Computer Graphics

Rasterization Pipeline

Mark Pauly

Geometric Computing Laboratory

Rasterization Pipeline

[3D Triangles J——»

Transformations

'

Lighting

'

Projection

5>

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image]

Rasterization Pipeline

Model Space
Vertex Shading o
L 4

World Space

)

Camera Space View Screen

Raste?izition
N\

Fragment Shading

P Bl W) 118/2059 - Graphics

eline and Vertex Shading >

4/20:59 - Graphics Rendering Pipeline and Vertex Shading >

Rasterization

Z - Buffer

@ O

Rotation X
0 0
cos@’ — sind’

10 0 i sin@ cosf’
0 ¥ 0 0
0 5 Rotation ¥
0

cos0' 0 sing
1 0

Transiation

sin@> 0 cosé”
0 0o 0

Rotation Z
cos8° —sin@® 0
sing cos
0 0
0 0

0
1
0

Play (K

Branch VIEW Screen ranch
aQ B & FdEdaHdh P Pl O 6107208 - Raswenzaton 0 @ & [Fddalk
o

Fragments

- View Screen
o) 5:57/2059 - Rasterizatio

on >

|

W) 748/2059 - visolty 26

Tcose

\
™G

0 17208 T PixeiSnodir

n,

M) 170172059 - Flatvs Smooth Shading >

nch’
© ﬂi & Ed-w”‘ > >

Micos()

-~ _Branch
@O @ O (]G 05 The vhbangPsel o >

- -\L

Note: The actual sequence of
steps is far more complicated and
interconnected especially when
accounting for deferred rendering.

Ray Tracing

N..=an+pn+yn,
Vertex Shading

~ /ooty Shading

Tesselator
Mesh Generating
Rasterization \
®

@ Deferred Rendmng
. Nnima Maps

Clippigg
Backface Culling

° Rentﬂmns

DLSS

Render to Texturt ards Deep Learning Super Samplin:
tender to Texture . e i pling]
I]

> @
Branch
0 EE %" Fdodatich » ¥

Fragment Shading

) 181472059 - RayTraoing >

Thanks to Amine and Haythem! https://www.youtube.com/watch?v=C8YtdC8mxTU

https://www.youtube.com/watch?v=C8YtdC8mxTU

Transformations & Projections

[3D Triangles J——»

Transformations

Lighting

Projection

per vertex

>

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image J

Transformations & Projections

e Project edge or triangle from 3D to 2D

o Simply transform/project its endpoints/vertices?

e Let us first analyze this for a line between A and B
Xa)=1—-a)A+aB, ac]0,1]
e For an affine/projective transformation M it has to hold

Va€R 3B€R : M(X(a)) = (1— B)M(A) + SM(B)

Affine Transformations of Lines

o Affine transformation M preserves affine combinations

M((1-—a)A+aB) = (1—a)M(A) + aM(B)

Projective Transformations of Lines

e For a central projection P(X) = - we can show that
_ (l-x)A+aB A B
P(X(Ct)) - (1—a)Az—|—aBz - (1 /B) -A-z +/BBZ
aB,

if we chose B = i A, + oB
— z ab,

e Same argument holds for general projective transformations.

Transformations of Triangles

e A triangle is an affine combination of three points

X(a, 8,7) = aA + BB ++C

witha+ 8+ v=1.

e Affine transformations preserve affine combinations

o Triangles are transformed to triangles

e Planar projections map triangles to triangles

o Similar derivation as for lines

Lighting

[3D Triangles H Transformations

>

Projection

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image J

Phong Lighting Model

e Ambient lighting
o approximate global light transport / exchange
o uniform in, uniform out
o Diffuse lighting
o dull / mat surfaces
o directed in, uniform out
e Specular lighting
o shiny surfaces

o directed in, directed out

10

Phong Lighting Model

0000

ambient: I,m, diffuse: Iimg4 (n - 1) specular: Iym(r - v)° ambient+diffuse+specular

11

Normal Vectors

e Triangle normal
(b—a) x (c — a)

") =T —a)x (c—a)|

e Vertex normal

o Average of incident triangles’ normals n(TZ-)
o Weighted by area or opening angle w(T3)

ZT@V w(T;) n(T3;)
|Erov w(T) n(T) |

n(V) =

12

How to transform normal vectors?

e Pointx = (z,¥,2,1)" with normal n = (n4,n,,n,,0)" lies on its tangent plane

Ny +nyy+nz+d=0 < pTx=O

withd = n'xand p = (ng, ny,n,,d)".

e The same equation should be satisfied after an affine transformation, represented by
4 x 4 matrix ML. Transformation maps x tox’, nton’, and p to p’:

0 = p’T:X’ _ p/T (Mx) _ (MTp/)Tx

e Comparing the two equations yields p’ = M_Tp, and thereforen’ = M~ Tn
o In practice use the upper-left 3 x 3 block of M and build its transposed inverse

o Then transform the 3D normal vector and re-normalize it

13

How to transform normal vectors?

