
Computer Graphics

Advanced Rendering Methods

Mark Pauly
Geometric Computing Laboratory

1

Rasterization Pipeline

3D Geometry 2D Image

Rasterization Pipeline

Global Illumination

2

Quiz: Rasterization Pipeline

Which of the (incomplete) steps in the pipelines below are in the correct order?

A: Transformations Shading Projection Visibility

B: Lighting Clipping Rasterization Visibility

C: Projection Rasterization Clipping Shading

D: Transformations Lighting Rasterization Projection

3

GPU Rasterization Pipeline

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

4

Transformations & Projections

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

scaling rotation translation

5

Transformations & Projections

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

6

Quiz: Transformations

Which matrix computes the
transformation on the right?

1 1

1 1

A: B:

C: D:

7

Lighting

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

Phong Lighting Model

ambient +diffuse +specular

8

Quiz: Lighting

What is the specular component of Phong lighting?

A: B:

C: D:

9

Clipping

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

10

Rasterization

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

11

Quiz: Barycentric Coordinates

A point is represented with respect to the vertices
of a triangle as with

. Which are the correct coordinates
for the point shown in the figure?

A

B

C

0 1 65432
0

1

5

4

3

2

X

A: B: C: D:

12

Quiz: Barycentric Coordinates

A point is represented with respect to the vertices
of a triangle as with

. Which are the correct coordinates
for the point shown in the figure?

A

B

C

0 1 65432
0

1

5

4

3

2

X

A: B: C: D:

13

Shading

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

flat (constant) per-vertex (Gouraud) per-fragment (Phong)
14

Visibility

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

7
6 7
5 6 7
4 5 6 7
3 4 5 6 7
2 3 4 5 6 7

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5 ∞ ∞ ∞ ∞∞∞

∞∞∞∞∞
∞∞∞∞
∞∞∞
∞∞
∞

∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞

5 5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5 ∞ ∞ ∞ ∞ ∞∞

∞∞∞∞∞
∞∞∞∞
∞∞∞
∞∞
∞

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5
5

∞
∞ ∞

∞ ∞∞
∞∞∞
∞∞
∞

2 3 4 5 6 7
3 4 5 6 7

74 5
5

+ =

+ =

15

Materials & Texture

Textures add visual detail without raising geometric complexity

Textures allow us to model many surface properties:
material (diffuse + specular colors/coefficients), normal vector (normal mapping, bump mapping), geometry
(displacement mapping), opacity (alpha mapping), reflection/illumination (environment mapping)

Geometry +Lighting +Texture

Images from http://www.3drender.com/jbirn/productions.html 16

http://www.3drender.com/jbirn/productions.html

Quiz: Textures

Which of the following statements is true?

A: Bilinear texture filtering eliminates aliasing.

B: There can be no mapping from the half-sphere to the plane that preserves area everywhere.

C: There can be no mapping from the half-sphere to the plane that preserves length everywhere.

D: Mipmapping selects the suitable image resolution based on the average value of a triangle.

E: Alpha mapping select which pixels to render in the fragment shader.

17

Modulating Normals: Bump Mapping

Derive normal perturbation from grayscale “height field”

Emulate slight raising and lowering of surface points

normal rendering bump map bump-mapped result

18

Modulating Normals: Normal Map

Read surface normal perturbation from an RGB image

19

Modulating Geometry

Displacement mapping: perturb surface points
Need a high-resolution surface tessellation for good detail…

Mesh subdivision can now be done on the GPU!

ZBrushCentral 20

http://www.zbrushcentral.com/showthread.php?20310-Rendering-ZBrush-Displacement-Maps-In-External-Renderers-(May-9th-2nd-file-added)

Normal Maps vs. Displacement Maps

Normal mapping
Don’t change geometry, only change normals based on texture

Can be performed in pixel shader

Silhouette still looks wrong

Normal Mapping

Displacement mapping
Displace vertices based on offset stored in texture

Compute normal vectors of displaced surface

Performed in geometry shader or tesselation shader

Silhouette looks ok, but much more expensive to compute

Displacement Mapping
21

Normal Maps vs. Displacement Maps

22

Material Capture, Lit Sphere Rendering

Capture complex light-material interaction in a
pre-computed texture

Photograph or render sphere with desired material

Use this image as spherical environment map

Access texture through normal vector

Good: Allows complex material with simple
(therefore efficient) shader

Bad: Assume viewer is far away, does not handle
surface micro-structure

Sloan et al., The Lit Sphere, Graphics Interface 2001 23

https://graphicsinterface.org/proceedings/gi2001/gi2001-17/

Material Capture, Lit Sphere Rendering

skin

MatCap from Blender 2.81 repository 24

https://github.com/blender/blender/tree/master/release/datafiles/studiolights/matcap

