

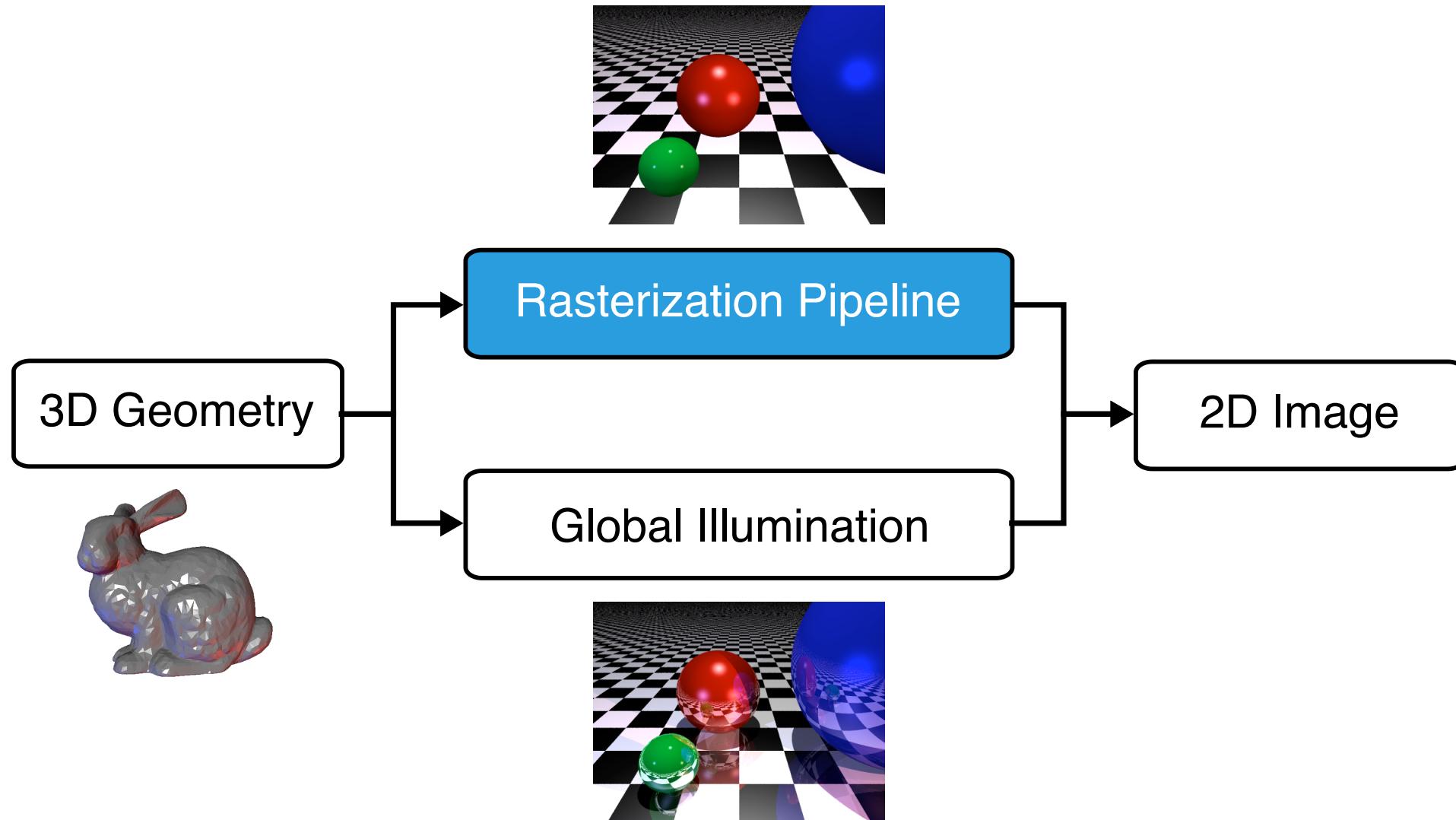
Computer Graphics

Transformations in 2D / 3D

Mark Pauly

Geometric Computing Laboratory

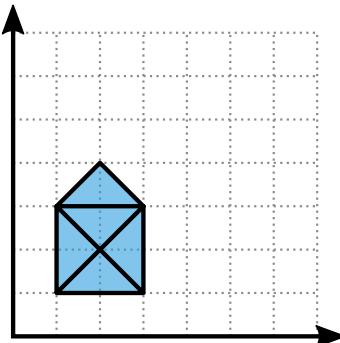
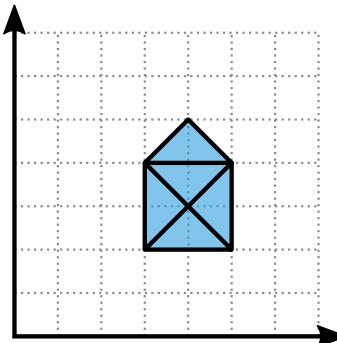
Rasterization Pipeline



