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Procedural Methods - Noise & Terrain
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https://www.deviantart.com/nydhalo/art/Selmi-Triangle-136342456

Procedural Techniques

e Algorithms, functions, code segments that generate computer graphics objects
o textures

o geometry
o reflection models
o motion

o etc.

e Program code vs. data



Procedural Techniques

e Why?
o abstraction
o automatic generation
o compact representations
o infinite detail
o parametric control
o flexibility

e Particularly suitable for models resulting from processes that are repeating, self-similar,
or random



Procedural Techniques

Ubiquitous in graphics

o texturing, modeling, animation, etc.




Overview

e Today:
o noise functions

o texture & terrain synthesis

e | ater:
o procedural modeling with L-Systems

o basic plant modeling



Materials & Texture

Recall: textures add visual detail without raising geometric complexity

Geometry +Lighting +Texture

Images from http:/www.3drender.com/jbirn/productions.html


http://www.3drender.com/jbirn/productions.html

Materials & Texture

e Control much more than just colors:
o reflectance (diffuse + specular colors/coefficients)

o normal vector (hormal mapping, bump mapping)
o geometry (displacement mapping)
o opacity (alpha mapping)

o reflection/illumination (environment mapping)



Solid Textures

Often it's better to attach 3D, volumetric textures
o Avoid surface texture distortion due to parametrization

o Assign consistent material inside the object too (e.g., for fracture)
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Solid Textures
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How Do We Acquire Textures?

Photograph/scan materials
Manually paint

Download online
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Material Acquisition via Scanning

¢ More difficult than just taking a picture
o Must factor out lighting effects

o Post-process to extract normal maps, ensure tiling, etc.

e Limited by scanner size

Material 3D Scan Acquisition
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More Problems with Acquired Textures

e Physical extent limited by storage size
o Particularly problematic for solid textures...

e Repeating to fill more space causes visible artifacts:

Blender Stack Exchange

14


https://blender.stackexchange.com/questions/8278/unwanted-patterns-in-texture-from-repeated-seamless-image

Procedural Approach

¢ Instead of using image data, define the texture with code.

o Simple example:

color = vec3(0.5 * sin(x) + 0.5)
o Trivial extension to solid textures...

e Easily create repetitive patterns:
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Procedural Approach

¢ Instead of using image data, define the texture with code.

o Simple example:

color = vec3(0.5 * sin(x) + 0.5)
o Trivial extension to solid textures...

e Easily create repetitive patterns

o We'll see how to create patterns with structured randomness:

fBm turbulence
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Procedural Approach

e Why?
o automatic generation on the fly
o compact representations
o infinite detail
o unlimited extent

o parametric control

e Particularly suitable for models resulting from processes that are repeating, self-similar,
or random

e Challenges: artistic control, debugging, efficiency
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Procedural Synthesis Examples

Created using Terragen
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Procedural Synthesis Examples

Created using Terragen
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Procedural Synthesis Examples

1
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Created using MojoWorld Generator
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Procedural Synthesis Examples

Created using Vue Infinite
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Procedural Synthesis Examples

Created using Vue Infinite
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Procedural Synthesis Examples

Created using Esri CityEngine
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How to Model a Mountain Terrain?

e Simulate the complex physical process that created it?

e Mimic its qualitative features?

wikipedia
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Randomness

e Computers are good at faking randomness

e But randomness alone isn't what we want

white noise more natural pattern
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Problems with Pure Randomness

e Neighboring samples are uncorrelated

o Natural phenomena lead to more structure

e Get a different result every time

t want it to change.
more natural pattern

)

white noise

o When an artist finishes setting up a scene, they don
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Noise Functions

e Function R" — [—1,1], wheren =1, 2, 3...

e Desirable properties
o No obvious repetition

o Rotation invariance

o band-limited
o frequencies stay finite

o more structure than white noise
o efficient to compute

o reproducible

e Fundamental “primitive” or building block of most procedural synthesis approaches
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Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid
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Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

o

random values on the grid



Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

. o

_o_

piecewise constant interpolation (nearest)
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Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

WA

|
| I

piecewise (bi-, tri-)linear interpolation
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Noise Functions

e Simple example: value noise
o Generate random value on the grid points of an integer lattice

o Interpolate these values throughout the grid

/’\/\f

|
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piecewise cubic interpolation

highest frequency is limited by the lattice resolution!
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Value Noise Issues

1. Cubic looks best (most organic), but it is expensive

o Linear interpolation combines the 2™ nearest lattice values

o Cubic interpolation combines the 4™ nearest lattice values...