Material Capture, Lit Sphere Rendering

car paint

MatCap from Blender 2.81 repository 25

https://github.com/blender/blender/tree/master/release/datafiles/studiolights/matcap

Material Capture, Lit Sphere Rendering

shiny gold

MatCap from Blender 2.79 repository 26

https://github.com/blender/blender/tree/f4dc9f9d68bddaa206b692e1d077d1a1f2bb1528/release/datafiles/matcaps

Material Capture, Lit Sphere Rendering

matte gold

MatCap from Blender 2.79 repository 27

https://github.com/blender/blender/tree/f4dc9f9d68bddaa206b692e1d077d1a1f2bb1528/release/datafiles/matcaps

Deferred Shading

Screen-space lighting/shading technique
1. Render colors, normals, and depth into textures

2. Use screen-space filter to compute lighting for each image pixel

Good: only compute lighting for visible pixels

Bad: transparency and antialiasing are more difficult

Colors Normals Depth Final result

28

Deferred Shading

Sigg et al, “GPU-Based Ray-Casting of Quadratic Surfaces”, PBG 2006 29

https://ls7-gv.cs.tu-dortmund.de/publications.html#pbg06

Deferred Shading

Diffuse Color G-Buffer

Z-Buffer

Deferred shading
In the field of 3D computer graphics, deferred shading is a screen-space shading technique that is performed on a second rendering pass,

after the vertex and pixel shaders are rendered.[2] It was first suggested by Michael Deering in 1988.[3]

On the first pass of a deferred shader, only data that is required for shading computation is gathered. Positions, normals, and materials for
each surface are rendered into the geometry buffer (G-buffer) using "render to texture". After this, a pixel shader computes the direct and
indirect lighting at each pixel using the information of the texture buffers in screen space.

Screen space directional occlusion[4] can be made part of the deferred shading pipeline to give directionality to shadows and interreflections.

The primary advantage of deferred shading is the decoupling of scene geometry from lighting. Only one geometry pass is required, and each
light is only computed for those pixels that it actually affects. This gives the ability to render many lights in a scene without a significant

performance hit.[5] There are some other advantages claimed for the approach. These include simpler management of complex lighting
resources, ease of managing other complex shader resources, and the simplification of the software rendering pipeline.

One key disadvantage of deferred rendering is the inability to handle transparency within the algorithm, although this problem is a generic

one in Z-buffered scenes and it tends to be handled by delaying and sorting the rendering of transparent portions of the scene.[6] Depth
peeling can be used to achieve order-independent transparency in deferred rendering but at the cost of additional batches and g-buffer size

Advantages

Disadvantages

https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_col.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_col.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_dep.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_dep.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_nor.jpg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Screen-space
https://en.wikipedia.org/wiki/Shading
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Michael_Deering
https://en.wikipedia.org/wiki/G-buffer
https://en.wikipedia.org/wiki/Render_to_texture
https://en.wikipedia.org/wiki/Pixel_shader
https://en.wikipedia.org/wiki/Texture_buffers
https://en.wikipedia.org/wiki/Screen_space
https://en.wikipedia.org/wiki/Screen_space_directional_occlusion
https://en.wikipedia.org/wiki/Transparency_(graphic)
https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Depth_peeling
https://en.wikipedia.org/wiki/Depth_peeling
https://en.wikipedia.org/wiki/Order-independent_transparency

Source

30

https://en.wikipedia.org/wiki/Deferred_shading

Deferred Shading

Source

31

https://cglearn.eu/pub/advanced-computer-graphics/deferred-rendering

Screen Space Reflections

Simplified reflections computed using the depth buffer.

