Computer Graphics

Procedural Methods - Noise & Terrain

Mark Pauly

Geometric Computing Laboratory

VY

An

An

AnAd
A

S

A
AALAAA

A

g

gy e
e

source

https://www.deviantart.com/nydhalo/art/Selmi-Triangle-136342456

Procedural Techniques

e Algorithms, functions, code segments that generate computer graphics objects
o textures

o geometry
o reflection models
o motion

o etc.

e Program code vs. data

Procedural Techniques

e Why?
o abstraction
o automatic generation
o compact representations
o infinite detail
o parametric control
o flexibility

e Particularly suitable for models resulting from processes that are repeating, self-similar,
or random

Procedural Techniques

Ubiquitous in graphics

o texturing, modeling, animation, etc.

Overview

e Today:
o noise functions

o texture & terrain synthesis

e | ater:
o procedural modeling with L-Systems

o basic plant modeling

Materials & Texture

Recall: textures add visual detail without raising geometric complexity

Geometry +Lighting +Texture

Images from http:/www.3drender.com/jbirn/productions.html

http://www.3drender.com/jbirn/productions.html

Materials & Texture

e Control much more than just colors:
o reflectance (diffuse + specular colors/coefficients)

o normal vector (hormal mapping, bump mapping)
o geometry (displacement mapping)
o opacity (alpha mapping)

o reflection/illumination (environment mapping)

Solid Textures

Often it's better to attach 3D, volumetric textures
o Avoid surface texture distortion due to parametrization

o Assign consistent material inside the object too (e.g., for fracture)

10

Solid Textures

11

How Do We Acquire Textures?

Photograph/scan materials
Manually paint

Download online

12

Material Acquisition via Scanning

¢ More difficult than just taking a picture
o Must factor out lighting effects

o Post-process to extract normal maps, ensure tiling, etc.

e Limited by scanner size

Material 3D Scan Acquisition

13

More Problems with Acquired Textures

e Physical extent limited by storage size
o Particularly problematic for solid textures...

e Repeating to fill more space causes visible artifacts:

Blender Stack Exchange

14

https://blender.stackexchange.com/questions/8278/unwanted-patterns-in-texture-from-repeated-seamless-image

Procedural Approach

¢ Instead of using image data, define the texture with code.

o Simple example:

color = vec3(0.5 * sin(x) + 0.5)
o Trivial extension to solid textures...

e Easily create repetitive patterns:

15

Procedural Approach

¢ Instead of using image data, define the texture with code.

o Simple example:

color = vec3(0.5 * sin(x) + 0.5)
o Trivial extension to solid textures...

e Easily create repetitive patterns

o We'll see how to create patterns with structured randomness:

fBm turbulence

16

Procedural Approach

e Why?
o automatic generation on the fly
o compact representations
o infinite detail
o unlimited extent

o parametric control

e Particularly suitable for models resulting from processes that are repeating, self-similar,
or random

e Challenges: artistic control, debugging, efficiency

17

Procedural Synthesis Examples

Created using Terragen

18

Procedural Synthesis Examples

Created using Terragen

19

Procedural Synthesis Examples

1

:'}'3rmands dyseklisas
alerraescapelcuom

Created using MojoWorld Generator

20

Procedural Synthesis Examples

Created using Vue Infinite

21

Procedural Synthesis Examples

Created using Vue Infinite

22

Twcts 108 ¢
Pevpors 1 002K (5}
Cam et 314 -0R%000

e O uNR S
holPodl SR683 200 2 (Dent 1 7Y

T

-

1
r

¢
E.

-
)
B

T

I

14
Sursor 35 40 N1€.08 138 819G 1000

.)Ag;)

Procedural Synthesis Examples

Created using Esri CityEngine

23

How to Model a Mountain Terrain?

e Simulate the complex physical process that created it?

e Mimic its qualitative features?

wikipedia

24

Randomness

e Computers are good at faking randomness

e But randomness alone isn't what we want

white noise more natural pattern

25

Problems with Pure Randomness

e Neighboring samples are uncorrelated

o Natural phenomena lead to more structure

e Get a different result every time

t want it to change.
more natural pattern

)

white noise

o When an artist finishes setting up a scene, they don

26

Noise Functions

e Function R" — [—1,1], wheren =1, 2, 3...

e Desirable properties
o No obvious repetition

o Rotation invariance

o band-limited
o frequencies stay finite

o more structure than white noise
o efficient to compute

o reproducible

e Fundamental “primitive” or building block of most procedural synthesis approaches

27

Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

28

Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

o

random values on the grid

Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

. o

o

piecewise constant interpolation (nearest)

30

Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

WA

|
| I

piecewise (bi-, tri-)linear interpolation

31

Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

/’\/\f

|
| I

piecewise cubic interpolation

highest frequency is limited by the lattice resolution!

