Computer Graphics

Advanced Rendering Methods

Mark Pauly

Geometric Computing Laboratory

Rasterization Pipeline

ﬂ

[3D Geometry

>[2D Image]

Quiz: Rasterization Pipeline

Which of the (incomplete) steps in the pipelines below are in the correct order?

[A: Transformations — Shading — Projection — Visibility]

[B: Lighting — Clipping — Rasterization — VisibilityJ

[C: Projection — Rasterization — Clipping — ShadingJ

{D: Transformations — Lighting — Rasterization — Projection}

GPU Rasterization Pipeline

[3D Triangles J——»

Transformations

'

Lighting

'

Projection

5>

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image]

Transformations & Projections

[BD Triangles]——» Transformations | Primitive Assembly > Shading
Lighting Clipping Visibility >[2D Image J
Projection — Rasterization I
per vertex per primitive per fragment
A Ao LN _ A A _ A A
/41N
\\//;

scaling rotation translation

Transformations & Projections

[3D Triangles J——» Transformations

Lighting

Projection

per vertex

>

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

top view

front view

side
view

>[2D Image J

Quiz: Transformations

Which matrix computes the T — T
transformation on the right? 00 0
oo e
: N S : 1i R S
2 0 0 1 0 1 0 0 0 1 0 1 00
A: |0 1 1 0 1 0 B: 1 2 -1 0 O 0 2 0
0 0 1 0 0 1 0 1 0 0 1 0 0 1
L J/

O =

o - O

- O O

I O

o - O

Lighting

[3D Triangles H Transformations | Primitive Assembly > Shading
Clipping Visibility >[2D Image J
Projection Rasterization S
per vertex per primitive per fragment

Phong Lighting Model

ambient +diffuse +specular

Quiz: Lighting

What is the specular component of Phong lighting?

[A: Ilms(r°V)s] [B: Izms(V'l)sJ N2

{C: Ilms(n-l)sJ [DI Ilms(l“n)s]

Clipping

[3D Triangles H Transformations

'

Lighting

'

Projection

>

per vertex

Primitive Assembly Shading
Visibility
Rasterization B
per primitive per fragment

A

>[2D Image J

10

Rasterization

[3D Triangles H Transformations

>

'

Lighting

'

Projection

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image J

Samples

11

Quiz: Barycentric Coordinates

A point X is represented with respect to the vertices
of a triangle ABC as X = aA + B +~C with

a + B+ v = 1. Which are the correct coordinates
for the point X shown in the figure?

[A: (1,—1,1)} [B: (—1,1,1)} [c: (—1,2,0)} {D: (2,-1,0)}

12

Quiz: Barycentric Coordinates

A point X is represented with respect to the vertices
of a triangle ABC as X = aA + B +~C with

a + B+ v = 1. Which are the correct coordinates
for the point X shown in the figure?

[A: (1,1,-1)} [B: (—1,1,1)} [c: (.5,1,.5)} [D: (3,—1,-1)}

13

Shading

[SD TrianglesH Transformations

'

Lighting

'

Projection

>

Primitive Assembly

'

Clipping

Visibility >[2D Image J

'

per vertex

Rasterization

per primitive

per fragment

flat (constant)

per-vertex (Gouraud)

per-fragment (Phong)

14

Visibility

[3D Triangles H Transformations

'

Lighting

'

Projection

>

Primitive Assembly

> Shading

'

Clipping

'

per vertex

Rasterization

per primitive

Visibility

—>[2D Image J

per fragment

ST5[5[5]5[5]5]
S[5]5]5[5]o0[oe]
5[5]5] 5] o0 07| o)
5151 5] 0| cof oof oo] oo
5| 5 cof oof oof oo] oo] oo
5 oo cof cof cof cof oof oo
0| oo| 00| oo oo| cof 00| oo
ST5]5[5[5]5]5]«

