
Computer Graphics

Rasterization Pipeline

Mark Pauly
Geometric Computing Laboratory

1

Rasterization Pipeline

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

2

Rasterization Pipeline

Thanks to Amine and Haythem! https://www.youtube.com/watch?v=C8YtdC8mxTU
3

https://www.youtube.com/watch?v=C8YtdC8mxTU

Transformations & Projections

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

4

Transformations & Projections

Project edge or triangle from 3D to 2D
Simply transform/project its endpoints/vertices?

Let us first analyze this for a line between and

For an affine/projective transformation it has to hold

5

Affine Transformations of Lines

Affine transformation preserves affine combinations

6

Projective Transformations of Lines

For a central projection we can show that

if we chose

Same argument holds for general projective transformations.

7

Transformations of Triangles

A triangle is an affine combination of three points

with .

Affine transformations preserve affine combinations
Triangles are transformed to triangles

Planar projections map triangles to triangles
Similar derivation as for lines

8

Lighting

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

9

Phong Lighting Model

Ambient lighting
approximate global light transport / exchange

uniform in, uniform out

Diffuse lighting
dull / mat surfaces

directed in, uniform out

Specular lighting
shiny surfaces

directed in, directed out

10

Phong Lighting Model

ambient: diffuse: specular: ambient+diffuse+specular

11

Normal Vectors

Triangle normal

Vertex normal
Average of incident triangles’ normals

Weighted by area or opening angle

12

How to transform normal vectors?

Point with normal lies on its tangent plane

with and .

The same equation should be satisfied after an affine transformation, represented by
 matrix . Transformation maps to , to , and to :

Comparing the two equations yields , and therefore
In practice use the upper-left block of and build its transposed inverse

Then transform the 3D normal vector and re-normalize it

13

How to transform normal vectors?

14

Clipping

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

Clipping removes everything outside the viewing frustum.

We don’t discuss clipping here.

15

Rasterization

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

16

Line Rasterization

Discretize line from to to pixel grid
Endpoints are integer coordinates (pixel positions)

Assume slope is in and

Other cases follow by symmetry

How would you implement this?

17

Line Representation

Explicit: Range of a function with

18

First Guess

for (x=x0; x<=x1; ++x)
set_pixel(x, round(m*x + t));

⊖ Multiplication

⊖ Rounding

19

Digital Differential Analysis

Use an incremental algorithm!

If the current pixel is then

for (x=x0, y=y0; x<=x1; ++x, y+=m)
 set_pixel(x, round(y));

⊕ no multiplication

⊖ rounding, since and are floats

20

Line Representations

Explicit: Range of a function with

Implicit: Zero-set of with

 point on line

 point below line

 point above line

21

Bresenham Algorithm

Next pixel can only be east (E) or north-east (NE)
Is the line below/above midpoint ?

Use a decision variable :

If then go east

If then go north-east

22

Bresenham Algorithm

Incrementally update decision variable !

If east was chosen:

If north-east was chosen:

23

Bresenham Algorithm

Initialization of

Bad: may not be integer

Use instead of
Values of , , are doubled

But sign of and remain unchanged

24

Bresenham Algorithm

⊕ Only integer arithmetic

Δx = x1-x0;
Δy = y1-y0;
d = 2*Δy - Δx;
ΔE = 2*Δy;
ΔNE = 2*(Δy - Δx);

set_pixel(x0, y0);

for (x = x0, y = y0; x <= x1;)
{

 if (d <= 0) { d += ΔE; ++x; }
 else { d += ΔNE; ++x; ++y; }
 set_pixel(x, y);
}

25

Triangle Rasterization

Enumerate all pixels inside a 2D triangle
Inside test for every pixel is too expensive

Compute horizontal spans in each scanline
Compute the intersections with triangle edges, fill all pixels
inbetween

Many special cases to consider!

26

Triangle Rasterization

27

Shading

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

28

Shading: Fill the Interior

Flat Shading
Compute lighting per face

Facetted appearance

Mach band effect

29

Shading: Fill the Interior

Flat Shading
Compute lighting per face

Facetted appearance

Gouraud Shading
Compute lighting per vertex

Linear interpolation of colors

Might loose small highlights

Phong Shading
Linear interpolation of vertex normals

Compute lighting per pixel

Captures small highlights

30

Normal Vectors

Triangle normal

Vertex normal
Average of incident triangles’ normals

Weighted by area or opening angle

31

Interpolate Vertex Normals

Intersection point with barycentric coordinates

Linearly interpolate vertex normals

Use to light point

32

Influence of Vertex Normals

triangulation (flat shading) no weighting angle-weighted

33

Shading: Fill the Interior

Flat Shading Gouraud Shading Phong Shading

34

Shading: Fill the Interior

35

Quiz: Barycentric Interpolation

During rasterization normal vectors and texture coordinates for each pixel are computed by
barycentric interpolation.

Where should we compute the barycentric coordinates of the pixels?

A: In 2D window coordinates

B: In 3D camera coordinates

C: Makes no difference

36

Visibility

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

37

Z-Buffer

Images from Wikipedia

Store current minimum z-value for each pixel
After model transformation, view transformation, projection
transformation, and viewport transformation

Additional buffer for depth values
Framebuffer stores RBG color values

Depth buffer (z-buffer) stores depth values

Storage: additional 16 to 32 bits per pixel

38

Z-Buffer

Initialize depth buffer to

Rasterize triangles, interpolate depth value per fragment
each fragment (x,y) still has a depth value z

Depth buffer test & update

// draw color rgb to pixel (x,y)
void set_pixel(x, y, z, rgb)
{
 // is current pixel closer than stored z-value?
 if (z < zbuffer[x,y])

 {
 // write pixel's color to frame buffer
 framebuffer[x,y] = rgb;

 // update depth buffer

 zbuffer[x,y] = z;
 }
}

39

Z-Buffer

7
6 7
5 6 7
4 5 6 7
3 4 5 6 7
2 3 4 5 6 7

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5 ∞ ∞ ∞ ∞∞∞

∞∞∞∞∞
∞∞∞∞
∞∞∞
∞∞
∞

∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞
∞∞∞∞∞∞∞∞

5 5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5 5
5 5 5
5 5
5 ∞ ∞ ∞ ∞ ∞∞

∞∞∞∞∞
∞∞∞∞
∞∞∞
∞∞
∞

5 ∞
∞
∞
∞
∞
∞
∞

∞∞∞∞∞∞∞∞

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5
5 5 5
5

∞
∞ ∞

∞ ∞∞
∞∞∞
∞∞
∞

2 3 4 5 6 7
3 4 5 6 7

74 5
5

+ =

+ =

Image from Wikipedia

40

Quiz: Z-Buffer

How will the z-buffer resolve visibility when two triangles and lie in the same plane
and overlap? Assume triangle is drawn before triangle .

A: will be completely visible. B: will be completely visible.

C: Some pixels from and some pixels from will be visible in the overlap region.

D: One triangle is completely visible, but it is random which one.

41

Precision Issues

Logarithmic Z-Buffer 42

https://threejs.org/examples/webgl_camera_logarithmicdepthbuffer.html

Quiz: Transform Normal Vectors

If an object is affinely transformed by a matrix , which matrix is used to transform its
normal vectors?

A: B: C: D:

43

Rasterization Pipeline

Transformations

Lighting

Projection

3D Triangles Primitive Assembly

Clipping

Rasterization

Shading

Visibility 2D Image

per vertex per primitive per fragment

44

Literature

Marschner & Shirley: Fundamentals of Computer Graphics, 5th
Edition, AK Peters, 2021.

Chapter 9

45

