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Which transformations do we need?

Our solar system



2D Transformations

translation



https://www.3blue1brown.com/topics/linear-algebra

2D Translation

e Translate objectby t; inx andt,iny Ao Ao

()~ Gt ,

translation by (2,1)



2D Scaling

e Scale object by sz inx and s, iny Ao

(around the origin!)

)= () 4

scaling by (2, 2)




2D Rotation

e Rotate object by @ degrees (around the origin!)

rotation by 45 degrees



2D Rotation

e Rotate point (x,y) = (7 cos ¢, rsin ¢) by 6 degrees around T
the origin \

()~ (s

T COS (qb + 9)) ) (§>

r cos ¢ sin @ + rsin ¢ cos 6

cos@-xr —sinf -y
cosf-y+sinf-x

(7' COS ¢ cos ) — rsin ¢ sin 0) rotation by @ degrees

cos@ —siné T
sinf cosf J



2D Rotation

e Rotate object by 8 degrees (around the origin!)

x i cosf —sinb x
J sinff cosf J

rotation by 45 degrees



How to rotate/scale around object center?

1. Translate center to origin

2. Scale object
3. Rotate object

4. Translate center back

This can get quite messy!
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Important Questions

e How to efficiently combine several transformations?

Represent transformations as matrices!
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Matrix Representation

scaling rotation translation
s, O cos —sinf 77
= R(6) = T(t,,t,) =
S(sz, 8y) (O sy) () (sin@ cos 6 ) (2 ty) (? ?)

Which transformations can be written as matrices?




Linear Maps & Matrices

e Assume a linear transformation L: R™® — R"
o L(a+b) = L(a) + L(b)
o L(aa) = a L(a)

e Pointx = (x1,...,2,) can be written as

X =Ii1€e1 +xos€9+ ...+ €)Y
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Linear Maps & Matrices

e Exploit linearity of L: R" — R"
L(X) = L(:Elel + xo€o + ...+ :z:nen)

= I L(el) + T9 L(ez) + ...+ Ln L(en)
(1)

N Lx
\xn)

e Every linear transformation L: R™ — R" can be written as a unique (n x n) matrix LL
whose columns are the images of the basis vectors {e1,...,e,}.

VERY useful fact! § VERY-VERY useful!
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Linear vs. Affine Transformations

e Every linear transformation has to preserve the origin
o L0)=L-0=0

e Translation is not a linear mapping
© T(an) — (tw’ty)

e Translation is an affine transformation

o affine mapping = linear mapping + translation

()7 () () () =mere

But we REALLY want to represent translations as matrices!
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Homogeneous Coordinates

e Extend cartesian coordiantes (x,y) to homogeneous coordinates (z, y, w)

o Points are represented by (z,y,1)T

o Vectors are represented by (z,y,0)"

e Only homogeneous coordinates with w € {0,1} make sense

o vector + vector = vector
o point - point = vector
o point + vector = point

o point + point = ??

e Only affine combinations of points x; result in a point
O Ez o X, with Zz a; = 1
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Quiz: Transformations

Which matrix represents the 2D translation (a:) > (
Y

1 0 a a 0

A: |0 1 0 0

0 0 1 0 1

1 0 0 0 a

C: 1 0 0 b

b 1 0 1

T+ a
y+0b

)
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Homogeneous Coordinates

e Matrix representation of translations

1 0 ¢, T

T t,
(y)—l_(t) — 0 1 ¢t -]y
Y 0 0 1 1

e Matrix representation of arbitrary affine transformation

a b t, T

a b T t,
: + — c d t,| 1y

c d Y ty
0 0 1 1
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Matrix Representation

scaling rotation
s 0 O cosl —sinf O
0 s, O sinf cosf O
0 0 1 0 0 1

Columns of matrix are images of basis vectors!

0 t,
1 t,
0 1
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Concatenation of Transformations

e Apply sequence of affine transformations A1,..., A
e Concatenate transformations by matrix multiplication

Ak( . Ag(Al(X.))) = Ak . °A2 . A1 - X
M

e Precompute matrix M and apply it to all (=many!) object vertices.
Very important for performance!
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Ordering of Matrix Multiplication

e First rotation, then translation
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Quiz: Transformations

Which matrix computes the
transformation on the right?