ST5[5]5]5[5]5]
5[5[5]5
515[5

5[5

0] 00| oo| oof oo ool oo] o)
00| 00| oo| oo| oo oo oo| oo
00| 00| 00| oo| o cof 00| o)
00| 00| oo| 00| cof oo 00| oo
00| 00| oo| oof ool oo oo oo| +
00| 00| oo| oo| oo oo oo| oo
00| 00| 00| oo| o oo| 00| o)
00| 00| oo| oo| o oo 00| oo
5[5[5]5]5]5]5]<
5[5] 5] 5] e[| oo o0
5[5/ 5]co[co[cofo0|c0] +
5[5] cof oof oo] oo] oo] oo
5[ool 0o o] 0o o] oo 00|
00| 00| 00| oo| cof co| oo| o)

15

Materials & Texture

e Textures add visual detail without raising geometric complexity

e Textures allow us to model many surface properties:

o material (diffuse + specular colors/coefficients), normal vector (hormal mapping, bump mapping), geometry
(displacement mapping), opacity (alpha mapping), reflection/illumination (environment mapping)

Geometry +Lighting +Texture

Images from http:/www.3drender.com/jbirn/productions.html 16

http://www.3drender.com/jbirn/productions.html

Quiz: Textures

Which of the following statements is true?

[A: Bilinear texture filtering eliminates aIiasing.]

[B: There can be no mapping from the half-sphere to the plane that preserves area everywhere.]

[C: There can be no mapping from the half-sphere to the plane that preserves length everywhere.]

[D: Mipmapping selects the suitable image resolution based on the average z value of a triangle.]

[E: Alpha mapping select which pixels to render in the fragment shader.]

17

Modulating Normals: Bump Mapping

e Derive normal perturbation from grayscale “height field”

e Emulate slight raising and lowering of surface points

normal rendering bump map bump-mapped result

18

Modulating Normals: Normal Map

e Read surface normal perturbation from an RGB image

19

Modulating Geometry

e Displacement mapping: perturb surface points

o Need a high-resolution surface tessellation for good detail...

o Mesh subdivision can now be done on the GPU!

ZBrushCentral

20

http://www.zbrushcentral.com/showthread.php?20310-Rendering-ZBrush-Displacement-Maps-In-External-Renderers-(May-9th-2nd-file-added)

Normal Maps vs. Displacement Maps

e Normal mapping

o Don’t change geometry, only change normals based on texture

o Can be performed in pixel shader

o Silhouette still looks wrong

e Displacement mapping
o Displace vertices based on offset stored in texture

o Compute normal vectors of displaced surface
o Performed in geometry shader or tesselation shader

o Silhouette looks ok, but much more expensive to compute

Normal Mapping

Displacement Mapping
21

Normal Maps vs. Displacement Maps

22

Material Capture, Lit Sphere Rendering

o Capture complex light-material interaction in a
pre-computed texture

o Photograph or render sphere with desired material
o Use this image as spherical environment map

o Access texture through normal vector

e Good: Allows complex material with simple
(therefore efficient) shader

e Bad: Assume viewer is far away, does not handle
surface micro-structure

Sloan et al., The Lit Sphere, Graphics Interface 2001

23

https://graphicsinterface.org/proceedings/gi2001/gi2001-17/

Material Capture, Lit Sphere Rendering

skin

MatCap from Blender 2.81 repository

24

https://github.com/blender/blender/tree/master/release/datafiles/studiolights/matcap

Material Capture, Lit Sphere Rendering

car paint

MatCap from Blender 2.81 repository

25

https://github.com/blender/blender/tree/master/release/datafiles/studiolights/matcap

Material Capture, Lit Sphere Rendering

shiny gold

MatCap from Blender 2.79 repository

26

https://github.com/blender/blender/tree/f4dc9f9d68bddaa206b692e1d077d1a1f2bb1528/release/datafiles/matcaps

Material Capture, Lit Sphere Rendering

matte gold

MatCap from Blender 2.79 repository

27

https://github.com/blender/blender/tree/f4dc9f9d68bddaa206b692e1d077d1a1f2bb1528/release/datafiles/matcaps

