN THIS NOTEBOOK

SIMPLE

Jupyter Notebooks with R kernel

e http://noto.epfl.ch
e Does not require any installation on your machine

MORE INVOLVED

R and Rstudio IDE

o https://rstudio.com/products/rstudio/download/#download
e Requires installation of the R language and Rstudio editor.

Alternatively, you can do the analyses in Python in NOTO or in your favourite computing
environment, but | provide examples in R


http://noto.epfl.ch/
https://rstudio.com/products/rstudio/download/#download
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A CHEAT-SHEET TO DETERMINE
WHICH TEST TO USE

Different statisticatl tests are appropriate depending on the type of Independent and
Dependent variables and on the type of hypotheses we want to test.

Dependent variable
What is the effect of Xon Y ? .
Y X

Quantitative [ Regression }
- N
- J i
[ Chi-square }
/

=
o X
T 9
o5
Q-—
mh
© S
=

Categorical R

k categories -
k>2 ANOVA
o




What is the effectof XonY ? ’
Y~ X

Regression ]

Quantitative

Welch’s t-test

Mann-Whitney
Chi-square
Welch’s ANOVA

=
5 o
T o
o 5
o M
mh
- S
£

Categorical

Kruskall-Wallis




MEDIATION

e explains how or why an intervention works

e mediator explains all or part of the treatment’s impact on an intended outcome

e is an intermediate outcome that is measured or observed after the onset of the
intervention. E.g. fidelity of application, how many questions were asked ?

MODERATION

o explains for whom the intervention benefits or what conditions must exist for the
intervention to be effective.

e a factor that reflects who is most affected by the treatment

e 3 factor that exists prior to the introduction of an intervention

Eg. student characteristics, such as special education status, gender, ...
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EXPERIMENT (IPS VS PSI)

In this imaginary experiment, we are studying the effect of the order of instruction and
problem-solving (independent variable) on learning (dependent variable) how the position
of the earth relative to the sun influences seasons.

Participants used a simulation
(https:/[astro.unl.edu/classaction/animations/coordsmotion/eclipticsimulator.ntml) during

the problem-solving phase and watched a video during the instruction phase.

Seasons and Ecliptic Simulator reset help about

click and drag to change perspective click and drag the earth to change its click and drag the stickfigure or the red
position on the orbital path latitude circle fo change the observer's latitude

observer's latitude: 10.0 N B abels

O view from sun
L ® view from side

4 Py ™
O sunbeam spread

® sunlight angle

.

sun's altitude: 79.3
observer latitude: 10.0 N



https://astro.unl.edu/classaction/animations/coordsmotion/eclipticsimulator.html

PARTICIPANTS

The sample consisted of N=200 participants.

INDEPENDENT VARIABLE

Order of instruction The independent variable has two modalities (also called conditions):

e |-PS : instruction followed by problem-solving
e PS-I|: problem-solving followed by instruction

Participants were randomly assigned to one of the experimental conditions.



DEPENDENT VARIABLE

Learning gain. Participants completed a 10 question pre-test before starting the
experiment. The pre-test was a series of questions about their understanding of the sun-
earth relative positions. After the experiment, particpants completed a 10 question post-
test with similar questions as the pre-test. The learning gain was computed as :

learning. gain = post. test — pre. test

another possibilty would be the relative learning gain

post.test—pre.test

rel. gawn = max—pre.test



CONTROL VARIABLES

Age group. Participants were recruited among highschool students who are interested in
following studies at EPFL (kids), students doing their bachelor as well as alumni who are
active professionally (professionals).

Young learners (e.g., second to fifth graders) may have insufficient prior knowledge about

cognitive and metacognitive learning strategies to generate multiple solutions during initial
problem solving

Gender. Experimenters also asked for the gender of the participants, either Male (M) or
Female (F).