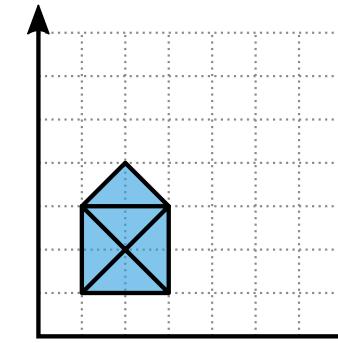
Which transformations do we need?

Our solar system

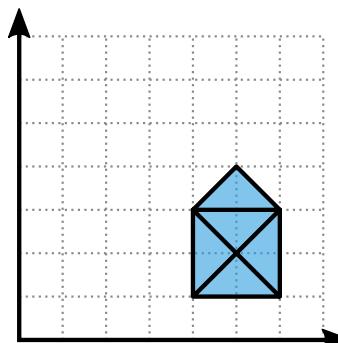
2D Transformations



translation



scaling

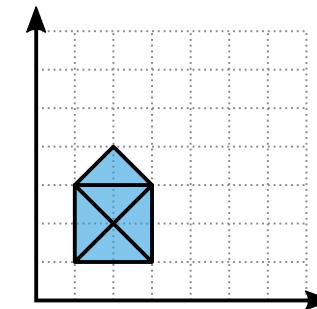
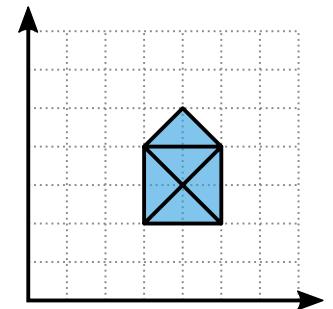


rotation

2D Translation

- Translate object by t_x in x and t_y in y

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x + t_x \\ y + t_y \end{pmatrix}$$

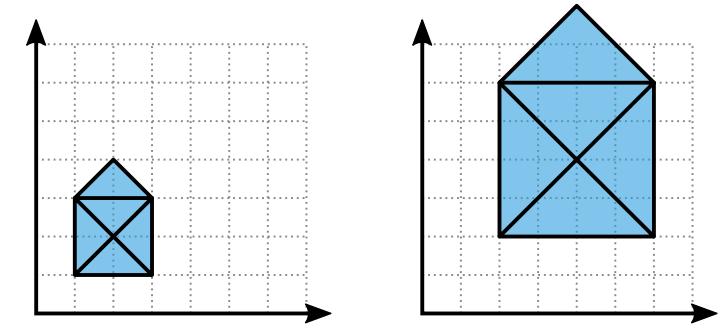


translation by (2, 1)

2D Scaling

- Scale object by s_x in x and s_y in y
(around the origin!)

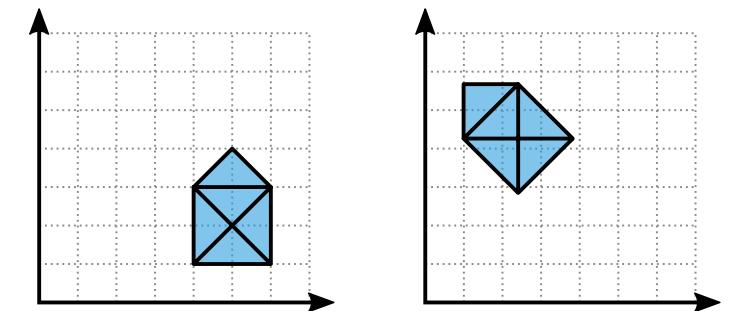
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} s_x \cdot x \\ s_y \cdot y \end{pmatrix}$$



scaling by $(2, 2)$

2D Rotation

- Rotate object by θ degrees (around the origin!)



rotation by 45 degrees

2D Rotation

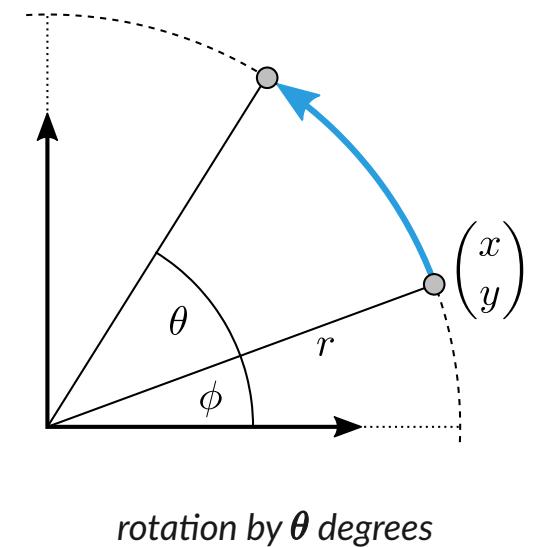
- Rotate point $(x, y) = (r \cos \phi, r \sin \phi)$ by θ degrees around the origin

