

Introduction Computer Graphics

Triangle Meshes

Mark Pauly

Geometric Computing Laboratory

Triangles

Barycentric Coordinates

- *Affine combination* of two points

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B}$$

with $\alpha + \beta = 1$.

- *Convex combination* of two points

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B}$$

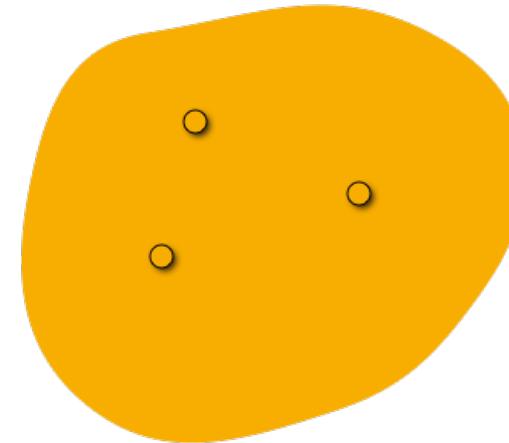
with $\alpha + \beta = 1$ and $\alpha, \beta \geq 0$.

Barycentric Coordinates

- *Affine combination* of three points

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

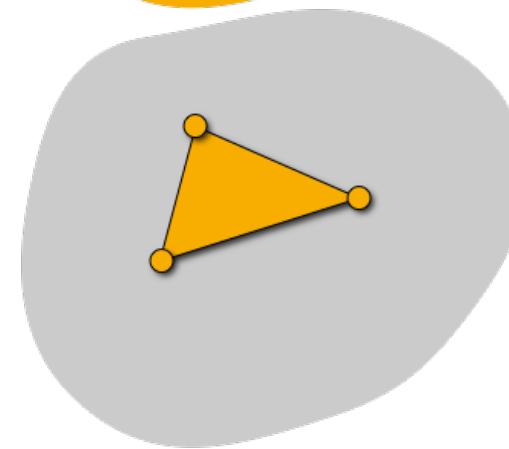
with $\alpha + \beta + \gamma = 1$.



- *Convex combination* of three points

$$\mathbf{x} = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

with $\alpha + \beta + \gamma = 1$ and $\alpha, \beta, \gamma \geq 0$.

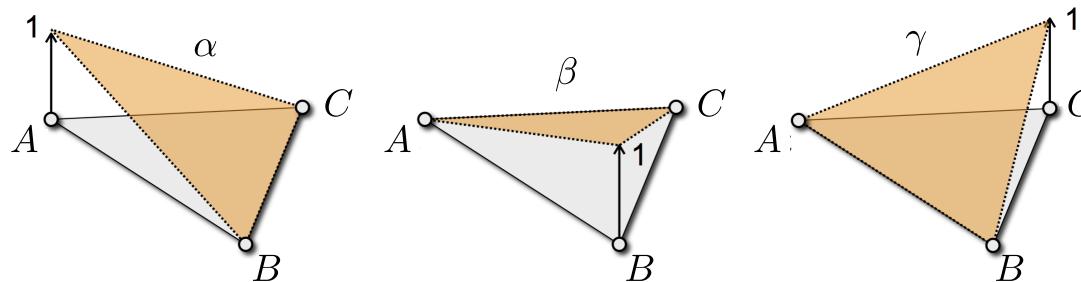


Barycentric Coordinates

- Barycentric representation: $\mathbf{x} = \alpha\mathbf{A} + \beta\mathbf{B} + \gamma\mathbf{C}$ with $\alpha + \beta + \gamma = 1$

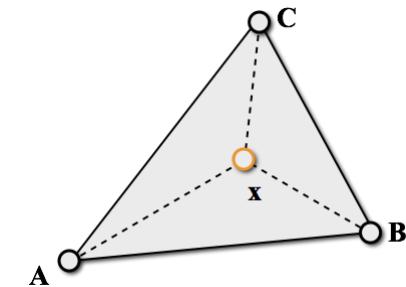
Barycentric Coordinates

- Barycentric representation: $\mathbf{x} = \alpha\mathbf{A} + \beta\mathbf{B} + \gamma\mathbf{C}$ with $\alpha + \beta + \gamma = 1$
- For any point inside the triangle $0 \leq \alpha, \beta, \gamma \leq 1$.
 - For example, points with barycentric coordinates $(\alpha, \beta, 0)$ and $\alpha, \beta \geq 0$ lie on edge AB .