Self-requlation skills. Participants also filled in a questionnaire about their self.regulation
skills by using the Learning Companion (https://companion.epfl.ch)


https://companion.epfl.ch/

INTERMEDIATE / PROCESS VARIABLES

Solutions. The simulation system logged every simulation run and counted how often
students used the simulation to generate a potential solution.
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DATASET

This dataset was generated to illustrate basic statistical techniques like ANOVA and
regression as well lightly more advanced techniques like mediation and moderation.
However, we tried as much as possible to implement variations compatible with insights
found in the literature about Productive Failure:

Sinha, T., & Kapur, M. (2021). When Problem Solving Followed by Instruction Works:
Evidence for Productive Failure. Review of Educational Research, 91(5), 761-798.
https://doi.org/10.3102/00346543211019105


https://doi.org/10.3102/00346543211019105

ANALYSIS



LOADING DATA

# Here we read the data and then convert the factors to the right labels
df <- su?pressMessages(read_delim(file = "dataset.csv'", delim = ",") %>%
mutate
condition = factor(condition, labels = c("IPS", "PSI")),
gender = factor(gender, labels = c("M", "F")),
age.group = factor(age.group,
\ labels = c("kids", "students", "professionals")

))

head (df)
A tibble: 6 x 6

condition gender age.group solutions self.regulation learning
<fct> <fct> <fct> <dbl> <dbl> <dbl>

PSI F kids 20 6.4129659 11447316

PSI F students 20 5.4942910 2.3840504

PSI F professionals 24 10.1754505 -0.3823993

PSI M kids 12 7.6805230 0.2294454

PSI M kids 9 0.4995889 0.4921680

IPS M kids 5 6.8204271 -1.3863676



DESCRIPTIVES

summary (df)

condition
IPS:102
PSI: 98

gender
M: 95
F:105

age.group
kids :

students .73
professionals:65

solutions
0

Min.
1st Qu.:
Median
Mean

3rd Qu.:
Max.

10.

:15.
:14.

19.

:31.

00
00
00
91
00
00

self.regulation

Min. :-5.984
1st Qu.: 4.301
Median : 8.151
Mean : 8.392
3rd Qu.:12.184
Max. :30.920

1
Min.
1st
Medi
Mean
3rd
Max.



DEPENDENT VARIABLE: LEARNING GAIN

df %>%
ggplot(aes(x=learning)) +
geom_histogram(bins=30) +
theme_bw()




INTERMEDIATE VARIABLE: SOLUTIONS

df %>%

ggplot(aes(x=solutions)) +

geom_histogram(bins=30) +
theme_bw()

count

10

20 30
solutions



CONTROL VARIABLES

GENDER AND CONDITION

#library(janitor) # Gives tabyl

#df %>% tabyl(condition, gender)
#df %>% tabyl(condition, gender) %>% chisq.test()
table(df$condition, df$gender)

M F
IPS 51 51
PSI 44 54



AGE GROUP AND CONDITION

#df %>% tabyl(condition, age.group)
#df %>% tabyl(condition, age.group) %>% chisq.test()
table(df$condition, df$age.group)

kids students professionals
IPS 35 35 32
PSI 27 38 33



AGE GROUP AND GENDER

#df %>% tabyl(gender, age.group)
#df %>% tabyl(gender, age.group) %>% chisqg.test()
table(df$gender, df$age.group)

kids students professionals
M 30 37 28
F 32 36 37



QUESTION 1: DOES THE EXPERIMENTAL TREATMENT
AFFECT LEARNING ?

Average learning gain given condition
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learning

Looking at the means and confidence intervals is a good first step, but we need to do a
statistical test to determine if the difference is statistically significant. The ANOVA test
relies on a comparison of variances between groups and within groups. The following chart
illustrates these variances

Learning gains by condition

_ Tate . o ‘! condition
IPS
® bPsi

o

IPS PS
condition



ANOVA WITH ONE FACTOR

ANOVA compares the variation "between" the groups and "within" the groups based on
their ratio. It assumes that the measured variable is normally distributed in each group and
that the variance is the same in each group.