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} r \cos(\phi + \theta) \\ r \sin(\phi + \theta) \end{pmatrix}$$

$$= \begin{pmatrix} r \cos \phi \cos \theta - r \sin \phi \sin \theta \\ r \cos \phi \sin \theta + r \sin \phi \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta \cdot x - \sin \theta \cdot y \\ \cos \theta \cdot y + \sin \theta \cdot x \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

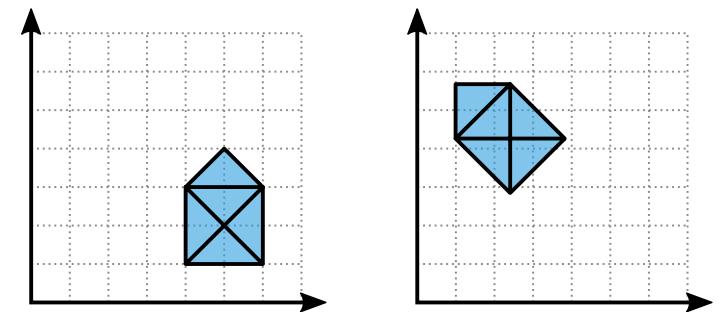


rotation by θ degrees

2D Rotation

- Rotate object by θ degrees (around the origin!)

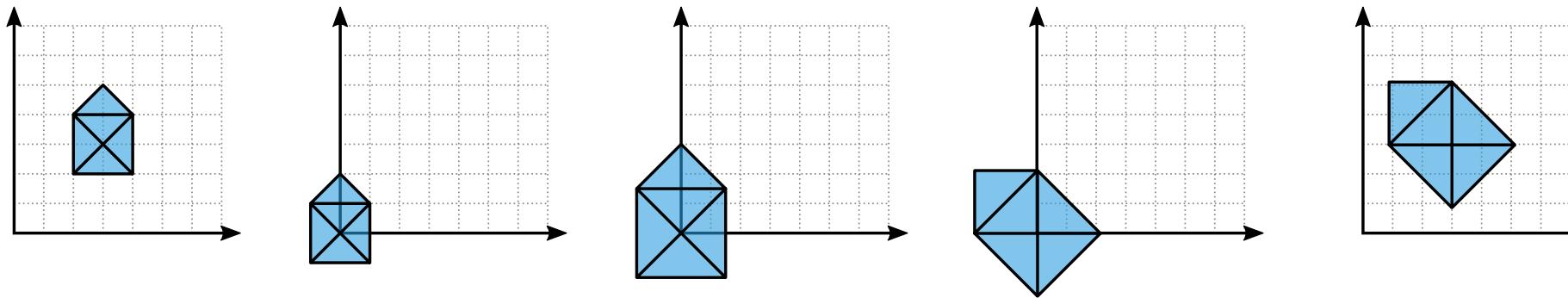
$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$



rotation by 45 degrees

How to rotate/scale around object center?

1. Translate center to origin
2. Scale object
3. Rotate object
4. Translate center back



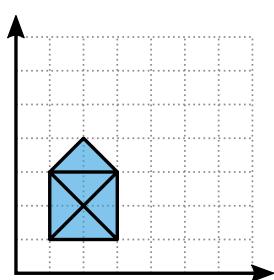
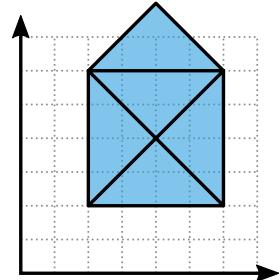
This can get quite messy!

Important Questions

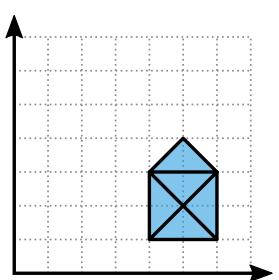
- How to efficiently combine several transformations?

Represent transformations as matrices!