Deferred Shading

e Screen-space lighting/shading technique
1. Render colors, normals, and depth into textures

2. Use screen-space filter to compute lighting for each image pixel
e Good: only compute lighting for visible pixels

e Bad: transparency and antialiasing are more difficult

y

Colors Normals Depth Final result

28

Deferred Shading

Color Depth Normals Lighting
@) i :

Shadow Map Shadow Outlines Final Rendering

(b)
f)

(

Sigg et al, “GPU-Based Ray-Casting of Quadratic Surfaces”, PBG 2006

29

https://ls7-gv.cs.tu-dortmund.de/publications.html#pbg06

Deferred Shading

3 WIKIPEDIA

*.# 4/ TheFreeEncyclopedia

Deferred shading

In the field of 3D computer graphics, deferred shading is a screen-space shading technique that is performed on a second rendering pass,

after the vertex and pixel shaders are rendered.[?] It was first suggested by Michael Deering in 1988.L]

On the first pass of a deferred shader, only data that is required for shading computation is gathered. Positions, normals, and materials for
each surface are rendered into the geometry buffer (G-buffer) using "render to texture". After this, a pixel shader computes the direct and
indirect lighting at each pixel using the information of the texture buffers in screen space.

Screen space directional occlusion[¥! can be made part of the deferred shading pipeline to give directionality to shadows and interreflections.

Advantages

The primary advantage of deferred shading is the decoupling of scene geometry from lighting. Only one geometry pass is required, and each
light is only computed for those pixels that it actually affects. This gives the ability to render many lights in a scene without a significant

performance hit.[>! There are some other advantages claimed for the approach. These include simpler management of complex lighting
resources, ease of managing other complex shader resources, and the simplification of the software rendering pipeline.

Disadvantages

One key disadvantage of deferred rendering is the inability to handle transparency within the algorithm, although this problem is a generic

one in Z-buffered scenes and it tends to be handled by delaying and sorting the rendering of transparent portions of the scene.l®] Depth

nealinog can he nicad tn achieave nrdar-indenandant trancnarency in daferrad rendarinag hut at tha cnct af additional hatehac and a-huffer cize

A y

Diffuse Color G-Buffer

https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_col.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_col.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_dep.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_dep.jpg
https://en.wikipedia.org/wiki/File:Deferred_rendering_pass_nor.jpg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/Screen-space
https://en.wikipedia.org/wiki/Shading
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Michael_Deering
https://en.wikipedia.org/wiki/G-buffer
https://en.wikipedia.org/wiki/Render_to_texture
https://en.wikipedia.org/wiki/Pixel_shader
https://en.wikipedia.org/wiki/Texture_buffers
https://en.wikipedia.org/wiki/Screen_space
https://en.wikipedia.org/wiki/Screen_space_directional_occlusion
https://en.wikipedia.org/wiki/Transparency_(graphic)
https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Depth_peeling
https://en.wikipedia.org/wiki/Depth_peeling
https://en.wikipedia.org/wiki/Order-independent_transparency

Source

30

https://en.wikipedia.org/wiki/Deferred_shading

Deferred Shading

Source

31

https://cglearn.eu/pub/advanced-computer-graphics/deferred-rendering

Screen Space Reflections

o Simplified reflections computed using the depth buffer.

3D Game Shaders For Beginners

Screen Space Reflection (SSR)

Source

32

https://lettier.github.io/3d-game-shaders-for-beginners/chromatic-aberration.html
https://lettier.github.io/3d-game-shaders-for-beginners/index.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-refraction.html
https://lettier.github.io/3d-game-shaders-for-beginners/screen-space-reflection.html

Ambient Occlusion

e Measures the exposure to ambient lighting to darken more occluded, less acessible parts
of the scene. Global method, can be efficiently implemented in screen space.

Without ambient ccclusion With ambient ocelusion

33

https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion

Ambient Occlusion

e Measures the exposure to ambient lighting to darken more occluded, less acessible parts
of the scene. Global method, can be efficiently implemented in screen space.