F— MeanSquaresSpetyeen

MeanSqaresy;inin

The sample variance (Mean Sum of Squares) is computed as the Sums of Squares divided
by the Degrees of freedom.

S S between / df between
S‘Swithin/dfwithin

F —

If F is larger than 1, the differences between the groups are more important than the
differences inside the groups.



TOTAL VARIANCE: BETWEEN AND WITHIN GROUPS

Variance is a measure of "spread" based on the average squared deviation from the mean.

SStotal — Zni’k (1/’1/] — l})2

i=1,j=1
MEAN SUMS OF SQUARE BETWEEN GROUPS
SSbetween — Zf:l T (Y_; T Y)2

Where k is the number of groups 17@ is the mean for group 7 and Y is the grand mean. We
multiply by n; because we account for the difference between the group mean and the
global mean for each observation.

Finally, we divide by the degrees of freedom: M Spetween = SShetween / A fretween Where
the d fretween is k — 1.



MEAN SUMS OF SQUARE WITHIN GROUPS

For each group 7 we have S'S; = Z;’;l (Yi; — 172)2 which is essentially the difference
between each observation 7 of the group and the mean for that group.

To obtain the Mean sums of squares, we add up the S'S; for each group:

SSyithin = Zle S'S;, we divide by the degrees of freedom :

M Syithin = SSwithin/d fuwithin Where the degrees of freedom are is the sum of the
degrees of freedom for each subgroup.

d fuwithin = Zle df; = Zle(ni —1)=N -k



COMPUTING VARIANCES BY HAND IN R

mean(df$learning) # The mean of learning for all subjects

Y _bar =
Y_s = sd(df$learning) # The standard deviation of the learning for all subjects

COMPUTING SSTOTAL

ss_total = sum((df$learning - Y_bar)”2)
ss_total

310.564206640921



COMPUTING SSB

between_ss = function(x) {
. sum(length(x)*(mean(x) - Y_bar)~2)

ss_between = sum(tapply(df$learning, df$condition, between_ss))
ss_between

mss_between = ss_between / 1 # (k groups — 1)
mss_between

69.6619314204476
69.6619314204476



COMPUTING SSW

within_ss = function(x) {
. sum( (x = mean(x))”2)

ss_within = sum(tapply(df$learning, df$condition, within_ss))
ss_within

mss_within = ss_within / (length(df$learning) - 2) # N - k groups
mss_within

240.902275220474
1.21667815767916



THE F-RATIO

L MeanSquarespetyeen _69.66193
b= MeanSqaresihin,  1.216678 57.25584

# Compute the ratio of the between group variance to the within group variance
F = mss_between / mss_within
F

57.2558412270087



This F-ratio (computed from our experimental groups) is to be compared witha F
distribution parametrised with df=1 (2 groups - 1) and df=198 (200 subjects - 2 groups).

The theoretical F distribution corresponds to the F-ratios that would be obtained when:

e two samples are drawn from two populations with means 1 and s
e two populations have the same mean: ©; = po. This corresponds to our null
hypothesis.

e three populations have the same variance: o’



We generated 40000 runs of a simulation that draws two samples of 100 observations
from a normal population with the same mean and variance. For each randomly generated
example, we computed the F-ratio. Here is the distribution of these 40000 F-ratios and the

corresponding F[1,198] distribution.

F[1,198] distribution generated form 40’000 simulation runs
(2 groups of 100 observations)

1.5

F=57.3

1.0
|

Density

0.5
|

0.0

20
Fstat

o



THE ANOVA TEST

Given our observed F-ratio and the theoretical F-distribution for 2 groups (df1 = 2 groups -
1=1) of 100 observations (df2 = 200 observations - 2 groups = 198), we now can perform
our test.

Under the "Null" hypothesis for the ANOVA, the F-ratio for 2 groups and a sample size of
200, which have the same mean and same variance, follows a F-distribution with [1,198]
degrees of freedom.