32

Value Noise Issues

1. Cubic looks best (most organic), but it is expensive

o Linear interpolation combines the 2™ nearest lattice values

o Cubic interpolation combines the 4™ nearest lattice values...

2. Repeatability

o New random numbers every time you regenerate the values!

3. Memory use

o Cannot store an infinite number of random grid values

e Solutionto 2 & 3:

o Pre-compute a table of ~512 random values

o Use a hash function to map lattice locations to table indices

33

¢ Invented by Ken Perlin in 1982

o First used in the movie Tron

e Also called gradient noise

Perlin Noise

34

Classic Perlin Noise (1980s)

e Generate random gradients on the grid:

.

SR

35

Classic Perlin Noise (1980s)

¢ Interpolate these gradients with Hermite interpolation

36

Perlin Noise vs Cubic Value Noise

/’\/\f
VRVIRY,

Perlin (Gradient) Noise Cubic Value Noise

e Advantage of Perlin Noise: efficiency
o Get cubic interpolation with only 2™ nearest gradients, not 4™ values

e Potential downside

o Value at grid location are always zero

o To overcome this, can combine gradient and value noise: generate gradient and value sample for each

lattice point and use Hermite interpolation.
37

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

38

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

4

/

Find cell that
your point is in

(Xo,y1)

(X0,yo)

p=(xy)

Cell with point

(x1,y1)

(X1,Y0)

39

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

(Xo,y1)

(X0,yo)

#
/

Find cell that
your point is in

p=(xy)

Cell with point

(x1,y1)

>

(X1 !yo)

g(xo,y1)

g(X1 !y1)

9(x1,Yo,

g(xo,o)
P

Get the random
gradients g at cell corners

40

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

g(Xo,y1)
(Xo,y1) (x1,y1) g(x1,y1)
. o C d
p=xy)
e e S b
a(x1,yo,
g(Xo,Yo)
" Celwithpont Calculate diff
° Cell with point Get the random alculate difference
: vectors from cell
‘ gradients g at cell corners
/ corners to p
Find cell that

your point is in

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

9(xo,y1)
(Xo0,y1) (X1,y1) gx1,y1) <
[J o ¢)
p=(xy)
* * * . b
a(x1,yo,
9(Xo,yo)
(Xo,Yo) (X1,Y0) <« Caloulate diff
' ' n
o Cell with point Get the random aiculate aierence
‘ vectors from cell

gradients g at cell corners
/ corners to p

Find cell that

your point is in *
u \Y

< C =+ 0
Il
Q
—_ = = =
x
Q
<
/\l/v_/
o N o

dot products to get scalar
values for the corners 42

2D Perlin Noise Example

Subdivide domain into
grid with unit cells

g(Xo,y1)
(Xo,y1) (x1,y1) g(x1,y1)
o] d
® ® []
P =Xy
* * * a b
a(x1,yo,
g(xo,Yo)
(X0,Yo) . — (x1yo) «— Calculate diff
° Cell with point Get the random alculate difference
, vectors from cell
‘ gradients g at cell corners
/ corners to p
Find cell that
your point is in
f(t)=61t - 15t + 10t3 ! V*
mix (x,y, a)=(1 —a)-x+a-y « W * s = g(Xo,Yo) -a
[]
B « t= g(x1,¥0) - b
/ u= glxo,y1)-c
v=g(xi,yq)-d
st = mix (st f (x)) S S * t
uv = mix(u,v,f (x)) i i i
.) Szmooth nterpolaﬂon functpn dot products to get scalar
noise = mix (st uy,f (y)) C# continuity at the boundaries

values for the corners 43

2D Perlin Noise

3D Perlin Noise

45

Classic vs. Improved Perlin Noise

e Short 2002 paper improving efficiency/visual quality

e New version:
o Randomly chose from only 12 pre-defined gradient vectors, (Human vision is sensitive to statistical
orientation anomalies, but not the orientation granularity)

o Interpolate the corners’ linear functions with 6t° — 15t + 10t3 instead of 3t2 — 2¢3 (avoid
discontinuities in second derivative)