[A: T(2,1)-S-R] [B: T(2,2)-S°R°T(—%a—%)]

[c: R-S-T(g,g)] [D: T(—%,—%)-R-S-T(z,Z)]
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How to rotate/scale around object center?

1. Translate center to origin
2. Scale object
3. Rotate object

4. Translate center back




Matrix Representation?

What are the images of basis vectors?
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Important Questions

e What is preserved by affine transformations?

e What is preserved by orthogonal transformations?
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Affine Transformations
e Any point C on a line is an affine combination of its endpoints A and B:
(1—a)A+aB

o Affine transformation M preserves affine combinations

M((1—-a)A+aB) = (1—a)M(A) + aM(B)

e Straight lines stay straight lines
5 M(A)
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Orthogonal Transformations

e A matrix M is orthogonal iff...

o ...its columns are orthonormal vectors
o ...its rows are orthonormal vectors

o ..its inverse is its transposed: M1 = MT

e Orthogonal matrices / mappings...

o ...preserve angles and lengths
o ...can only be rotations or reflections

o ...have determinant +1 or -1
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3D Transformations

e Use homogeneous coordinates (, y, 2, w)!
o Points are represented by (z,y, 2,1)7

o Vectors are represented by (z,y, 2,0)"

e Represent affine transformation by (4 x 4) matrices

C T iy (a ¢ to (w\

b

e [ t,] |y
g h 1 t,||=

0

VoA 0 00 1/ \1)

<
<
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a b
d e
g h
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Rotation around x/y/z axes

1 0 0 0
0 cos@ —sinf O

R.(0) =
() 0 sinf@ cos@ O
0 0 0 1
cos@ 0 sinf O
0 1 0 0

R,(0) =
y( ) —sinf® 0 cos@ O
0 0 0 1
cos@ —sinf 0 O
sin@ cosf@ 0 O
R0 = 0 1 0
0 0 0 1



Rotation around x/y/z axes

e Can we compose any 3D rotation from rotations around
the axes Rz, Ry, R,?

R(a,8,7) = Ra(a)-Ry(f) - Ra(7)

e This representation is called Euler angles

o Often used in flight simulators: roll, pitch, yaw

o Problem: gimbal lock!

Images from Wikipedia

Euler angles

Gimbal lock

o
==
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Gimbal Lock

o Let’s represent rotation in Euler angles

1 0 0 0 cosf 0 sing 0 COS Y
0 cosaa —sina 0 0 1 0O 0 sin 7y
R = :
(o 5,7) 0 sina cosa O —sinf 0 cosfB O 0
0 O 0 1 0 0 0 1 0
e What happens if we choose g = 90°?
0 0 1 0
R(a,7/2,7) — sin(a + ) Cf)S(Oé +v9) 0 0
—cos(a+v) sin(a+v) 0 0
0 0 0 1

o « and 7y control the same rotation. Only one degree of freedom left!

— sin 7y
COS Y
0
0

o = O O

= O O O
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3D Rotations: Rodrigues Formula

e Rotation by angle @ around (normalized) axis a

0 —a, Qy
R(a,f) = aa' +cosf(I—aa') +sind | a, 0 —a,
—ay, G 0

e Combining the matrices and writing a = (z, y, 2), ¢ = cos 8, and s = sin 6 gives
z2(1—c)+c =zy(l—c)—zs zz(l—c)+ys
R(a,0) = |yz(1—c)+2zs 4’ (1—c)+c yz(l—c)—=zs
rz(l—c)—ys yz(l—c)+zs 2%(1—c)+c
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3D Rotations: Rodrigues Formula

R(a,f) = aa' +cosf(I—aa') +sind

e How to prove this magic formula?

e Matrix A computes the cross-product Ax = a X x

e Assume orthonormal coordinate system e, ez, a
Ra =a

Re1
Re2

cosfe; +sinf ey
—sinfeq + cosfe,

=: A
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Summary

¢ Linear transformations

o Scaling, rotation

o Can be represented by 3 X 3 matrices

e Affine transformations

o Linear transformation + translation

o Can be represented by 4 x 4 matrices with homogeneous coordinates

e Represent all transformations by matrices

o Concatenate transformations by matrix multiplication

o Huge performance benefit!
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Edition, AK Peters, 2021.
o Chapter 7
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