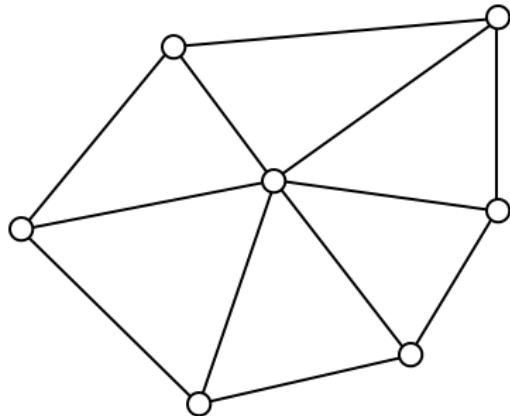
- Geometric interpretation: ratio of areas

$$\alpha(\mathbf{x}) = \frac{\text{area}(\mathbf{x}, \mathbf{B}, \mathbf{C})}{\text{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}, \quad \beta(\mathbf{x}) = \frac{\text{area}(\mathbf{A}, \mathbf{x}, \mathbf{C})}{\text{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}, \quad \gamma(\mathbf{x}) = \frac{\text{area}(\mathbf{A}, \mathbf{B}, \mathbf{x})}{\text{area}(\mathbf{A}, \mathbf{B}, \mathbf{C})}$$

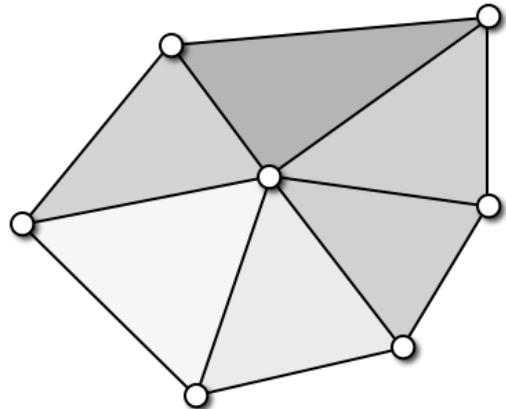


Triangle Meshes

What is a triangle mesh?



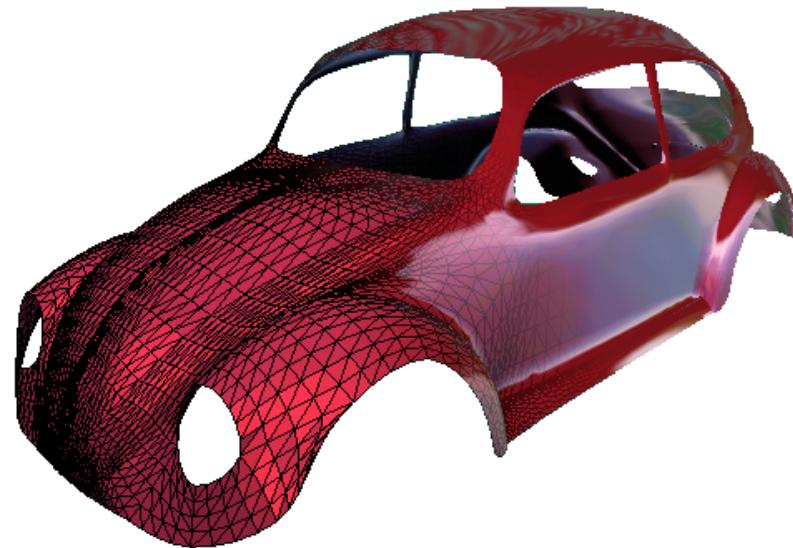
- **Connectivity / Topology**
 - Vertices $\mathcal{V} = \{v_1, \dots, v_n\}$
 - Edges $\mathcal{E} = \{e_1, \dots, e_k\}, e_i \in \mathcal{V} \times \mathcal{V}$
 - Faces $\mathcal{F} = \{f_1, \dots, f_m\}, f_i \in \mathcal{V} \times \mathcal{V} \times \mathcal{V}$



- **Geometry**
 - Vertex positions $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^3$