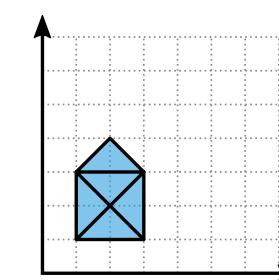
Matrix Representation



scaling



rotation



translation

$$\mathbf{S}(s_x, s_y) = \begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix}$$

$$\mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\mathbf{T}(t_x, t_y) = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

Which transformations can be written as matrices?

Linear Maps & Matrices

- Assume a *linear* transformation $L: \mathbb{R}^n \rightarrow \mathbb{R}^n$

- $L(\mathbf{a} + \mathbf{b}) = L(\mathbf{a}) + L(\mathbf{b})$
 - $L(\alpha \mathbf{a}) = \alpha L(\mathbf{a})$

- Point $\mathbf{x} = (x_1, \dots, x_n)$ can be written as

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$

Linear Maps & Matrices

- Exploit linearity of $L: \mathbb{R}^n \rightarrow \mathbb{R}^n$

$$\begin{aligned} L(\mathbf{x}) &= L(x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n) \\ &= x_1 L(\mathbf{e}_1) + x_2 L(\mathbf{e}_2) + \dots + x_n L(\mathbf{e}_n) \\ &= \underbrace{(L(\mathbf{e}_1), L(\mathbf{e}_2), \dots, L(\mathbf{e}_n))}_{=: \mathbf{L}} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{L} \mathbf{x} \end{aligned}$$

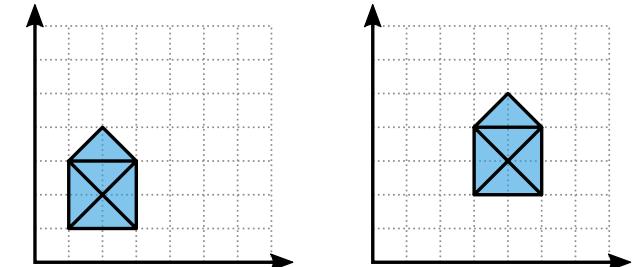
- Every linear transformation $L: \mathbb{R}^n \rightarrow \mathbb{R}^n$ can be written as a *unique* $(n \times n)$ matrix \mathbf{L} whose columns are the images of the basis vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$.

VERY useful fact!

VERY-VERY useful!

Linear vs. Affine Transformations

- Every linear transformation has to preserve the origin
 - $L(\mathbf{0}) = \mathbf{L} \cdot \mathbf{0} = \mathbf{0}$
- Translation is not a linear mapping
 - $T(0, 0) = (t_x, t_y)$
- Translation is an **affine** transformation
 - affine mapping = linear mapping + translation
 - $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \mathbf{Lx} + \mathbf{t}$



But we REALLY want to represent translations as matrices!

Homogeneous Coordinates

- Extend cartesian coordinates (x, y) to homogeneous coordinates (x, y, w)
 - Points are represented by $(x, y, 1)^T$
 - Vectors are represented by $(x, y, 0)^T$
- Only homogeneous coordinates with $w \in \{0, 1\}$ make sense
 - vector + vector = vector
 - point - point = vector
 - point + vector = point
 - point + point = ??
- Only affine combinations of points \mathbf{x}_i result in a point
 - $\sum_i \alpha_i \mathbf{x}_i$ with $\sum_i \alpha_i = 1$

Quiz: Transformations

Which matrix represents the 2D translation $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x + a \\ y + b \end{pmatrix}$?

A:
$$\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$$

B:
$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

C:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1 \end{pmatrix}$$

D:
$$\begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ 0 & 0 & 1 \end{pmatrix}$$

Homogeneous Coordinates

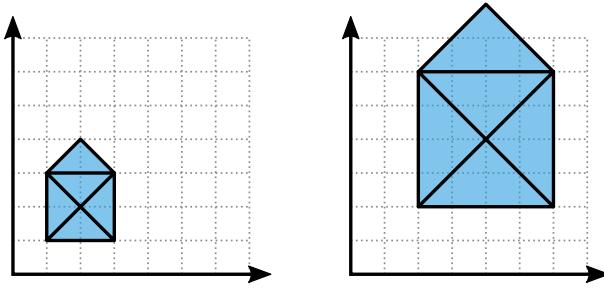
- Matrix representation of translations

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} \longleftrightarrow \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

- Matrix representation of arbitrary affine transformation

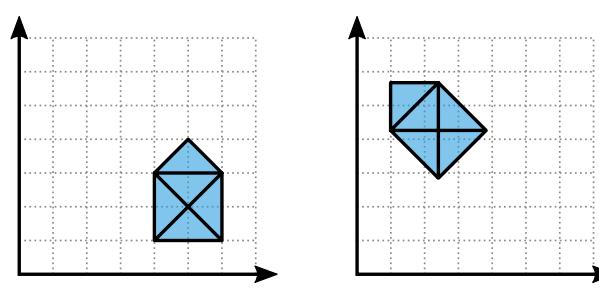
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix} \longleftrightarrow \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Matrix Representation