2. Repeatability

o New random numbers every time you regenerate the values!

3. Memory use

o Cannot store an infinite number of random grid values

e Solutionto 2 & 3:

o Pre-compute a table of ~512 random values

o Use a hash function to map lattice locations to table indices
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¢ Invented by Ken Perlin in 1982

o First used in the movie Tron

e Also called gradient noise

Perlin Noise
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Classic Perlin Noise (1980s)

e Generate random gradients on the grid:

.

SR
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Classic Perlin Noise (1980s)

¢ Interpolate these gradients with Hermite interpolation
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Perlin Noise vs Cubic Value Noise

/’\/\f
VRVIRY,

Perlin (Gradient) Noise Cubic Value Noise

e Advantage of Perlin Noise: efficiency
o Get cubic interpolation with only 2™ nearest gradients, not 4™ values

e Potential downside

o Value at grid location are always zero

o To overcome this, can combine gradient and value noise: generate gradient and value sample for each

lattice point and use Hermite interpolation.
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2D Perlin Noise Example

Subdivide domain into
grid with unit cells
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2D Perlin Noise Example

Subdivide domain into
grid with unit cells

4

/

Find cell that
your point is in

(Xo,y1)

(X0,yo)

p=(xy)

Cell with point

(x1,y1)

(X1,Y0)
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2D Perlin Noise Example

Subdivide domain into
grid with unit cells

(Xo,y1)

(X0,yo)

#
/

Find cell that
your point is in

p=(xy)

Cell with point

(x1,y1)

>

(X1 !yo)

g(xo,y1)

g(X1 !y1)

9(x1,Yo,

g(xo,o)
P

Get the random
gradients g at cell corners
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2D Perlin Noise Example

Subdivide domain into
grid with unit cells

g(Xo,y1)
(Xo,y1) (x1,y1) g(x1,y1)
. o C d
p=xy)
e e S b
a(x1,yo,
g(Xo,Yo)
" Celwithpont Calculate diff
° Cell with point Get the random alculate difference
: vectors from cell
‘ gradients g at cell corners
/ corners to p
Find cell that

your point is in



2D Perlin Noise Example

Subdivide domain into
grid with unit cells

9(xo,y1)
(Xo0,y1) (X1,y1) gx1,y1) <
[ J o ¢ )
p=(xy)
* * * . b
a(x1,yo,
9(Xo,yo)
(Xo,Yo) (X1,Y0) <« Caloulate diff
' ' n
o Cell with point Get the random aiculate aierence
‘ vectors from cell

gradients g at cell corners
/ corners to p

Find cell that

your point is in *
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dot products to get scalar
values for the corners 42



2D Perlin Noise Example

Subdivide domain into
grid with unit cells

g(Xo,y1)
(Xo,y1) (x1,y1) g(x1,y1)
o] d
® ® [ ]
P =Xy
* * * a b
a(x1,yo,
g(xo,Yo)
(X0,Yo) . — (x1yo) «— Calculate diff
° Cell with point Get the random alculate difference
, vectors from cell
‘ gradients g at cell corners
/ corners to p
Find cell that
your point is in
f(t)=61t - 15t + 10t3 ! V*
mix (x,y, a)=(1 —a)-x+a-y « W * s = g(Xo,Yo) -a
[ ]
B « t= g(x1,¥0) - b
/ u= glxo,y1)-c
v=g(xi,yq)-d
st = mix (st f (x)) S S * t
uv = mix(u,v,f (x)) i i i
. ) Szmooth nterpolaﬂon functpn dot products to get scalar
noise = mix (st uy,f (y)) C# continuity at the boundaries

values for the corners 43



2D Perlin Noise




3D Perlin Noise
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Classic vs. Improved Perlin Noise

e Short 2002 paper improving efficiency/visual quality

e New version:
o Randomly chose from only 12 pre-defined gradient vectors, (Human vision is sensitive to statistical
orientation anomalies, but not the orientation granularity)

o Interpolate the corners’ linear functions with 6t° — 15t + 10t3 instead of 3t2 — 2¢3 (avoid
discontinuities in second derivative)