◀️ (chromatic-aberration.html) ⏫ (index.html) 🔼 🔽 ▶️ (screen-space-refraction.html)

3D Game Shaders For Beginners

Screen Space Reflection (SSR)

Source

32

https://lettier.github.io/3d-game-shaders-for-beginners/chromatic-aberration.html
https://lettier.github.io/3d-game-shaders-for-beginners/index.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html

Ambient Occlusion

Measures the exposure to ambient lighting to darken more occluded, less acessible parts
of the scene. Global method, can be efficiently implemented in .screen space

33

https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion

Ambient Occlusion

Measures the exposure to ambient lighting to darken more occluded, less acessible parts
of the scene. Global method, can be efficiently implemented in .screen space

Source

34

https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://developer.playcanvas.com/en/user-manual/graphics/lighting/ambient-occlusion/

Ambient Occlusion

Ambient occlusion
In 3D computer graphics, modeling, and animation, ambient occlusion is a shading and rendering technique used to calculate how exposed
each point in a scene is to ambient lighting. For example, the interior of a tube is typically more occluded (and hence darker) than the exposed
outer surfaces, and becomes darker the deeper inside the tube one goes.

Ambient occlusion can be seen as an accessibility value that is calculated for each surface point.[1] In scenes with open sky, this is done by
estimating the amount of visible sky for each point, while in indoor environments, only objects within a certain radius are taken into account
and the walls are assumed to be the origin of the ambient light. The result is a diffuse, non-directional shading effect that casts no clear
shadows, but that darkens enclosed and sheltered areas and can affect the rendered image's overall tone. It is often used as a post-processing
effect.

Unlike local methods such as Phong shading, ambient occlusion is a global method, meaning that the illumination at each point is a function
of other geometry in the scene. However, it is a very crude approximation to full global illumination. The appearance achieved by ambient
occlusion alone is similar to the way an object might appear on an overcast day.

The first method that allowed simulating ambient occlusion in real time was developed by the research and development department of

Crytek (CryEngine 2).[2] With the release of hardware capable of real time ray tracing (GeForce 20 series) by Nvidia in 2018, ray traced
ambient occlusion (RTAO) became possible in games and other real time applications.[3] This feature was added to the Unreal Engine with

version 4.22.[4]

In the absence of hardware-assisted ray traced ambient occlusion, real-time applications such as computer games can use screen space
ambient occlusion (SSAO) techniques such as horizon based ambient occlusion including HBAO and ground truth ambient occlusion (GTAO)

Implementation

https://en.wikipedia.org/wiki/File:AmbientOcclusion_German.jpg
https://en.wikipedia.org/wiki/File:AmbientOcclusion_German.jpg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_modeling
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Shading
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Shading#Ambient_lighting
https://en.wikipedia.org/wiki/Diffuse_reflection
https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Phong_shading
https://en.wikipedia.org/wiki/Global_illumination
https://en.wikipedia.org/wiki/Overcast
https://en.wikipedia.org/wiki/Crytek
https://en.wikipedia.org/wiki/CryEngine
https://en.wikipedia.org/wiki/GeForce_20_series
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Unreal_Engine
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Real-time_computer_graphics
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Horizon-based_ambient_occlusion
https://en.wikipedia.org/w/index.php?title=Ground-truth_ambient_occlusion&action=edit&redlink=1

Wikipedia

35

https://en.wikipedia.org/wiki/Ambient_occlusion

Ambient Occlusion

SSAO

We've briefly touched the topic in the basic lighting chapter: ambient lighting. Ambient lighting is a fixed light
constant we add to the overall lighting of a scene to simulate the scattering of light. In reality, light scatters in
all kinds of directions with varying intensities so the indirectly lit parts of a scene should also have varying
intensities. One type of indirect lighting approximation is called ambient occlusion that tries to approximate
indirect lighting by darkening creases, holes, and surfaces that are close to each other. These areas are largely
occluded by surrounding geometry and thus light rays have fewer places to escape to, hence the areas appear
darker. Take a look at the corners and creases of your room to see that the light there seems just a little
darker.

Below is an example image of a scene with and without ambient occlusion. Notice how especially between the
creases, the (ambient) light is more occluded:

If you're runnin
this site if you'd
a lot); and no w

Introduction

Getting started

Lighting

Model Loading

Advanced OpenGL

Advanced Lighting

Advanced Lighting

Gamma Correction

Shadows

Normal Mapping

Parallax Mapping

HDR

Bloom

Deferred Shading

https://github.com/JoeyDeVries/LearnOpenGL
https://github.com/JoeyDeVries/LearnOpenGL
https://twitter.com/JoeyDeVriez
https://twitter.com/JoeyDeVriez
https://learnopengl.com/Introduction
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://learnopengl.com/Advanced-Lighting/Gamma-Correction
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Parallax-Mapping
https://learnopengl.com/Advanced-Lighting/HDR
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Source

36

https://learnopengl.com/Advanced-Lighting/SSAO

Molecule Rendering

Waltemate et al, “Membrane Mapping”, VCBM 2014 37

https://ls7-gv.cs.tu-dortmund.de/publications.html#vcbm14

Non-Photorealistic Rendering

Often called expressive graphics, artistic rendering, art-based rendering, etc.