145} 14 5)

!
n, =M - n,

14

Clipping

[3D Triangles H Transformations

'

Lighting

'

Projection

>

per vertex

Primitive Assembly Shading
Visibility
Rasterization B
per primitive per fragment

>[2D Image J

Clipping removes everything outside the viewing frustum.

We don't discuss clipping here.

15

Rasterization

[3D Triangles H Transformations

>

'

Lighting

'

Projection

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image J

16

Line Rasterization

e Discretize line from (xg, yo) to (x1,y1) to pixel grid

o Endpoints are integer coordinates (pixel positions)
o Assume slopeisin [0, 1] and 2y < 1

o Other cases follow by symmetry

How would you implement this?

17

Line Representation

e Explicit: Range of a function y(z) = ma + t with

yi—yo _ . Ay

o — = —<
m T1—2o Az

°©t=1yo— Mz

18

for

(x=x0; x<=x1; ++X)

set pixel(x, round(m*x + t));

First Guess

© Multiplication

© Rounding

19

Digital Differential Analysis

e Use an incremental algorithm!

e If the current pixel is (x;, y;) then
o Tiy1 =x;+1

°© Yit1 =Yi T M

for (X=X0, y:yo; x<=x1l; ++x, y+=m)
set pixel(x, round(y));

no multiplication

© rounding, since y and m are floats

20

Line Representations

e Explicit: Range of a function y(z) = ma + t with

O

O

yi—y _ . Ay

m = T1—2T9 = Az

t=Yo—mzg

e Implicit: Zero-set of F(x,y) = ax + by + ¢ with

O

O

O

O

O

©)

a=(y1—yo) =Ay

b= (xg—x1) = —Ax
c=t(x1 — xo)

F(z,y) =0 = pointon line
F(z,y) > 0 = point below line
F(z,y) < 0 = point above line

21

Bresenham Algorithm

e Next pixel can only be east (E) or north-east (NE)

NE

o |s the line below/above midpoint M?

e Use a decision variable d:
od=F(M)=F(z; +1,y; + 0.5)
o Ifd < 0 then go east
o If d > 0 then go north-east

)
N

)
A

(X, i)

22

Bresenham Algorithm

e Incrementally update decision variable d!

e |f east was chosen:
© dnew — F(xz + 233/'5 + 05) — dold +a

- MnEe

o AE:=a = Ay

e |f north-east was chosen:

o dnew:F(xi+27yi+1-5):dold‘|‘a‘|‘b
o ANE:=a+b=Ay— Ax

(Xi,yi) | |

23

Bresenham Algorithm

e |nitialization of d
od= F(:L'O + 1, yp —|—O5) = Ay — A:L'/2
o Bad: Az/2 may not be integer

e Use 2 F(x,y) instead of F(z,y)
o Values of d, AE, ANE are doubled

o But sign of F' and d remain unchanged

24

Bresenham Algorithm

Ax = x1-x0;

Ay = yl-y0;

d = 2*Ay - AX;
AE = 2*Ay;

ANE = 2% (Ay - AX);

set pixel(x0, y0);

for (x = x0, y = y0; x <= x1;)

{
if (d <= 0) { d += AE; ++x; }
else { d += ANE; ++x; ++y; }
set pixel(x, V);

}

Only integer arithmetic

25

Triangle Rasterization

e Enumerate all pixels inside a 2D triangle

o Inside test for every pixel is too expensive

e Compute horizontal spans in each scanline

o Compute the intersections with triangle edges, fill all pixels
inbetween

Many special cases to consider!

26

Triangle Rasterization

Samples

27

Shading

[3D Triangles H Transformations

'

Lighting

'

Projection

>

Primitive Assembly

'

per vertex

Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image J

28

e Flat Shading
o Compute lighting per face

o Facetted appearance

Shading: Fill the Interior

T

W

Mach band effect

29

Shading: Fill the Interior

e Flat Shading
o Compute lighting per face

o Facetted appearance

e Gouraud Shading

o Compute lighting per vertex
o Linear interpolation of colors

o Might loose small highlights

* Phong Shading

o Linear interpolation of vertex normals

o Compute lighting per pixel

o Captures small highlights

30

Normal Vectors

e Triangle normal
(b—a) x (c — a)

") =T —a)x (c—a)|

e Vertex normal

o Average of incident triangles’ normals n(T3)
o Weighted by area or opening angle w(T3)
ZT@V w(T;) n(T3)

n(V) =
V) = s gy 0@ a(@)]

31

Interpolate Vertex Normals

e |ntersection point with barycentric coordinates

x =aA + 6B +~C

e Linearly interpolate vertex normals
n(x) = an(A) + fn(B) + 1n(C)

e Use n(x) to light point x

32

triangulation (flat shading)

Influence of Vertex Normals

&4

no weighting angle-weighted

33

Flat Shading

Shading: Fill the Interior

Gouraud Shading

Phong Shading

34

Shading: Fill the Interior

Quiz: Barycentric Interpolation

During rasterization normal vectors and texture coordinates for each pixel are computed by
barycentric interpolation.