=
o
>
S

Fifth-Order
Interpolant

J

Interpolant Value
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Improved Perlin Noise Implementation

// JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.

public final class ImprovedNoise {
static public double noise(double x, double y, double z) {

int X = (int)Math.floor(x) & 255, // FIND UNIT CUBE THAT
Y = (int)Math.floor(y) & 255, // CONTAINS POINT.
Z = (int)Math.floor(z) & 255;
x -= Math.floor(x); // FIND RELATIVE X,Y,Z
y -= Math.floor(y); // OF POINT IN CUBE.
z -= Math.floor(z);
double u = fade(x), // COMPUTE FADE CURVES
v = fade(y), // FOR EACH OF X,Y,Z.
w = fade(z);
int A = p[X 1+Y, AA_ = p[A]+Z, AB_ = p[A+l]+Z, // HASH COORDINATES OF
B = p[X+1]+Y, BA_ = p[B]+%, BB_ = p[B+1]+%; // THE 8 CUBE CORNERS,
return lerp(w, lerp(v, lerp(u, grad(p[RA_ ], X , Y ., 2 ), // AND ADD
grad(p[BA_ 1, x-1, v , z )), // BLENDED
lerp(u, grad(p[AB_ 1, x , y-1, z ), // RESULTS
grad(p[BB_ ], x-1, y-1, z ))),// FROM 8
lerp(v, lerp(u, grad(p[AA +1], x , y , 2z-1 ), // CORNERS
grad(p[BA_+1]1, x-1, y , 2z-1)), // OF CUBE
lerp(u, grad(p[AB_+1], x , y-1, z-1 ),
grad(p[BB_+1], x-1, y-1, 2-1))));

}
static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
static double lerp(double t, double a, double b) { return a + t * (b - a); }
static double grad(int hash, double x, double y, double z) {
int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE_
double u = h<8 Y // INTO 12 GRADIENT DIRECTIONS.
v = h<4 h==12| |h==14 ? x : z;
return ((h&l) == u: -u) + ((h&2) == 02 v : -v);
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}

static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,

190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,9
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,

47



Perlin Noise

e Parameters
o Change amplitude: e.g. 10 * noise(x)

o Change frequency: e.g. noise(10 * x)

¢ Many other possible ways to implement a basic noise function

o Simplex noise (use triangles/tetrahedra instead of voxel grid)
o Sparse Gabor convolution

o etc.
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Spectral Synthesis

e Building a complex function f,(x) by summing weighted

contributions from a scaled primitive function f(x)

(o) = Y wif(sia) -

e Weight (amplitude) w;, frequency scaling s; )

e Example: Fourier basis

fs(x) = wo + wy cos(x) + ws cos(3xz) + ws cos(bx) + wy cos(7x)+. ..
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Fractal Brownian Motion (fBm)

e Spectral synthesis of noise function
o Progressively higher frequency

o Progressively smaller amplitude
e Typically Perlin noise is used

e Each term in the summation is called an octave
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fBm - 1 Octave




fBm - 2 Octave




fBm - 3 Octave




fBm - 4 Octave




Fractal Brownian Motion (fBm)

e Spectral synthesis of noise function
o Progressively smaller frequency

o Progressively smaller amplitude
e Typically Perlin noise is used
e Each term in the summation is called an octave

e Each octave typically doubles frequency and halves amplitude
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“Turbulence”

e Another common compound noise function

e Same as fBm, but sum the absolute value of the noise function
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Turbulence - 1 Octave




Turbulence - 2 Octave




Turbulence - 3 Octave
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Turbulence - 4 Octave
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FBm vs Turbulence

Both useful primitives for emulating natural materials

fBm turbulence
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Marble

color = sin(z + turbulence(z, vy, z))
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Wood

color = sin (\/ x? 4+ y? + fom(z, y, z))
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And More...




And More...
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