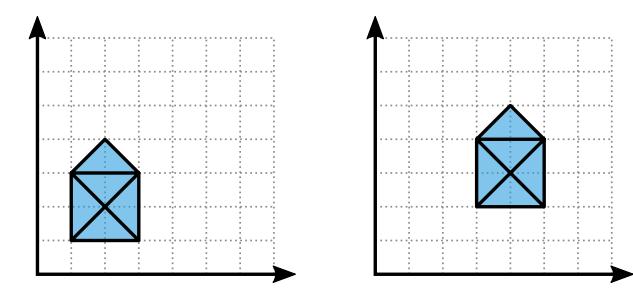
scaling

$$\begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



rotation

$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



translation

$$\begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$$

Columns of matrix are images of basis vectors!

Concatenation of Transformations

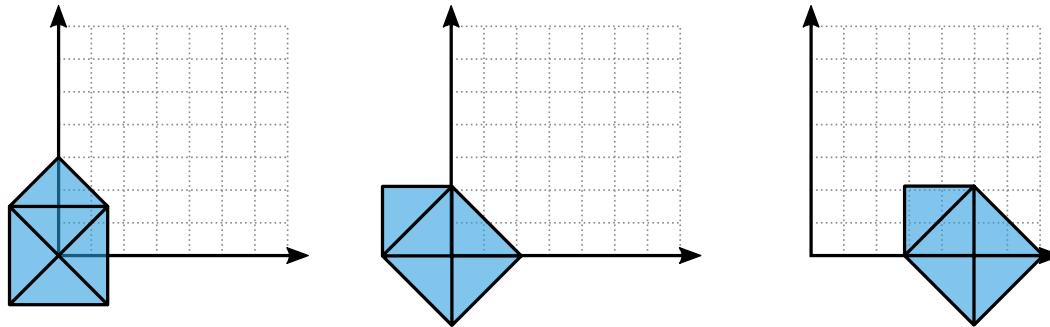
- Apply sequence of affine transformations $\mathbf{A}_1, \dots, \mathbf{A}_k$
- Concatenate transformations by matrix multiplication

$$A_k(\dots A_2(A_1(\mathbf{x}))) = \underbrace{\mathbf{A}_k \cdots \mathbf{A}_2 \cdot \mathbf{A}_1}_{\mathbf{M}} \cdot \mathbf{x}$$

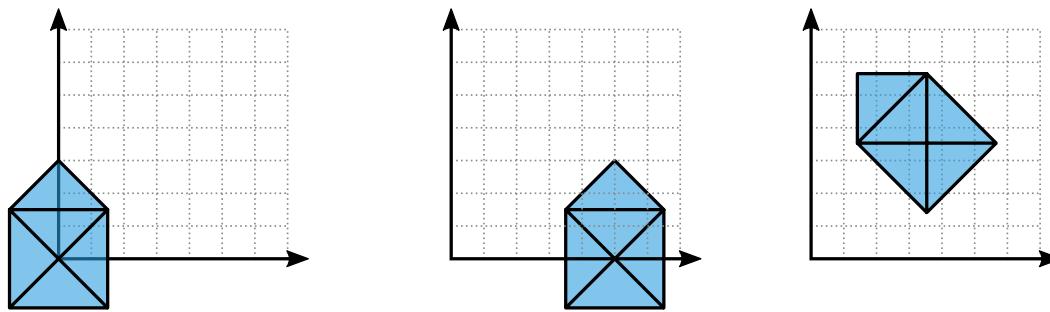
- Precompute matrix \mathbf{M} and apply it to all (=many!) object vertices.
Very important for performance!

Ordering of Matrix Multiplication

- First rotation, then translation

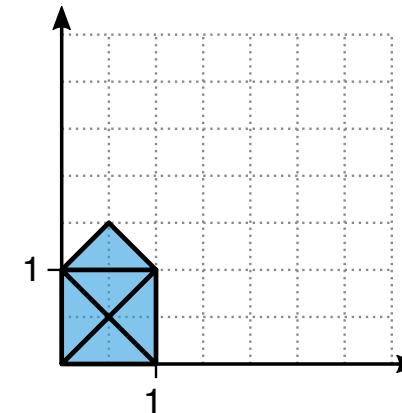
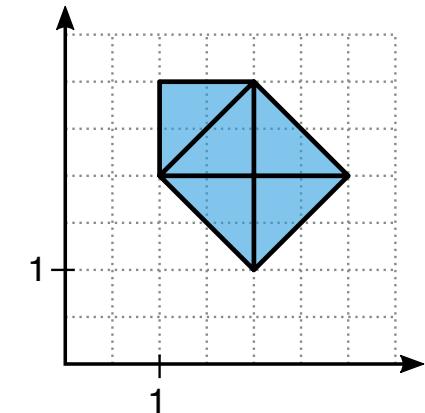


- First translation, then rotation



Quiz: Transformations

Which matrix computes the transformation on the right?