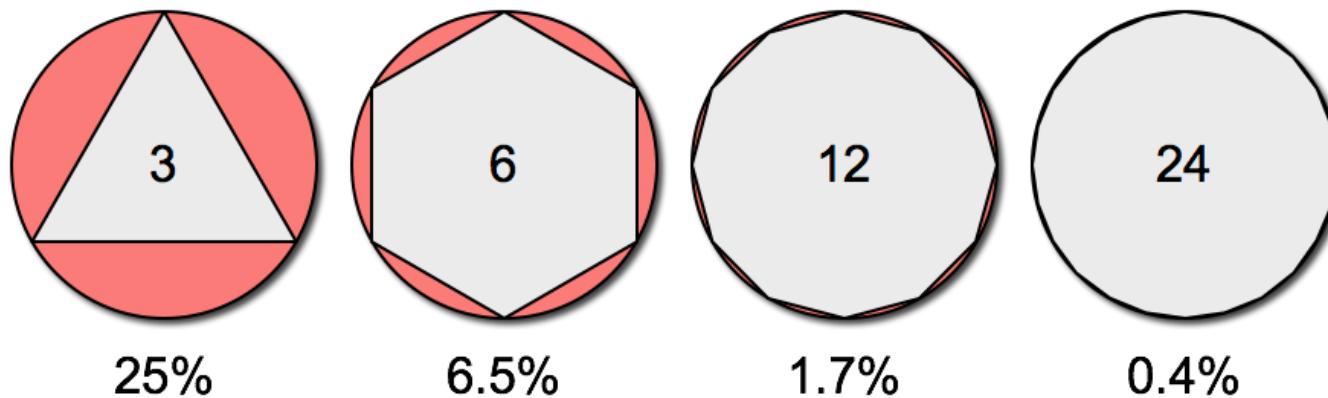
Triangle Meshes

- Triangle meshes can represent arbitrary surfaces



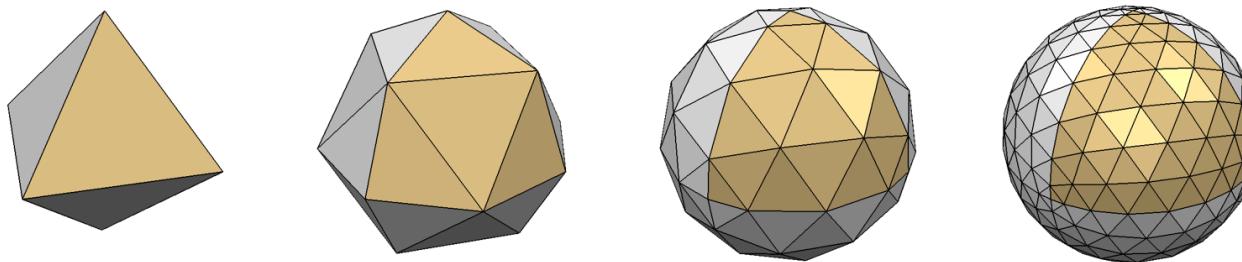
Triangle Meshes

- Triangle meshes can represent arbitrary surfaces
- Piecewise linear approximation → error is $\mathcal{O}(h^2)$



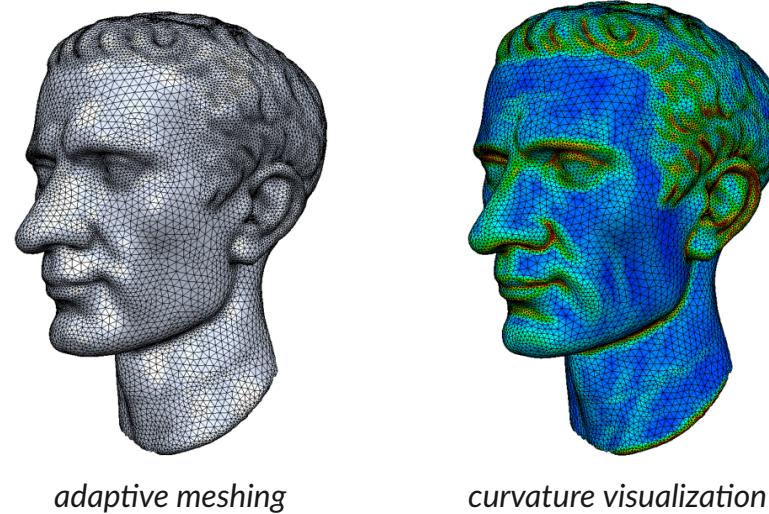
Triangle Meshes

- Triangle meshes can represent arbitrary surfaces
- Piecewise linear approximation → error is $\mathcal{O}(h^2)$
- Approximation error inversely proportional to #triangles