OH():/,Ll:,U,Q —... = Unp

The "Alternative" hypothesis is that:

o Hy:py # po #. .. 7 iy



HOW TO DECIDE WHETHER OUR F-RATIO IS "FOLLOWING"
THE F-DISTRIBUTION ?

P-VALUE

Our experiment produced a F-ratio which is rather extreme: there are only
0.0000000000014% of the theoretical F-ratios for such experiments that would be larger
than the value we observed. This proportion is called the p-value: what is the probability to
have drawn samples for our experiment which would produce a F-ratio larger than 57.3 It
corresponds to the area under the curve to the right of F = 57.3

# pf gives the probability of getting an F value greater than F
p.value = pf(F, 1, 198, lower.tail = FALSE)
p.value

1.4115138248261e-12

In social sciences, it is commonly accepted that to reject the null hypothesis, i.e. to say that
our F-ratio does probably not stem from the theoretical F-distribition, it has to come from
the 5% most extreme values. This is called the alpha level, written oc = 0.05.

In our example p = 1.411514e — 12 < << a = 0.05 and hence we reject the Null
hypothesis. Therefore we conclude that the two samples do not belong to two populations
with the same means.



CRITICAL VALUE

What is the F-ratio above which we can reject the Null hypothesis ? This value is called the
critical value and corresponds to the F value for a probablity of 1 — ¢, i.e. 0.95.

alpha = 0.05
F.critical = gf(1-alpha, dfl=1, df2=198)
F.critical

3.88885293289187

F[1,198] distribution generated from 40'000 simulation runs
(2 groups of 100 observations)

1.5

F=157.3

F.critical= 3.89 (0.95)
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The degrees of freedom affect the shape of the F-distribution. The second degree of
freedom change the shape of the tails. Less observations lead to thicker tails and therefore
to larger critical values.

F-distribution with different degrees of freedom (df1=5) (df2=30, 300, 3000)

0.05+

0.04+

0.01+

F-value



alpha = 0.05
F.critical = gf(1-alpha, dfl=1, df2=30)
F.critical

alpha = 0.05
F.critical = qf(1-alpha, dfl=1, df2=300)
F.critical

alpha = 0.05
F.critical = gf(1-alpha, dfl=1, df2=3000)
F.critical

4.1708767/8576669
3.87264226173045
3.84456038697256



The degrees of freedom affect the shape of the F-distribution. The first degree of freedom
change the shape of the curve.

F-distribution with different degrees of freedom (df1=1,3,10) (df2=30)

1.51

0.0+




ANOVAINR

Steps:

e Step 1: Build a linear model with DV ~ IV model = lm(DV ~IV) :
e Step 2: Calculates type-Il or type-Ill analysis-of-variance tables Anova(model)
e Step 3: Check assumptions

= Normality

= Homoscedasticity



STEP 1: BUILD ALINEAR MODEL

NB: specify the contrasts that are used for the linear model as "contr.sum", which is not the

default in R.

model.® <- lm(learning ~ condition,

contrasts=1list(condition=contr.sum),

data=df)
summary (model.0)
Call:
Im(formula = learning ~ condition, data
Residuals:
Min 1Q Median 3Q Max

—2.7555 -0.7754 -0.1243 0.8605 2.7054

Coefficients:

Estimate Std. Error t value
(Intercept) 0.32767 0.07801 4.200
conditionl -0.59030 0.07801 -7.567

Signif. codes: 0 'xkx' 0.001 'xx' 0.01

= df, contrasts = list(condition

Pr(>|t

)
4.®3e—$5 kK
1.41e-12 skxkxk

'x' 0.05 .