A: $\mathbf{T}(2, 1) \cdot \mathbf{S} \cdot \mathbf{R}$

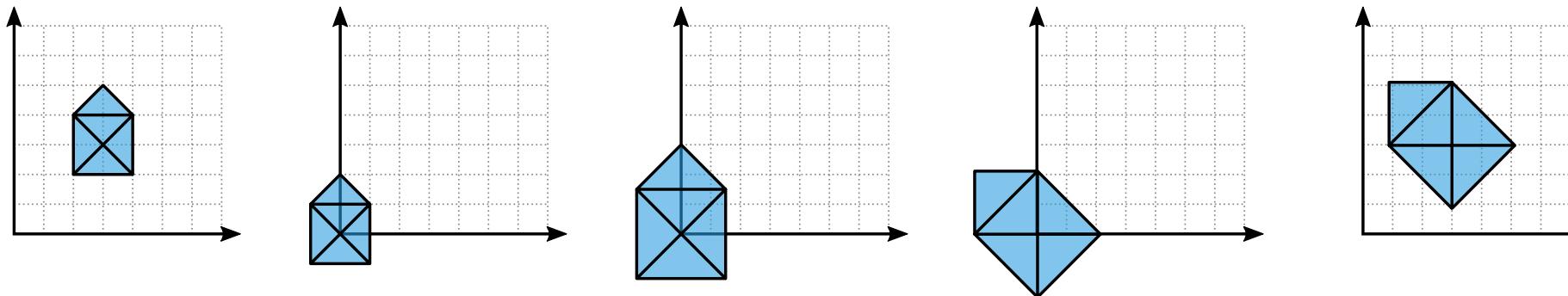
B: $\mathbf{T}(2, 2) \cdot \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{T}\left(-\frac{1}{2}, -\frac{1}{2}\right)$

C: $\mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}\left(\frac{3}{2}, \frac{3}{2}\right)$

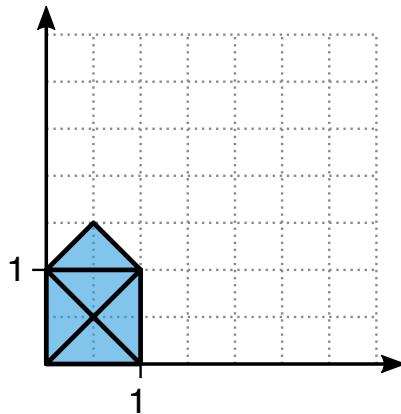
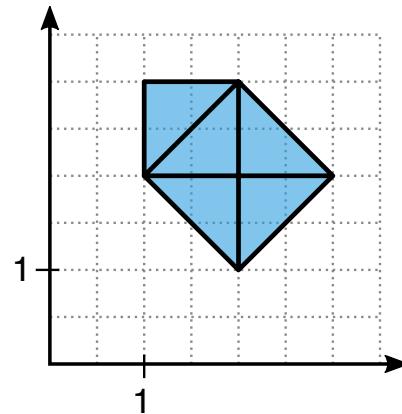
D: $\mathbf{T}\left(-\frac{1}{2}, -\frac{1}{2}\right) \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{T}(2, 2)$

How to rotate/scale around object center?

1. Translate center to origin
2. Scale object
3. Rotate object
4. Translate center back



Matrix Representation?



What are the images of basis vectors?

Important Questions

- What is preserved by affine transformations?
- What is preserved by orthogonal transformations?

