
Computer Graphics

Procedural Methods - Noise & Terrain

Mark Pauly
Geometric Compu!ng Laboratory

1

2

source

3

https://www.deviantart.com/nydhalo/art/Selmi-Triangle-136342456

Procedural Techniques

Algorithms, func!ons, code segments that generate computer graphics objects
textures

geometry

reflec!on models

mo!on

etc.

Program code vs. data

4

Procedural Techniques

Why?
abstrac!on

automa!c genera!on

compact representa!ons

infinite detail

parametric control

flexibility

Par!cularly suitable for models resul!ng from processes that are repea!ng, self-similar,
or random

5

Procedural Techniques

Ubiquitous in graphics
texturing, modeling, anima!on, etc.

6

Overview

Today:
noise func!ons

texture & terrain synthesis

Later:
procedural modeling with L-Systems

basic plant modeling

7

Materials & Texture

Recall: textures add visual detail without raising geometric complexity

Geometry +Ligh!ng +Texture

Images from h"p://www.3drender.com/jbirn/produc!ons.html 8

http://www.3drender.com/jbirn/productions.html

Materials & Texture

Control much more than just colors:
reflectance (diffuse + specular colors/coefficients)

normal vector (normal mapping, bump mapping)

geometry (displacement mapping)

opacity (alpha mapping)

reflec!on/illumina!on (environment mapping)

…

9

Solid Textures

O%en it’s be"er to a"ach 3D, volumetric textures
Avoid surface texture distor!on due to parametriza!on

Assign consistent material inside the object too (e.g., for fracture)

10

Solid Textures

11

How Do We Acquire Textures?

Photograph/scan materials

Manually paint

Download online

…

12

Material Acquisi!on via Scanning

More difficult than just taking a picture
Must factor out ligh!ng effects

Post-process to extract normal maps, ensure !ling, etc.

Limited by scanner size

13

More Problems with Acquired Textures

Physical extent limited by storage size
Par!cularly problema!c for solid textures…

Repea!ng to fill more space causes visible ar!facts:

Blender Stack Exchange 14

https://blender.stackexchange.com/questions/8278/unwanted-patterns-in-texture-from-repeated-seamless-image

Procedural Approach

Instead of using image data, define the texture with code.
Simple example:

color vec3

Trivial extension to solid textures…

Easily create repe!!ve pa"erns:

15

Procedural Approach

Instead of using image data, define the texture with code.
Simple example:

color vec3

Trivial extension to solid textures…

Easily create repe!!ve pa"erns

We’ll see how to create pa"erns with structured randomness:

fBm turbulence
16

Procedural Approach

Why?
automa!c genera!on on the fly

compact representa!ons

infinite detail

unlimited extent

parametric control

Par!cularly suitable for models resul!ng from processes that are repea!ng, self-similar,
or random

Challenges: ar!s!c control, debugging, efficiency

17

Procedural Synthesis Examples

Created using Terragen 18

Procedural Synthesis Examples

Created using Terragen 19

Procedural Synthesis Examples

Created using MojoWorld Generator

20

Procedural Synthesis Examples

Created using Vue Infinite 21

Procedural Synthesis Examples

Created using Vue Infinite

22

Procedural Synthesis Examples

Created using Esri CityEngine
23

How to Model a Mountain Terrain?

Simulate the complex physical process that created it?

Mimic its qualita!ve features?

wikipedia
24

Randomness

Computers are good at faking randomness

But randomness alone isn’t what we want

white noise more natural pa"ern

25

Problems with Pure Randomness

Neighboring samples are uncorrelated
Natural phenomena lead to more structure

Get a different result every !me
When an ar!st finishes se&ng up a scene, they don’t want it to change.

white noise more natural pa"ern

26

Noise Func!ons

Func!on , where

Desirable proper!es
No obvious repe!!on

Rota!on invariance

band-limited
frequencies stay finite

more structure than white noise

efficient to compute

reproducible

Fundamental “primi!ve” or building block of most procedural synthesis approaches

27

Noise Func!ons

Simple example: value noise
Generate random value on the grid points of an integer la&ce

Interpolate these values throughout the grid

28

random values on the grid

Noise Func!ons

Simple example: value noise
Generate random value on the grid points of an integer la&ce

Interpolate these values throughout the grid

29

piecewise constant interpola!on (nearest)

Noise Func!ons

Simple example: value noise
Generate random value on the grid points of an integer la&ce

Interpolate these values throughout the grid

30

piecewise (bi-, tri-)linear interpola!on

Noise Func!ons

Simple example: value noise
Generate random value on the grid points of an integer la&ce

Interpolate these values throughout the grid

31

piecewise cubic interpola!on

Noise Func!ons

Simple example: value noise
Generate random value on the grid points of an integer la&ce

Interpolate these values throughout the grid

highest frequency is limited by the la&ce resolu!on!