Triangle Meshes

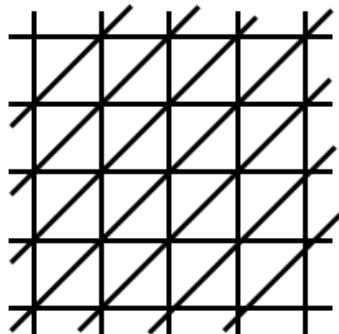
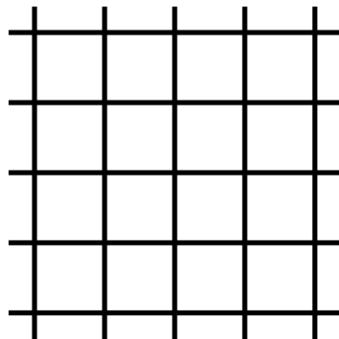
- Triangle meshes can represent arbitrary surfaces
- Piecewise linear approximation → error is $\mathcal{O}(h^2)$
- Approximation error inversely proportional to #triangles
- Adaptive tessellation can adapt to surface curvature



Triangle Meshes

- Triangle meshes can represent arbitrary surfaces
- Piecewise linear approximation → error is $\mathcal{O}(h^2)$
- Approximation error inversely proportional to #triangles
- Adaptive tessellation can adapt to surface curvature
- Simple primitives can be processed efficiently by CPU/GPU