Affine Transformations

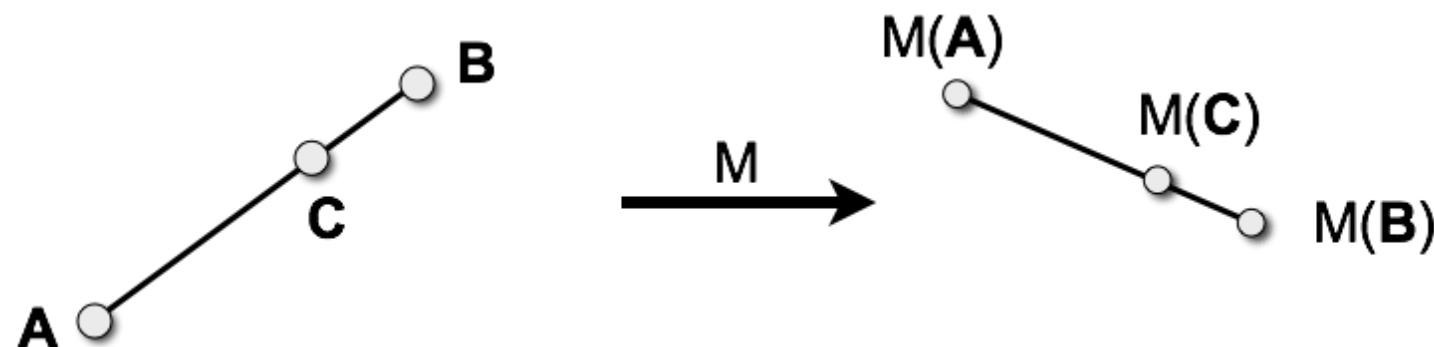
- Any point **C** on a line is an affine combination of its endpoints **A** and **B**:

$$(1 - \alpha)\mathbf{A} + \alpha\mathbf{B}$$

- Affine transformation **M** preserves affine combinations

$$\mathbf{M}((1 - \alpha)\mathbf{A} + \alpha\mathbf{B}) = (1 - \alpha)\mathbf{M}(\mathbf{A}) + \alpha\mathbf{M}(\mathbf{B})$$

- Straight lines stay straight lines



Orthogonal Transformations

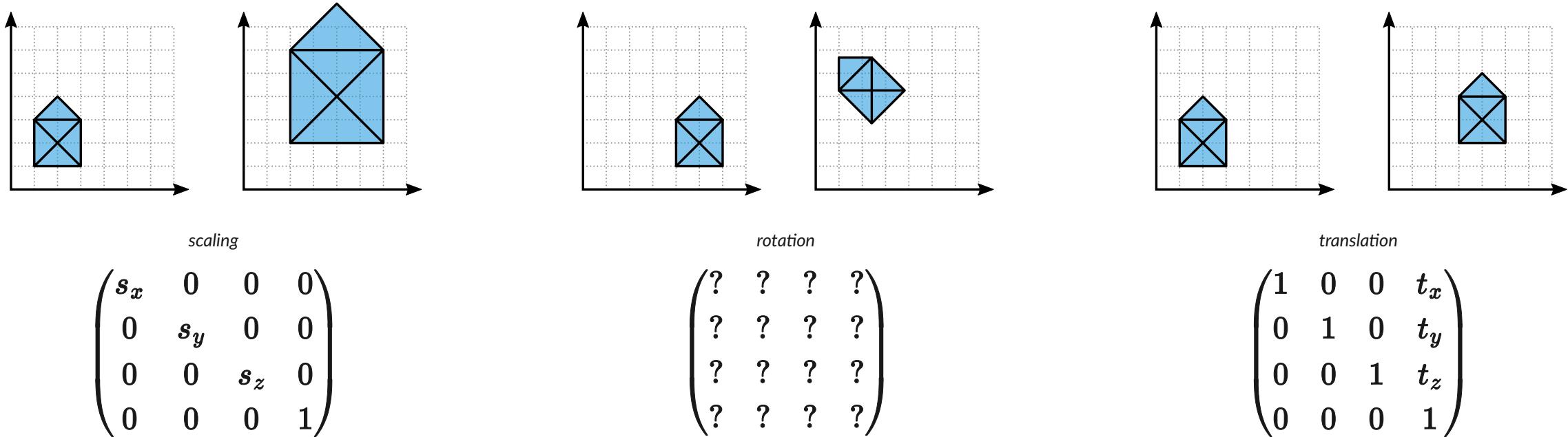
- A matrix \mathbf{M} is *orthogonal* iff...
 - ...its columns are orthonormal vectors
 - ...its rows are orthonormal vectors
 - ...its inverse is its transposed: $\mathbf{M}^{-1} = \mathbf{M}^T$
- Orthogonal matrices / mappings...
 - ...preserve angles and lengths
 - ...can only be rotations or reflections
 - ...have determinant +1 or -1

3D Transformations

- Use homogeneous coordinates (x, y, z, w) !
 - Points are represented by $(x, y, z, 1)^T$
 - Vectors are represented by $(x, y, z, 0)^T$
- Represent affine transformation by (4×4) matrices

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix} \quad \longleftrightarrow \quad \begin{pmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

