Computer Graphics

Lighting - Global

Mark Pauly

Geometric Computing Laboratory

Lighting Computations

+diffuse +specular

Shadows

e Send shadow ray from intersection point x to light source position x;.

o Set shadow(x, xl)Jto 0 if an occluding object is found and to 1 otherwise.

e Discard diffuse and specular contribution if light is blocked by another object.

I = I,m,—+ ZII -Ehadow(:x:, x@- (mg (- 1;) + ms(r; - V)s)
l

R oy

vAg
R X1

Point in light: ambient + diffuse + specular Point in shadow: ambient lightin

Shadows

e Send shadow ray from intersection point x to light source position x;.

o Set shadow(x, x;) to O if an occluding object is found and to 1 otherwise.

e Discard diffuse and specular contribution if light is blocked by another object.

we want this but we get this

Shadows

e Floating point errors might lead to erroneous self-shadowing (shadow acne).

e Discard intersection points of the shadow ray that are too close to the ray origin (the
point x on the sphere that we want to test).

exact computation precision problems

Lighting Computations

+specular

+shadows

Ray Tracing Operators

[Ray Generation

l

[Ray Intersection]

l

[Lighting

Recursive Ray Tracing

e Phong lighting models local illumination. Now we add global illumination effects.

e At each intersection point, we reflect and/or refract the incoming viewing ray at the
surface normal and trace the child rays recursively.

Recursive Ray Tracing

e Phong lighting models local illumination. Now we add global illumination effects.

e At each intersection point, we reflect and/or refract the incoming viewing ray at the
surface normal and trace the child rays recursively.

An

0 9\ Wout Win

Wout = (I — 2nnT)wiIl ni1sinf; = nysinf,

Snell’s law with refraction
indices n, no.

Recursive Ray Tracing

e Phong lighting models local illumination. Now we add global illumination effects.

e At each intersection point, we reflect and/or refract the incoming viewing ray at the
surface normal and trace the child rays recursively.

e The final color is interpolated (mixed) between local Phong illumination, reflection, and
refraction. The weighting of these contributions depends on material properties.

—a

10

Lighting Computations

+specular

+shadows +reflections

11

Quiz: Diffuse Lighting

What is the diffuse component of Phong lighting?

[A: Ilkd(I'-V)] [B: Ilkd(n~>< I)J G An

E[C: Ilkd(n-l)] {D: Iikg(r X V)J [} N

™

12

Quiz: Specular Lighting

Which image matches the material listed in the bottom row?

ambient diffuse specular shininess

0.3 0.0 0 0
0.3 0.6 0 0
0.3 0.6 1 20
0.3 0.6 1 200

13

Ray Tracing Pipeline

e Now you know about ray generation, ray intersection, lighting computations, and
recursive ray tracing.

e That’s all you need to implement your first ray tracer!

[Ray Generation]4— '

\ \
[Ray Intelrsection] 4 Eiii
[Lighting]— y &5

14

Is it difficult to code?

typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{
vec cen,color;double rad,kd,ks,kt,kl,ir}*s, *best,sphl 1={0.,6.,.5,1.,1.,1.,.9,
.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,
1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,
1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqgrt(),tan();double vdot(A,B)vec A
,B;{return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a*
A.x;B.yt=a*A.y;B.z+=a*A.z;return B;}vec vunit(A)vec A;{return vcomb(l./sqgrt(
vdot(A,A)),A,black); }struct sphere*intersect(P,D)vec P,D;{best=0;tmin=1e30;s=
sph+5;while(s-->sph)b=vdot (D,U=vcomb(-1.,P,s->cen)) ,u=b*b-vdot(U,U)+s->rad*s

->rad,u=u>0?sqrt(u):1le3l,u=b-u>le-7?b-u:b+u, tmin=u>=le-7&&u<tmin?best=s,u:
tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere*s,*1l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen
)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=1
->kl*vdot (N, U=vunit(vcomb(-1.,P,1->cen))))>0&&intersect(P,U)==1)color=vcomb (e
,1->color,color) ;U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=l-eta*
eta*(1l-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-sqgrt
(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd,
color,vcomb(s->k1l,U,black))));}main() {printf("%d 2d\n",32,32);while(yx<32%*32)
U.x=yx%32-32/2,U.2=32/2-yx++/32,U.y=32/2/tan(25/114.5915590261) ,U=vcomb(255.,
trace(3,black,vunit(U)),black),printf("%.0f %.0f %.0£f\n",U);}/*minray!*/

X

Paul Heckbert’s Minimal Ray Tracer

15

Literature

e Marschner & Shirley: Fundamentals of Computer Graphics, 5th
Edition, AK Peters, 2021.
o Chapter 4

e Glassner: An Introduction to Ray Tracing, Academic Press, 1989.
o Chapters 2,7

16

http://www.realtimerendering.com/raytracing/An-Introduction-to-Ray-Tracing-The-Morgan-Kaufmann-Series-in-Computer-Graphics-.pdf

Photorealistic Rendering

The Quest for Realism

standard ray tracing +soft shadows

© Henrik Wann Jensen

+caustics +indirect lighting

18

E = eye point
L = light source
D = diffuse reflection

S = specular reflection

Light Paths

() e (3

LSDE
LSE

LE

: LDE
D

LDDE

A
A\VERY
fg%kf
L

19

Types of Reflections

'\u\ I'r.ul'

/
N

D: diffuse S: specular

H. Lensch, “Efficient Image-Based Appearance Acquisition of Real-World Objects”, PhD thesis, 2004

20

Quiz: Light Paths

e Which light paths can a standard recursive ray-tracer handle?

e Notation:

o -+ = one or more occurrences {A: ED*L] [B; E[(D|G|S)*(D|G)]

© % = Z€ero or more occurrences

N

L

o () = grouping

o | =or [c: E(D|G)[S*]LJ [D: E[S*|(D|G)L

~\

J

21

Recursive Ray Tracing

Which light paths can a standard recursive ray-tracer handle?
Only E[S*|(D|G)L

No multiple diffuse inter-reflections
o Eg. EDDL

No caustics
o E.g. EDSL

22