'0.1°

Residual standard error: 1.103 on 198 degrees of freedom

Multiple R-squared: 0.2243, Adjusted R-squared:

0.2204

F-statistic: 57.26 on 1 and 198 DF, p-value: 1.412e-12

1



STEP 2: LOOK AT THE ANOVA
"INTERPRETATION" OF THE MODEL

library(car) # load library car first.
Anova(model.0, type="II")

A anova: 2 x4

Sum Sq Df F value Pr(>F)
<dbl> <dbl> <dbl> <dbl>
condition 69.66193 1 57.25584 1.411514e-12

Residuals 240.90228 198 NA NA



STEP 3: CHECK ASSUMPTIONS

CHECKING NORMALITY ASSUMPTIONS

| present three methods to check the normality of the residuals for our linear model.

e The Shapiro Wilks test (available as shapiro.test() )
e The Kolmogorov-Smirnov test (available as ks.test() )
e a visual inspection test.



SHAPIRO.TEST : TESTING NORMALITY OF RESIDUALS IN EACH GROUP
The Shapiro-Wilks test allows to test whether a variable is normally distributed.
H: The sample is normally distributed.

H: The sample is not normally distributed.

shapiro.test(model.0@$residuals)

Shapiro-Wilk normality test

data: model.0@%$residuals
W = 0.9902, p-value = 0.1909

The p-value is larger than 0.05 and therefore we cannot reject the Null hypothesis.
According to this test, the residuals from our model are normally distributed.

The shapiro.test() is very sensitive to deviations from normality, especially if the
sample size is large. Textbooks usually recommend checking the normality assumption
visually (with gq plots) rather than through tests.



KOLMOGOROV-SMIRNOV TEST: TESTING NORMALITY OF RESIDUALS

The Kolmogorov-Smirnov test allows to test whether two samples were drawn from the
same distribution. This allows to compare our observations with a sample that follows a
normal distibution with the same mean and standard deviation. This test is preferred to the
Shapiro Wilks test for large samples.

H, : The two samples stem from the same distribution

H : The two samples do not stem from the same distribution

X <— model.0@%$residuals
ks.test(x, "pnorm", mean(x, na.rm = T), sd(x, na.rm = T))

Asymptotic one-sample Kolmogorov-Smirnov test

data: X
D = 0.050941, p-value = 0.677
alternative hypothesis: two-sided

The p-value is larger than 0.05, we therefore cannot reject Hy and hence conclude that it is
likely that the residuals follow a normal distribution.
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Sample Quantiles

VISUALLY CHECKING NORMALITY OF RESIDUALS

options(repr.plot.width=16, repr.plot.height=10)
ggnorm(model.@$residuals, col=df$condition, pch=19,

main="Normal distribution of residuals")
qgline(model.@$residuals)

Normal distribution of residuals

| | T T T
-3 -2 -1 0 1

Theoretical Quantiles



CHECKING THE HOMOSCEDASTICITY OF THE RESIDUALS

We would like to have the same variance of residuals across groups. This means that the
model explains similarly well observations from both groups. If this was not the case, we'd
have for example very similar errors for all observations in the IPS group and a larger
variation of errors in the PSI group. This would indicate that there is something "wrong" in
the measured data, e.g. all individuals from IPS have the same learning gain, whereas
individuals from the PSI group have a spread of learning gains.

Equality of variances can be tested with the bartlett.test() inR.
H: The variances are the same in the groups

H: The variances are not the same in the groups

bartlett.test(residuals(model.@) ~ df$condition)

Bartlett test of homogeneity of variances

data: residuals(model.@) by df$condition
Bartlett's K-squared = 0.27535, df = 1, p-value = 0.5998

In our case, the p-value is much larger than .05 which does not allow us to reject the null
hypothesis Hy. Hence we conclude that the variances are equal in both groups.



residuals

VISUAL INSPECTION OF EQUAL VARIANCES

An alternative was to check for equality of variances conists of plotting boxplots of the

residuals. If the shape of the boxplots is more or less the same, the variances are more or
less equivalent.

options(repr.plot.width=16, repr.plot.height=4)
boxplot(model.@%$residuals ~ df$condition,
main="Homoscedasticity of residuals",
ylab="residuals",
xlab="Condition", horizontal=TRUE)

Homoscedasticity of residuals
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Residuals

4JIStandardized residuals|

par(mfrow =
plot(model.0
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HOW WOULD IT LOOK WITH NON-
NORMAL VARIABLES ?