Toon Shader Technical Illustration

Wikipedia 38

https://en.wikipedia.org/wiki/Non-photorealistic_rendering/

Non-Photorealistic Rendering

Often called expressive graphics, artistic rendering, art-based rendering, etc.

NPR in Blender

39

https://typhomnt.github.io/post/blender_npr/

Non-Photorealistic Rendering

course7-4-npr.pdf

Source

40

https://gfx.cs.princeton.edu/proj/sg05lines/course7-4-npr.pdf

Non-Photorealistic Rendering

tdl.js - flexible toon shading
Edit the ramp or select one below to change effects

fps: 1

standard

2 tone

3 tone

8 tone

highlight

ff00ffff

255

0

255

255

300

100

100

100

double click to add stop
drag stop down to remove
alt-drag to duplicate

https://threedlibrary.googlecode.com/

Source

41

https://webglsamples.org/toon-shading/toon-shading.html

Particle Systems

WebGL Particle Physics

Source

42

https://nullprogram.com/webgl-particles/

Particle Systems

POLYGON SHREDDERPOLYGON SHREDDER
THE POLYGON SHREDDER THAT TAKES MANY CUBES AND TURNS THEM INTO CONFETTITHE POLYGON SHREDDER THAT TAKES MANY CUBES AND TURNS THEM INTO CONFETTI

Tweet

Jaume Sanchez · clicktorelease · Twitter · GitHub

Move mouseMove mouse around, the particles will be generated following the mouse around, the particles will be generated following the mouse
Press Press space to pausespace to pause, space again to resume, space again to resume
Click and dragClick and drag to rotate the camera, use scroll to zoom in and out to rotate the camera, use scroll to zoom in and out
Play with the Play with the controlscontrols and let's see what you can find! and let's see what you can find!

Factor:Factor: speed at which the particles move speed at which the particles move
Evolution:Evolution: the variation over time of the particles flow the variation over time of the particles flow
Rotation:Rotation: speed at which the particle field auto-rotates speed at which the particle field auto-rotates
Radius:Radius: radius of a sphere that repels particles radius of a sphere that repels particles
Pulsate:Pulsate: if enabled, the sphere pulsates, pushing in and out if enabled, the sphere pulsates, pushing in and out
ScaleX/Y/Z:ScaleX/Y/Z: set the scale of each axis of the particles set the scale of each axis of the particles
Scale:Scale: change the overall scale of the particles change the overall scale of the particles

Too many? Too litte?
Try almost none, a few, some, regular, quite a few, a lot, INSANE

Close this messageClose this message

factorfactor 0.5

evolutionevolution 0.5

rotationrotation 0.5

radiusradius 2

pulsatepulsate

scaleXscaleX 0.1

scaleYscaleY 1

scaleZscaleZ 5

scalescale 1
Close ControlsClose Controls

https://twitter.com/share
https://www.clicktorelease.com/
https://twitter.com/thespite
https://github.com/spite/polygon-shredder

Source

43

https://www.clicktorelease.com/code/polygon-shredder/

Implicit Surfaces

fps: 1
Number of Blobs
1
10
100
1000
Resolution
16^3
24^3
32^3
40^3
48^3

Source

44

https://webglsamples.org/blob/blob.html

Games

Source

45

http://cycleblob.com/

Raytracing & Fluid Sim

WebGL Water
Made by Evan Wallace

This demo requires a decent graphics card and
up-to-date drivers. If you can't run the demo, you
can still see it on YouTube.

Interactions:

Draw on the water to make ripples
Drag the background to rotate the camera
Press SPACEBAR to pause and unpause
Drag the sphere to move it around
Press the L key to set the light direction
Press the G key to toggle gravity

Features:

Raytraced reflections and refractions
Analytic ambient occlusion
Heightfield water simulation *
Soft shadows
Caustics (see this for details) **

* requires the OES_texture_float extension
** requires the OES_standard_derivatives extension

Tile texture from zooboing on Flickr

https://madebyevan.com/
https://youtube.com/watch?v=R0O_9bp3EKQ
https://medium.com/@evanwallace/rendering-realtime-caustics-in-webgl-2a99a29a0b2c
https://www.flickr.com/photos/zooboing/3682834083/

Source

46

https://madebyevan.com/webgl-water/

