Computer Graphics

Viewing

Mark Pauly

Geometric Computing Laboratory

Transformation Pipeline

e Split complex transformation from 3D to 2D into a

l model coordinates
sequence of simpler transformations.

Model Transformation

e We discussed model transformations before

world coordinates

e Now we discuss view, projection, and viewport

. View Transformation
transformations

l cameraleye coordinates

Projection Transformation

l normalized device coordinates

Viewport Transformation

l window/pixel coordinates

Transformation Pipeline

¢ View Transformation l odel coordinates

o setup extrinsic camera parameters: position and
orientation Model Transformation
e Projection Transformation 3 world coordinates
o setup intrinsic camera parameters: opening angle and View Transformation

depth range

l cameraleye coordinates

e Viewport Transformation

. . . , Projection Transformation
o setup image parameters/resolution: width and height

l normalized device coordinates

Viewport Transformation

l window/pixel coordinates

Transformation Pipeline

Model coordinates

l model coordinates
o local coordinate system for each model

Model Transformation

World coordinates
o one global coordinate system

world coordinates

View Transformation

Camera / eye coordinates

o world transformed to standard camera

l cameraleye coordinates

Normalized device coordinates Projection Transformation
o ViEWing volume mapped to ['1,1]3 l normalized device coordinates
Window coordinates Viewport Transformation

o from [-1,1]3 to [-1,1]? to pixel coordinates l windowlpixel coordinates

View Transformation

View Transformation

e Specify extrinsic camera parameters @
o Camera/eye location e

o Viewing direction v Q
o Up direction u

o Right directionr

o Assume v, u, r are orthonormal

e Transform scene to standard camera
o Camera/eye location (0,0, 0)
o Viewing direction (0,0, —1) [p ___________________________
o Up direction (0,1, 0)

Right direction (1,0, 0)

©)

View Transformation

e Matrix from standard camera to e, r, u, v:
(ch Uy —VUyp ea:\

Ty Uy Uy €y

\0 0 0 1)

e The inverse matrix does the job

—1
(T'a; Uz —Vg ew\ (Tz Ty T2 O\ (1

\o0 0 o elz) _(;Jw o o 1) \o

o O = O
o = O O

What is a projection?

¢ In mathematics
o An idempotent mapping: P(P(x)) = P(x)

e In computer graphics
o A mapping from 3D space to a planar 2D image
o Parallel or perspective projection

o Transforms viewing volume to normalized device coordinates [—1, 1]*

Classification of Projections

Planar Projections

— \

Parallel Perspectlve

T~ TN

Orthographic Oblique 1-point 2-point 3-point

¥\ v

Front Top Side Axonometric Cabinet Cavalier

10

Parallel vs. Perspective Projection

e Parallel projections
o One direction of projection for all points

o Orthographic: direction perpendicular to image plane
o Preserve parallelism & lengths

e Perspective projections
o Each point projects towards center of projection

o Perspective foreshortening, realistic appearance

Autodesk 3D Studio Max

Image from Wikipedia

11

Generic Orthographic Projection

e Standard camera setup opviow
o located at origin

o looking down negative z-axis y
siae
view

¢ Orthogonal projection onto xy-plane
1 0

front view

o O O O
= o O O

0 1
0 0
0 0

o xy-coordinates do not change
o remove z-coordinate

o keep w-coordinate

12

OpenGL Orthographic Projection

e Specify viewing volume as axis-aligned box
[l,'l“] X [ba t] X [_na_f]

with left/right, bottom/top, near/far boundaries
e Map viewing box to unit cube [—1,1]?
o translate box center to origin
o scale box dimensionsto 2 x 2 x 2

o z values should be mirrored

r 2 I+r

= 0 0 0y /100 & (% 0 0 -5

0 % 0 0 010 —Ht [[0 20 -kt

—2 —n—f —2 n+f

0o 0 = o] |oo01 -2 0 0 = -Z
o o o 1/ \ooo 1 \o o0 o0 1)

13

Generic Perspective Projection

e Standard projection
o Center of projection: (0,0, 0)

o Image plane at z = —d
I
Yy —>
yA

—d (?
_zd ? ?

Don’t put z into the matrix!