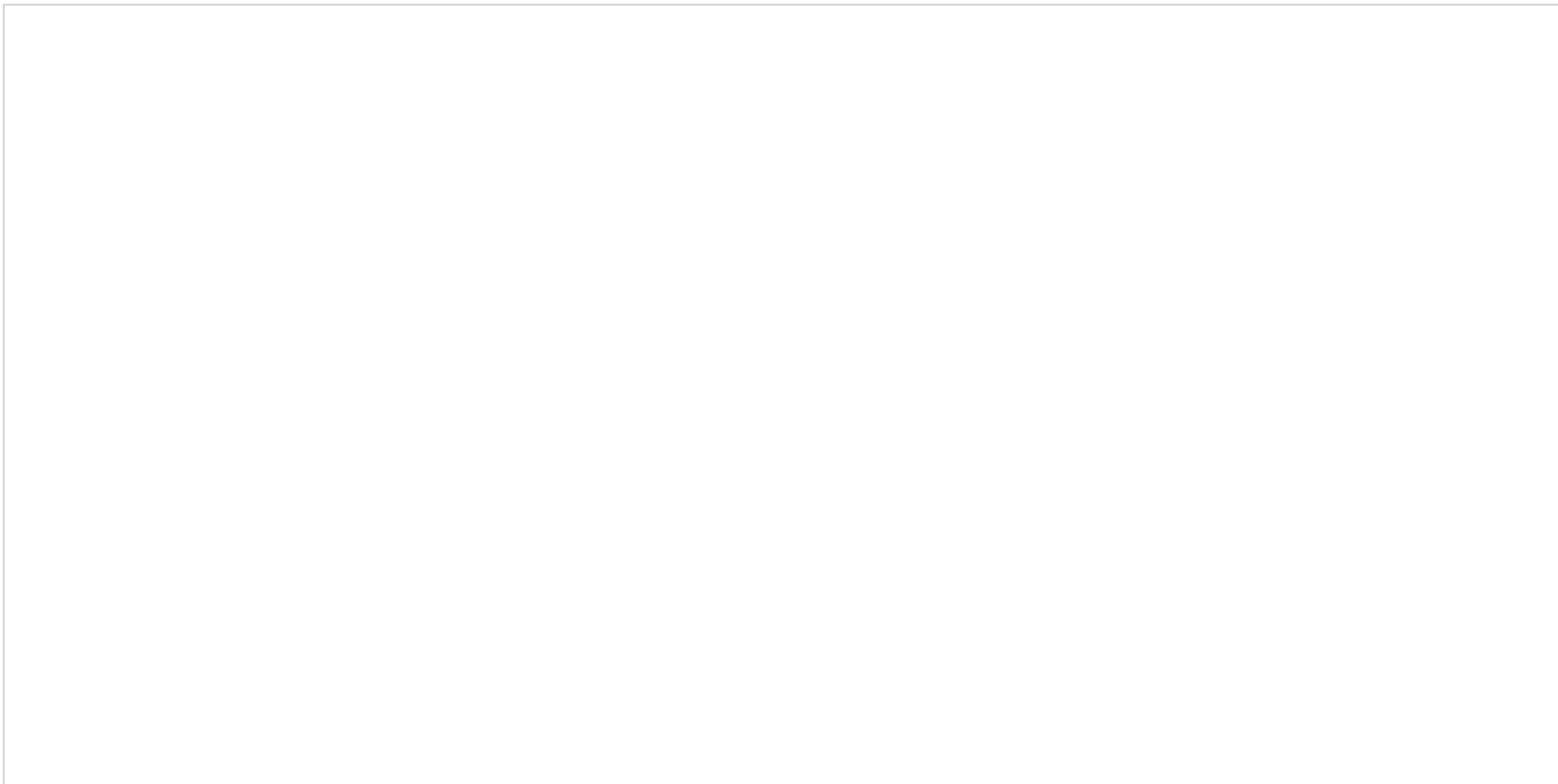
Mesh Statistics



- **Triangle Meshes**
 - $F \approx 2V$
 - $E \approx 3V$
 - Average valence 6

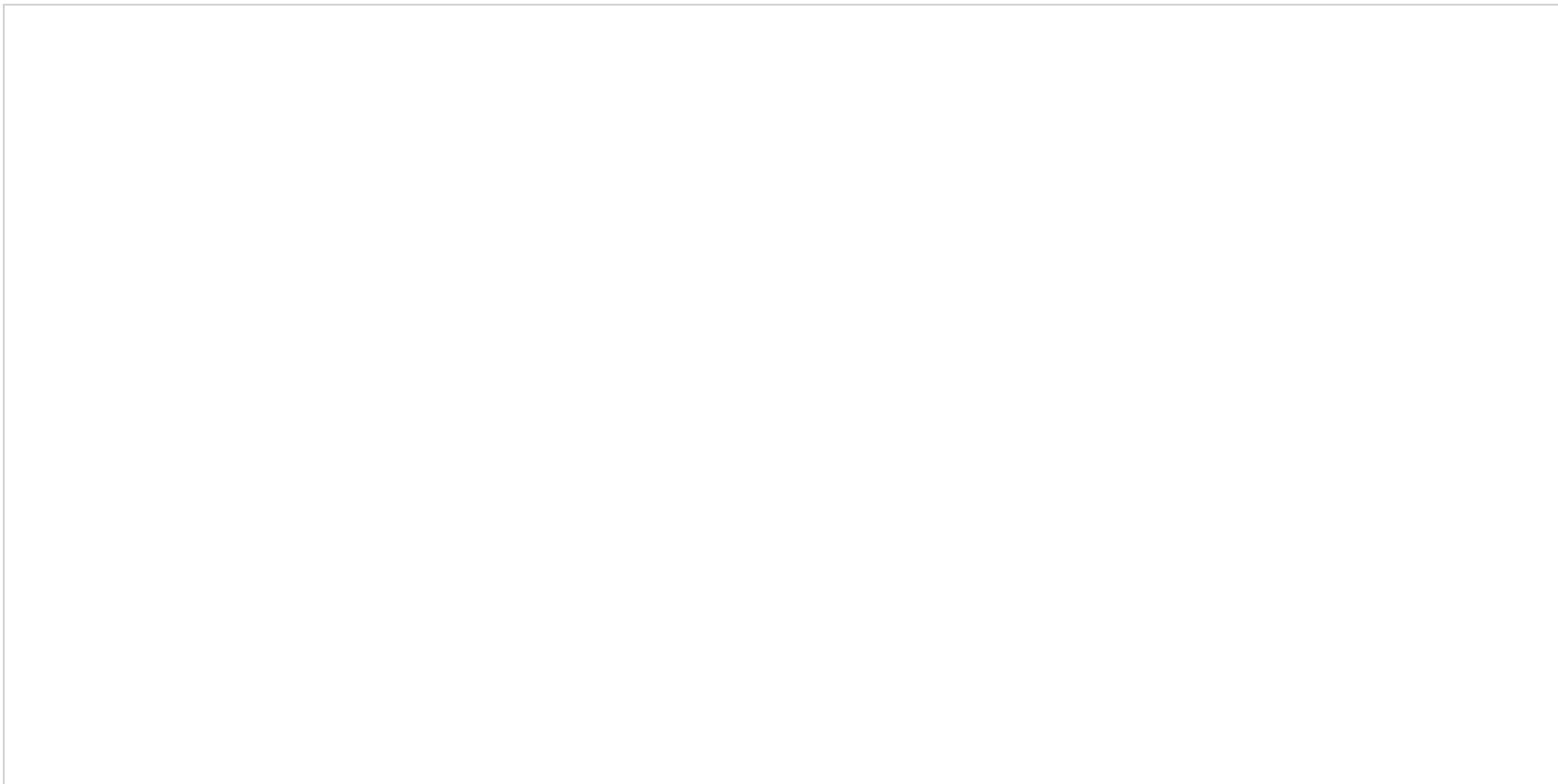
- **Quad Meshes**
 - $F \approx V$
 - $E \approx 2V$
 - Average valence 4