Source

34

https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://developer.playcanvas.com/en/user-manual/graphics/lighting/ambient-occlusion/

Ambient Occlusion

%+ 4 WIKIPEDIA
"% 3/ TheFreeEncyclopedia

Ambient occlusion

In 3D computer graphics, modeling, and animation, ambient occlusion is a shading and rendering technique used to calculate how exposed
each point in a scene is to ambient lighting. For example, the interior of a tube is typically more occluded (and hence darker) than the exposed
outer surfaces, and becomes darker the deeper inside the tube one goes.

Ambient occlusion can be seen as an accessibility value that is calculated for each surface point.[l] In scenes with open sky, this is done by
estimating the amount of visible sky for each point, while in indoor environments, only objects within a certain radius are taken into account
and the walls are assumed to be the origin of the ambient light. The result is a diffuse, non-directional shading effect that casts no clear

shadows, but that darkens enclosed and sheltered areas and can affect the rendered image's overall tone. It is often used as a post-processing
effect.

Unlike local methods such as Phong shading, ambient occlusion is a global method, meaning that the illumination at each point is a function
of other geometry in the scene. However, it is a very crude approximation to full global illumination. The appearance achieved by ambient
occlusion alone is similar to the way an object might appear on an overcast day.

The first method that allowed simulating ambient occlusion in real time was developed by the research and development department of
Crytek (CryEngine 2).[2] With the release of hardware capable of real time ray tracing (GeForce 20 series) by Nvidia in 2018, ray traced
ambient occlusion (RTAO) became possible in games and other real time applications.[3] This feature was added to the Unreal Engine with

version 4.22.[4]

Implementation

In the absence of hardware-assisted ray traced ambient occlusion, real-time applications such as computer games can use screen space
armhinnt analiiainm (CCAN tanhninirnn ava h oo havican haoad csnhinnt canaliinicm tmalindin e ITTR AN and cvarsnd trath csnhinnt analiinian (T AN

schnell berechnetem:
Ambiente

TR U1l :-

Multipliziertes=Bil

https://en.wikipedia.org/wiki/File:AmbientOcclusion_German.jpg
https://en.wikipedia.org/wiki/File:AmbientOcclusion_German.jpg
https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/3D_computer_graphics
https://en.wikipedia.org/wiki/3D_modeling
https://en.wikipedia.org/wiki/Computer_animation
https://en.wikipedia.org/wiki/Shading
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)
https://en.wikipedia.org/wiki/Shading#Ambient_lighting
https://en.wikipedia.org/wiki/Diffuse_reflection
https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Phong_shading
https://en.wikipedia.org/wiki/Global_illumination
https://en.wikipedia.org/wiki/Overcast
https://en.wikipedia.org/wiki/Crytek
https://en.wikipedia.org/wiki/CryEngine
https://en.wikipedia.org/wiki/GeForce_20_series
https://en.wikipedia.org/wiki/Nvidia
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Unreal_Engine
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
https://en.wikipedia.org/wiki/Real-time_computer_graphics
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Screen_space_ambient_occlusion
https://en.wikipedia.org/wiki/Horizon-based_ambient_occlusion
https://en.wikipedia.org/w/index.php?title=Ground-truth_ambient_occlusion&action=edit&redlink=1

Wikipedia

35

https://en.wikipedia.org/wiki/Ambient_occlusion

Introduction

Getting started

Lighting

Model Loading

Advanced OpenGL

Advanced Lighting
Advanced Lighting
Gamma Correction
Shadows
Normal Mapping
Parallax Mapping
HDR

Ambient Occlusion

SSAO

We've briefly touched the topic in the basic lighting chapter: ambient lighting. Ambient lighting is a fixed light

constant we add to the overall lighting of a scene to simulate the scattering of light. In reality, light scatters in it youre runnin
all kinds of directions with varying intensities so the indirectly lit parts of a scene should also have varying this site if you'c
intensities. One type of indirect lighting approximation is called ambient occlusion that tries to approximate alot); and now
indirect lighting by darkening creases, holes, and surfaces that are close to each other. These areas are largely

occluded by surrounding geometry and thus light rays have fewer places to escape to, hence the areas appear

darker. Take a look at the corners and creases of your room to see that the light there seems just a little

darker.