=
o
>
S

Fifth-Order
Interpolant

J

Interpolant Value

46

Improved Perlin Noise Implementation

// JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.

public final class ImprovedNoise {
static public double noise(double x, double y, double z) {

int X = (int)Math.floor(x) & 255, // FIND UNIT CUBE THAT
Y = (int)Math.floor(y) & 255, // CONTAINS POINT.
Z = (int)Math.floor(z) & 255;
x -= Math.floor(x); // FIND RELATIVE X,Y,Z
y -= Math.floor(y); // OF POINT IN CUBE.
z -= Math.floor(z);
double u = fade(x), // COMPUTE FADE CURVES
v = fade(y), // FOR EACH OF X,Y,Z.
w = fade(z);
int A = p[X 1+Y, AA_ = p[A]+Z, AB_ = p[A+l]+Z, // HASH COORDINATES OF
B = p[X+1]+Y, BA_ = p[B]+%, BB_ = p[B+1]+%; // THE 8 CUBE CORNERS,
return lerp(w, lerp(v, lerp(u, grad(p[RA_], X , Y ., 2), // AND ADD
grad(p[BA_ 1, x-1, v , z)), // BLENDED
lerp(u, grad(p[AB_ 1, x , y-1, z), // RESULTS
grad(p[BB_], x-1, y-1, z))),// FROM 8
lerp(v, lerp(u, grad(p[AA +1], x , y , 2z-1), // CORNERS
grad(p[BA_+1]1, x-1, y , 2z-1)), // OF CUBE
lerp(u, grad(p[AB_+1], x , y-1, z-1),
grad(p[BB_+1], x-1, y-1, 2-1))));

}
static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
static double lerp(double t, double a, double b) { return a + t * (b - a); }
static double grad(int hash, double x, double y, double z) {
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE_
double u = h<8 Y // INTO 12 GRADIENT DIRECTIONS.
v = h<4 h==12| |h==14 ? x : z;
return ((h&l) == u: -u) + ((h&2) == 02 v : -v);

)

-~

X
Yy
0

W e

}

static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,

190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,9
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,

47

Perlin Noise

e Parameters
o Change amplitude: e.g. 10 * noise(x)

o Change frequency: e.g. noise(10 * x)

¢ Many other possible ways to implement a basic noise function

o Simplex noise (use triangles/tetrahedra instead of voxel grid)
o Sparse Gabor convolution

o etc.

48

Spectral Synthesis

e Building a complex function f,(x) by summing weighted

contributions from a scaled primitive function f(x)

(o) = Y wif(sia) -

e Weight (amplitude) w;, frequency scaling s;)

e Example: Fourier basis

fs(x) = wo + wy cos(x) + ws cos(3xz) + ws cos(bx) + wy cos(7x)+. ..

49

Fractal Brownian Motion (fBm)

e Spectral synthesis of noise function
o Progressively higher frequency

o Progressively smaller amplitude
e Typically Perlin noise is used

e Each term in the summation is called an octave

50

fBm - 1 Octave

fBm - 2 Octave

fBm - 3 Octave

fBm - 4 Octave

Fractal Brownian Motion (fBm)

e Spectral synthesis of noise function
o Progressively smaller frequency

o Progressively smaller amplitude
e Typically Perlin noise is used
e Each term in the summation is called an octave

e Each octave typically doubles frequency and halves amplitude

55

“Turbulence”

e Another common compound noise function

e Same as fBm, but sum the absolute value of the noise function

56

Turbulence - 1 Octave

Turbulence - 2 Octave

Turbulence - 3 Octave

59

Turbulence - 4 Octave

60

FBm vs Turbulence

Both useful primitives for emulating natural materials

fBm turbulence

61

Marble

color = sin(z + turbulence(z, vy, z))

62

Wood

color = sin (\/ x? 4+ y? + fom(z, y, z))

63

And More...

And More...

Yo}
©

Literature

TEXTURING.SS ,
A Procedural Approach

David S. Ebert THIRD EDITION

F. Kenton Musgrave

66