Example: Triangle Mesh



5676 vertices, 17022 edges, 11348 faces

Example: Quad Mesh



2012 vertices, 3978 edges, 1968 faces

Storing Meshes

- Face Set

- standard file format for triangle meshes (e.g. STL format)
- Memory consumption: $36 \text{ B/f} = 72 \text{ B/v}$

Triangles		
$x_{11} \ y_{11} \ z_{11}$	$x_{12} \ y_{12} \ z_{12}$	$x_{13} \ y_{13} \ z_{13}$
$x_{21} \ y_{21} \ z_{21}$	$x_{22} \ y_{22} \ z_{22}$	$x_{23} \ y_{23} \ z_{23}$
...
...
...
$x_{F1} \ y_{F1} \ z_{F1}$	$x_{F2} \ y_{F2} \ z_{F2}$	$x_{F3} \ y_{F3} \ z_{F3}$

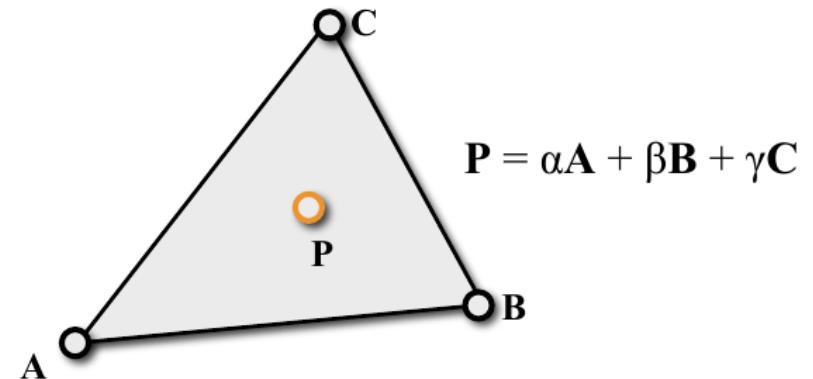
Storing Meshes

- Indexed Face Set
 - used for many file formats (e.g. OFF, OBJ, VRML)
 - Memory consumption: $12 \text{ B/v} + 12 \text{ B/f} = 36 \text{ B/v}$

Vertices	Triangles
$x_1 \ y_1 \ z_1$	$i_{11} \ i_{12} \ i_{13}$
...	...
$x_v \ y_v \ z_v$...
...	...
...	...
...	...
$i_{F1} \ i_{F2} \ i_{F3}$	

Quiz: Barycentric Coordinates

- How can you test that $\mathbf{P} = \alpha\mathbf{A} + \beta\mathbf{B} + \gamma\mathbf{C}$, which lies in the plane of the triangle $(\mathbf{A}, \mathbf{B}, \mathbf{C})$, lies **within** this triangle?
- Which condition is violated if the point is outside the triangle?



A: $\alpha + \beta + \gamma = 1$

B: $\alpha < \beta < \gamma$

C: $\alpha, \beta, \gamma \leq 1$

D: $\alpha, \beta, \gamma \geq 0$