QQ .Q .Q QQ

plane
(2,,2)"

N N D)

14

Homogeneous Coordinates

e Use homogeneous coordinates (z, y, z, w)

o Vectors are represented by (z,y, z,0)'
o Points are represented by (wz, wy, wz, w)" for any w # 0

o Divide a point (wz, wy, wz,w)" by w to get its canonical representation (z, y, 2,1)
(this process is called “homogenization”)

T

15

Generic Perspective Projection

e Standard projection

o Center of projection: (0,0, 0)

o Image plane at z = —d

o O O =

o O = O

~1/d

o O O O

A

image

©Y plane
(z,9,2)"
(=, ¢/, —d)"
z=—d
z z (e
vl _ | ¥ | & [vF
2 2 I
1 —z/d \ 1)

16

Homogeneous Coordinates

e Use homogeneous coordinates (z, y, z, w)

o Vectors are represented by (z, v, z,0)T
o Points are represented by (wz, wy, wz, w)' forany w # 0

e Divide a point (wz, wy, wz, w)' by w to get its canonical representation (z, ¥, z,1)7

o Defer this homogenization until the very last step

e \We can now use 4 x 4 matrices for

o linear transformations (scaling, rotation, ...)
o affine transformations (linear map + translation)

o projective transformations (affine map + projection)

17

OpenGL Perspective Projection

e Specify viewing volume by
o near and far D}

o left and right (or opening angle in x)

o bottom and top (or opening angle in y)

e Transform this frustum to unit cube [-1,1]°

o so-called frustum mapping D

e Then perform parallel projection onto xy-plane and

viewport transformation D

18

Frustum Mapping

Frustum Mapping

[b _____ D

e How to transform (z, y, 2)? e Matrix representation:
2 I+

wa’n_l—l—’f’. 2 (2 0 2 0)
—2z 2 r—1 0 2n Dbt
t—b t-b

|_)(n_b—l—t) 2 ? ? 70
TV T T2) o \0 0 -1 0

e Transform

a-z+b

Z —

such that —n — —1 and — f — +1.

e This leads to

n+f
f-n’

a =

A

b=

Frustum Mapping

2n f
f—n

]

e Matrix representation:

2n_ Itr
=

r r—I
2n b+t

0 5 5
_ntf

0 0 -
\0 0 -1

21

Frustum Mapping

define frustum matrix

var('l,r,b,t,n,f")

M = matrix([[2*n/(r-1), O, (l+r)/(r-1), 0], [0, 2*n/(t-b), (b+t)/(t-
show (M)

function that divides a 4D vector by its w-component
def homogenize(v):
return vector([v[0]/v[3],
v[1l]1/v[3],
v[2]1/v[31,
v[3]1/v[3] 1)

function that symbolically simplifies of each component of 4D vect
def simplify(v):
return vector([v[0].full simplify(),
v[1].full simplify(),
v[2].full simplify(),
v[3].full simplify() 1)

Now let's test some corners of the frustum
show(simplify(homogenize(M * vector([1, b, -n, 11))))

22

Viewport Transform

Viewport Mapping

e Simple scaling of normalized device coordinates
[_17 1] X [_17]-] X [_17 1]
to window pixel coordinates

1,1 +w] x [b,b+ h] x [0,1]

e Matrix representation

(% 0 0 % +1)
0 2 o0 24
o o 1+ 1

\0 0 0 1)

24

Transformation Pipeline

e View Transformation

o setup extrinsic camera parameters: position and
orientation

e Projection Transformation

o setup intrinsic camera parameters: opening angle and
depth range

e Viewport Transformation
o setup image parameters/resolution: width and height

l model coordinates

Model Transformation

world coordinates

View Transformation

l cameraleye coordinates

Projection Transformation

l normalized device coordinates

Viewport Transformation

l window/pixel coordinates

25

Try it yourself!

Model transformation M = R, () T',(:) Sz(-)

26

Quiz: Projections

(‘T7 y? Z)

Which matrix computes this projection? ot image
plane
—d i
x T — |
y —> y . __d :(x,y’,—d)T
z |
2 —d |
z:l—d
= q 0 100 o |[/100 o0\
A 0 —Td 0 0 5 01 0 O 01 0 O
o o0 o0 1 00 = 0 000 =

Y

27

Ponzo lllusion

Source

28

https://www.moillusions.com/these-3-cars-are-same-in-size/

Ponzo lllusion

Source

29

https://www.moillusions.com/these-3-cars-are-same-in-size/

Literature

e Marschner & Shirley: Fundamentals of Computer Graphics, 5th
Edition, AK Peters, 2021.
o Chapter 8

30