X <= runif(200)
shapiro.test(x)

Shapiro-Wilk normality test

data: X
W = 0.94965, p-value = 1.746e-006

Histogram of x Normal Q-Q Plot

Theoretical Quantiles



HOW WOULD IT LOOK WITH
UNEQUAL VARIANCES ?

options(repr.plot.width=16, repr.plot.height=4)
bartlett.test(d$x ~ d$cond)
boxplot(d$x ~ d$cond, horizontal=TRUE, main="A fake example with unequal varian

Bartlett test of homogeneity of variances

data: d$x by d$cond
Bartlett's K-squared = 129.17, df = 1, p-value < 2.2e-16

A fake example with unequal variances




WHAT IF ASSUMPTIONS ARE NOT MET ?

Normality: ANOVA is said to be pretty robust against deviations of normality, which means
that the validity of p-values are not too much affected by skew (the distribution is
asymetric) or kurtosis (the distribution is too heavy or too light tailed).

=> Data Transformation. Trying to transform the dependent variable so that the distribution
approaches normality, by taking 1/x, log(x) or sqrt(x).

=> Using a non-parametric equivalent for ANOVA: Kruskall-Wallis rank test.

Equality of variance: Deviations for the equality of variance have most impact on the result
of the ANOVA if the group sizes are unequal.

=> Using the Welch correction for oneway.test() by specifying var.equal=FALSE .



RUNNING A NON-PARAMETRIC KRUSKALL-WALLIS AS AN ALTERNATIVE

The principle for the Kurskall Wallis test is very similar to the idea behind ANOVA. The
difference is that rather than using the raw scores, the Kruskall-Wallis test relies on ranks.
This test does not make assumptions about the distribution of the residuals, nor about
the variances.

H: The mean ranks of the groups are the same.
H: The mean ranks of the groups are not the same.

The decision variable:

i:lT%(f%“f)z
H=(N-1) - ~X[29_1]

iilEZjil(fb__f)2

kruskal.test(learning ~ condition, data=df)

Kruskal-Wallis rank sum test

data: learning by condition
Kruskal-Wallis chi-squared = 43.443, df = 1, p-value = 4.365e-11

From the results of the test we see that we can reject the Null hypothesis (p < .05) and
therefore conclude that the mean ranks are different among the two groups.



ANOVA WITH 2 FACTORS

We now add a control variable (age.group ) as a new factor to the ANOVA. This
introduces the possibility for interaction between variables.

In order to test for a potential moderation effect (the effect of the condition varies
depending on another variable), we include interaction effects in the linear model.

The total variance is now decomposed into:

SSTotal = SSFactorl + SSFactor2 + SSInteraction + SSWithin

The degrees of freedom for an interaction effect between 2 variables with k and m levels
are (k — 1)(m — 1), with condition and gender: (2 — 1)(2 — 1) = 1 and with condition
and age group (2 —1)(3 —1) = 2.

In the specification of the model, the interaction between 2 factors is written with a column
asin condition:age.group.



model.2 <— lm(learning ~
condition +
age.group +
condition:age.group,
contrasts=list(condition=contr.sum, age.group=contr.sum),
data=df)
summary (model.2)

Call:
Im(formula = learning ~ condition + age.group + condition:age.group,
data = df, contrasts = list(condition = contr.sum, age.group = contr.su

Residuals:

Min 1Q Median 3Q Max
-2.55457 -0.74262 -0.03032 0.87658 2.24990
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 0.31422 0.07583 4.144 5.10e-05 sxxkx*
conditionl -0.56384 0.07/583 -7.435 3.27e-12 xxxk
age.groupl -0.33434 0.10940 -3.056 0.00256 *xx
age.group2 0.16601 0.10465 1.580 0.11428
conditionl:age.groupl -0.02690 0.10940 -0.246 0.80599
conditionl:age.group2 —-0.24722 0.10465 -2.362 0.01915 x

Signif. codes: 0 'xkx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.066 on 194 degrees of freedom
Multiple R-squared: 0.2897, Adjusted R-squared: 0.2714
F-statistic: 15.82 on 5 and 194 DF, p-value: 4.628e-13



Anova(model.2, type="III")

A anova: b x4

Sum Sq Df F value Pr(>F)

<dbl> <dbl> <dbl> <dbl>

(Intercept) 19.525149 1 17170622 5.099499e-05
condition 62.866648 1 55.285595 3.267421e-12

age.group 10.629625 2 4.673902 1.041208e-02
condition:age.group 0.364644 2 4117683 1.772672e-02
Residuals 220.602306 194 NA NA



IS THERE AN INTERACTION ?

e \WWhen there is an interaction, we use type Ill sums of squares and don't interpret
main effects.

e |f there are no interactions, switch to a model that only includes main effects and use
type Il sums of squares.



AGE GROUP AND CONDITION

Condition

Condition



Learning gain

Warning message:

"Using size aesthetic for lines was deprecated in ggplot2 3.4.0.

Please use  linewidth

instead."

IPS

Condition

PISI

Condition
= Kkids
= students

=== professionals



REPORTING THE ANOVA WITH
INTERACTION

A two way ANOVA was conducted with the experimental condition, and the control variable
age group. We tested for interactions between the condition and the control variables.
There was a significant interaction effect between condition and age group
(F[2,194]1=4.1177, p =.0104). Inspection of the graphical patterns of the means indicates

that the PSI condition worked especially well for students in comparison with kids and
professionals.



GENDER AND CONDITION

Let's do the same analysis with the control variable gender . We start with a model that
contains the interaction term (type lll). Since there is no interactions between the factors,
we re-run the model without interaction and use type Il sums of squares.

model.with.interaction <= lm(learning ~ condition + gender + condition:gender,
contrasts=1list(condition=contr.sum, gender=contr.sum),
data=df)

Anova(model.with.interaction, type="III")

A anova: b x4

Sum Sq Df F value Pr(>F)

<dbl> <dbl> <dbl> <dbl>

(Intercept) 20.3263220 1 16.7323913 6.281746e-05
condition  67.4350612 1 55.5117561 2.899331e-12

gender 2.4509083 1 2.0175591 1.570777e-01
condition:gender 0.4009976 1 0.3300966 5.662611e-01

Residuals 238.0986104 196 NA NA



model.without.interaction <- 1m(learning ~ condition + gender,
contrasts=list(condition=contr.sum, gender=contr.sum),
data=df)

Anova(model.without.interaction, type="II")

A anova: 3x4

Sum Sq Df F value Pr(>F)

<dbl> <dbl> <dbl> <dbl>

condition 68.166682 1 56.305486 2.085951e-12
gender 2.402667 1 1.984596 1.604834e-01

Residuals 238.499608 197 NA NA



Learning gain
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REPORTING THE ANOVAWITHOUT
INTERACTION

tapply(df$learning, df$condition, mean)
tapply(df$learning, df$condition, sd)

IPS: -0.262625063017639 PSI: 0.91796637641/57

IPS: 1.13120725443642 PSI: 1.07290750612109

A two way ANOVA was conducted with the experimental condition, and the control variable
gender. There was no interaction effect between condition and gender. There is a main
effect of the experimental condition (F[1,197]=56.306, p<.000). The subjects in the PSI
group had a larger learning gain (M=0.918, sd=1.07) than the subjects in the IPS group
(M=-0.262, sd=1.13). There was no main effect of gender (F[1,197]=1.98, p > .05).