Below is an example image of a scene with and without ambient occlusion. Notice how especially between the
creases, the (@ambient) light is more occluded:

https://github.com/JoeyDeVries/LearnOpenGL
https://github.com/JoeyDeVries/LearnOpenGL
https://twitter.com/JoeyDeVriez
https://twitter.com/JoeyDeVriez
https://learnopengl.com/Introduction
https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
https://learnopengl.com/Advanced-Lighting/Gamma-Correction
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Parallax-Mapping
https://learnopengl.com/Advanced-Lighting/HDR
https://learnopengl.com/Advanced-Lighting/Bloom
https://learnopengl.com/Advanced-Lighting/Deferred-Shading

Source

36

https://learnopengl.com/Advanced-Lighting/SSAO

Molecule Rendering

Renearing Tecnnieuess
meineek spacs=fllling
gjifecis: amolent eaclusien + shnaedow mnagping (2 lignt seurass,

Waltemate et al, “Membrane Mapping”, VCBM 2014

37

https://ls7-gv.cs.tu-dortmund.de/publications.html#vcbm14

Non-Photorealistic Rendering

e Often called expressive graphics, artistic rendering, art-based rendering, etc.

-—

Toon Shader Technical Illustration

Wikipedia

38

https://en.wikipedia.org/wiki/Non-photorealistic_rendering/

Non-Photorealistic Rendering

o Often called expressive graphics, artistic rendering, art-based rendering, etc.

NPR in Blender

39

https://typhomnt.github.io/post/blender_npr/

Non-Photorealistic Rendering

Source

40

https://gfx.cs.princeton.edu/proj/sg05lines/course7-4-npr.pdf

Non-Photorealistic Rendering

L L

double click to add stop

alt-drag to duplicate

=

P
-

) P

https://threedlibrary.googlecode.com/

Source

41

https://webglsamples.org/toon-shading/toon-shading.html

Particle Systems

Source

42

https://nullprogram.com/webgl-particles/

Particle Systems

POLYGON SHREDDER

THE POLYGON SHREDDER THAT TAKES MANY CUBES AND TURNS THEM INTO CONFETTI

Tweet

Jaume Sanchez - clicktorelease - Twitter - GitHub

Move mouse around, the particles will be generated following the mouse
Press space to pause, space again to resume

Click and drag to rotate the camera, use scroll to zoom in and out

Play with the controls and let's see what you can find!

o Factor: speed at which the particles move

o Evolution: the variation over time of the particles flow

o Rotation: speed at which the particle field auto-rotates

o Radius: radius of a sphere that repels particles

o Pulsate: if enabled, the sphere pulsates, pushing in and out
o ScaleX/Y/Z: set the scale of each axis of the particles

o Scale: change the overall scale of the particles

Too many? Too litte?
Try almost none, a few, some, regular, quite a few, a lot, INSANE

<Ctose this message>

https://twitter.com/share
https://www.clicktorelease.com/
https://twitter.com/thespite
https://github.com/spite/polygon-shredder

Source

43

https://www.clicktorelease.com/code/polygon-shredder/

Implicit Surfaces

fps: 1
Number of Blobs
1

10

100

1000
Resolution
1673

2413

323

4073

48/3

Source

44

https://webglsamples.org/blob/blob.html

Games

Source

45

http://cycleblob.com/

=
V)
O
=
LL
J
oD
=
O
(1]
i
>
1]
Y

https://madebyevan.com/
https://youtube.com/watch?v=R0O_9bp3EKQ
https://medium.com/@evanwallace/rendering-realtime-caustics-in-webgl-2a99a29a0b2c
https://www.flickr.com/photos/zooboing/3682834083/

Source

46

https://madebyevan.com/webgl-water/