32

Value Noise Issues

1. Cubic looks best (most organic), but it is expensive
Linear interpola!on combines the nearest la&ce values

Cubic interpola!on combines the nearest la&ce values…

2. Repeatability
New random numbers every !me you regenerate the values!

3. Memory use
Cannot store an infinite number of random grid values

Solu!on to 2 & 3:
Pre-compute a table of ~512 random values

Use a hash func!on to map la&ce loca!ons to table indices

33

Perlin Noise

Invented by Ken Perlin in 1982
First used in the movie Tron

Also called gradient noise

34

Classic Perlin Noise (1980s)

Generate random gradients on the grid:

35

Classic Perlin Noise (1980s)

Interpolate these gradients with Hermite interpola!on

36

Perlin Noise vs Cubic Value Noise

Perlin (Gradient) Noise Cubic Value Noise

Advantage of Perlin Noise: efficiency
Get cubic interpola!on with only nearest gradients, not values

Poten!al downside
Value at grid loca!on are always zero

To overcome this, can combine gradient and value noise: generate gradient and value sample for each
la&ce point and use Hermite interpola!on.

37

2D Perlin Noise Example

38

2D Perlin Noise Example

39

2D Perlin Noise Example

40

2D Perlin Noise Example

41

2D Perlin Noise Example

42

2D Perlin Noise Example

43

2D Perlin Noise

44

3D Perlin Noise

45

Classic vs. Improved Perlin Noise

Short 2002 paper improving efficiency/visual quality

New version:
Randomly chose from only 12 pre-defined gradient vectors, (Human vision is sensi!ve to sta!s!cal
orienta!on anomalies, but not the orienta!on granularity)

Interpolate the corners’ linear func!ons with instead of (avoid
discon!nui!es in second deriva!ve)

46

Improved Perlin Noise Implementa!on

// JAVA REFERENCE IMPLEMENTATION OF IMPROVED NOISE - COPYRIGHT 2002 KEN PERLIN.

public final class ImprovedNoise {
 static public double noise(double x, double y, double z) {
 int X = (int)Math.floor(x) & 255, // FIND UNIT CUBE THAT
 Y = (int)Math.floor(y) & 255, // CONTAINS POINT.
 Z = (int)Math.floor(z) & 255;
 x -= Math.floor(x); // FIND RELATIVE X,Y,Z
 y -= Math.floor(y); // OF POINT IN CUBE.
 z -= Math.floor(z);
 double u = fade(x), // COMPUTE FADE CURVES
 v = fade(y), // FOR EACH OF X,Y,Z.
 w = fade(z);
 int A = p[X]+Y, AA_ = p[A]+Z, AB_ = p[A+1]+Z, // HASH COORDINATES OF
 B = p[X+1]+Y, BA_ = p[B]+Z, BB_ = p[B+1]+Z; // THE 8 CUBE CORNERS,

 return lerp(w, lerp(v, lerp(u, grad(p[AA_], x , y , z), // AND ADD
 grad(p[BA_], x-1, y , z)), // BLENDED
 lerp(u, grad(p[AB_], x , y-1, z), // RESULTS
 grad(p[BB_], x-1, y-1, z))),// FROM 8
 lerp(v, lerp(u, grad(p[AA_+1], x , y , z-1), // CORNERS
 grad(p[BA_+1], x-1, y , z-1)), // OF CUBE
 lerp(u, grad(p[AB_+1], x , y-1, z-1),
 grad(p[BB_+1], x-1, y-1, z-1))));
 }
 static double fade(double t) { return t * t * t * (t * (t * 6 - 15) + 10); }
 static double lerp(double t, double a, double b) { return a + t * (b - a); }
 static double grad(int hash, double x, double y, double z) {
 int h = hash & 15; // CONVERT LO 4 BITS OF HASH CODE_
 double u = h<8 ? x : y, // INTO 12 GRADIENT DIRECTIONS.
 v = h<4 ? y : h==12||h==14 ? x : z;
 return ((h&1) == 0 ? u : -u) + ((h&2) == 0 ? v : -v);
 }
 static final int p[] = new int[512], permutation[] = { 151,160,137,91,90,15,131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,77,146,158,231,83,111,229,122,60,211,133,230,220,105,92
 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,

47

Perlin Noise

Parameters
Change amplitude: e.g. noise

Change frequency: e.g. noise

Many other possible ways to implement a basic noise func!on
Simplex noise (use triangles/tetrahedra instead of voxel grid)

Sparse Gabor convolu!on

etc.

48

Spectral Synthesis

Building a complex func!on by summing weighted
contribu!ons from a scaled primi!ve func!on

Weight (amplitude) , frequency scaling

Example: Fourier basis

49

Fractal Brownian Mo!on (fBm)

Spectral synthesis of noise func!on
Progressively higher frequency

Progressively smaller amplitude

Typically Perlin noise is used

Each term in the summa!on is called an octave

50

fBm - 1 Octave

51

fBm - 2 Octave

52

fBm - 3 Octave

53

fBm - 4 Octave

54

Fractal Brownian Mo!on (fBm)

Spectral synthesis of noise func!on
Progressively smaller frequency

Progressively smaller amplitude

Typically Perlin noise is used

Each term in the summa!on is called an octave

Each octave typically doubles frequency and halves amplitude

55

“Turbulence”

Another common compound noise func!on

Same as fBm, but sum the absolute value of the noise func!on

56

Turbulence - 1 Octave

57

Turbulence - 2 Octave

58

Turbulence - 3 Octave

59

Turbulence - 4 Octave

60

FBm vs Turbulence

Both useful primi!ves for emula!ng natural materials

fBm turbulence

61

Marble

color turbulence
62

Wood

color fbm

63

And More…

64

And More…

65

Literature

66