Where should we compute the barycentric coordinates of the pixels?

{Az In 2D window coordinates}

[B: In 3D camera coordinates]

[C: Makes no difference}

36

Visibility

[3D Triangles H Transformations

'

Lighting

'

Projection

>

Primitive Assembly

> Shading

'

Clipping

'

per vertex

Rasterization

per primitive

Visibility

—>[2D Image J

per fragment

37

Z-Buffer

e Store current minimum z-value for each pixel

o After model transformation, view transformation, projection
transformation, and viewport transformation

e Additional buffer for depth values

o Framebuffer stores RBG color values
o Depth buffer (z-buffer) stores depth values
o Storage: additional 16 to 32 bits per pixel

Images from Wikipedia

38

Z-Buffer

e |nitialize depth buffer to co

e Rasterize triangles, interpolate depth value per fragment

o each fragment (x,y) still has a depth value z

e Depth buffer test & update

// draw color rgb to pixel (x,y)
void set pixel(x, y, 2z, rgb)

{
// is current pixel closer than stored z-value?
if (z < zbuffer([x,y])
{
// write pixel's color to frame buffer
framebuffer[x,y] = rgb;
// update depth buffer
zbuffer[x,y] = z;
}
}

39

Z-Buffer

S[5]5][5]5]|5][5]x

S[5]5]5]5]| 5[0

S[5]5]5] 5|00

51555/ o0] oof cof 0

515 5] co|oo| oof oof 0o

5| 5] oo| ool 00| oof cof 0o

5 | oo oo oo 00| oof cof 0o

S[5]5][5]5]|5][5]

S[5]5]5]5]| 5[0

S[5]5]5] 500000

S| 5] 5] 5] 00| o0[00| 0

4| 5] 5|7 00| 00| 0] 0

314|5]6]| 7] o0 o0|oe

2[3]4]5|6]7|x|x

00| CO[CO| OO CO[CO| OO CO

00| CO| CO| OO CO[CQ| OO CO

5T5T5[5[5[3]3]
5155[5[5]5
5155[5]5
515[5[5
5[5(5

5[5

3]

6|7

5[6]7

415167

314/5/6|7

2[3[45]6]7]

Q0| COf COf CO| CO| CO| CO| CO
0| COf COf CO| CO| CO| CO| CO
0| COf COf CO| CO| CO| CO| CO
O0| OO[CO| CO| CO| CO| CO| CO

oo| oo| ool oo o] cof ool 00| F
00| ool 00| ool oo ool cof oo
00| oo oo| ool oo| ool ool oo
00| oo oo| ool oo ool ool oo

S[5]5]5]5]|5][5]

S[5]5]5]5]| 5[0

S[5]5]|5] 5|00

S[5]5] 5] 00| o0[00| 0

51 5] 5] oo]cofcofcofco| +
51 5| 0| oo 00| oo oof 0o

5 | o0 oo oo 00| co| cof 0o

Q0| CO| CO| CO| CO| CO| CO| CO

Image from Wikipedia

40

Quiz: Z-Buffer

e How will the z-buffer resolve visibility when two triangles A and B lie in the same plane
and overlap? Assume triangle A is drawn before triangle B.

{A: A will be completely visible.J {B: B will be completely visible.J

[C: Some pixels from A and some pixels from B will be visible in the overlap region.]

[D: One triangle is completely visible, but it is random which one.J

41

Precision Issues

Logarithmic Z-Buffer

42

https://threejs.org/examples/webgl_camera_logarithmicdepthbuffer.html

Quiz: Transform Normal Vectors

e |f an object is affinely transformed by a matrix M, which matrix is used to transform its

normal vectors?
{A: MJ {B: M—lJ [c: MTJ (D: M—TJ

43

Rasterization Pipeline

[3D Triangles J——»

Transformations

'

Lighting

'

Projection

5>

per vertex

Primitive Assembly Shading
Clipping Visibility
Rasterization
per primitive per fragment

>[2D Image]

44

Literature

e Marschner & Shirley: Fundamentals of Computer Graphics, 5th
Edition, AK Peters, 2021.
o Chapter 9

45