3D Transformations



Rotation around x/y/z axes

$$\mathbf{R}_x(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

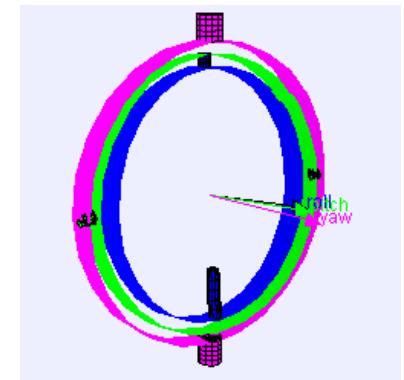
$$\mathbf{R}_y(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_z(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation around x/y/z axes

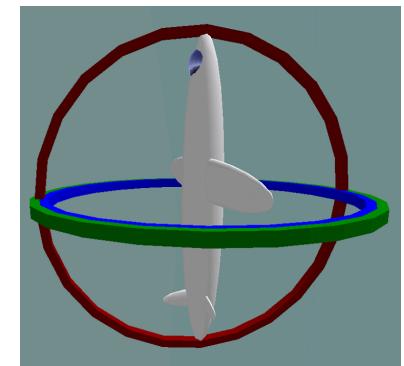
- Can we compose any 3D rotation from rotations around the axes \mathbf{R}_x , \mathbf{R}_y , \mathbf{R}_z ?

$$\mathbf{R}(\alpha, \beta, \gamma) \stackrel{?}{=} \mathbf{R}_x(\alpha) \cdot \mathbf{R}_y(\beta) \cdot \mathbf{R}_z(\gamma)$$



Euler angles

- This representation is called *Euler angles*
 - Often used in flight simulators: roll, pitch, yaw
 - Problem: *gimbal lock*!



Gimbal lock

Gimbal Lock

- Let's represent rotation in Euler angles

$$\mathbf{R}(\alpha, \beta, \gamma) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \beta & 0 & \sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 & 0 \\ \sin \gamma & \cos \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- What happens if we choose $\beta = 90^\circ$?

$$\mathbf{R}(\alpha, \pi/2, \gamma) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ \sin(\alpha + \gamma) & \cos(\alpha + \gamma) & 0 & 0 \\ -\cos(\alpha + \gamma) & \sin(\alpha + \gamma) & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- α and γ control the same rotation. Only one degree of freedom left!

3D Rotations: Rodrigues Formula

- Rotation by angle θ around (normalized) axis \mathbf{a}

$$\mathbf{R}(\mathbf{a}, \theta) = \mathbf{a}\mathbf{a}^T + \cos \theta (\mathbf{I} - \mathbf{a}\mathbf{a}^T) + \sin \theta \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix}$$

- Combining the matrices and writing $\mathbf{a} = (x, y, z)$, $c = \cos \theta$, and $s = \sin \theta$ gives

$$\mathbf{R}(\mathbf{a}, \theta) = \begin{pmatrix} x^2(1 - c) + c & xy(1 - c) - zs & xz(1 - c) + ys \\ yx(1 - c) + zs & y^2(1 - c) + c & yz(1 - c) - xs \\ xz(1 - c) - ys & yz(1 - c) + xs & z^2(1 - c) + c \end{pmatrix}$$

3D Rotations: Rodrigues Formula

$$\mathbf{R}(\mathbf{a}, \theta) = \mathbf{aa}^T + \cos \theta (\mathbf{I} - \mathbf{aa}^T) + \sin \theta \underbrace{\begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix}}_{=: \mathbf{A}}$$

- How to prove this magic formula?
- Matrix \mathbf{A} computes the cross-product $\mathbf{Ax} = \mathbf{a} \times \mathbf{x}$
- Assume orthonormal coordinate system $\mathbf{e}_1, \mathbf{e}_2, \mathbf{a}$

$$\mathbf{Ra} = \mathbf{a}$$

$$\mathbf{Re}_1 = \cos \theta \mathbf{e}_1 + \sin \theta \mathbf{e}_2$$

$$\mathbf{Re}_2 = -\sin \theta \mathbf{e}_1 + \cos \theta \mathbf{e}_2$$

Summary

- **Linear transformations**
 - Scaling, rotation
 - Can be represented by 3×3 matrices
- **Affine transformations**
 - Linear transformation + translation
 - Can be represented by 4×4 matrices with homogeneous coordinates
- **Represent all transformations by matrices**
 - Concatenate transformations by matrix multiplication
 - Huge performance benefit!

Literature

- Marschner & Shirley: *Fundamentals of Computer Graphics*, 5th Edition, AK Peters, 2021.
 - Chapter 7

