

Computer Graphics

Lighting - Local

Mark Pauly

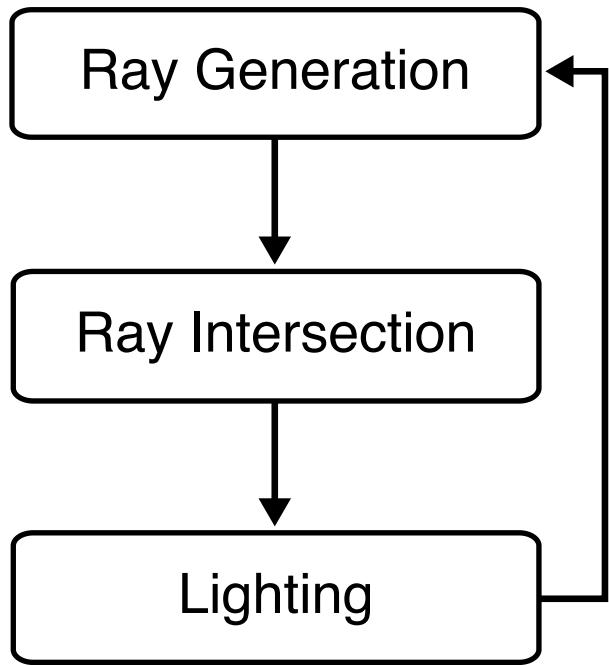
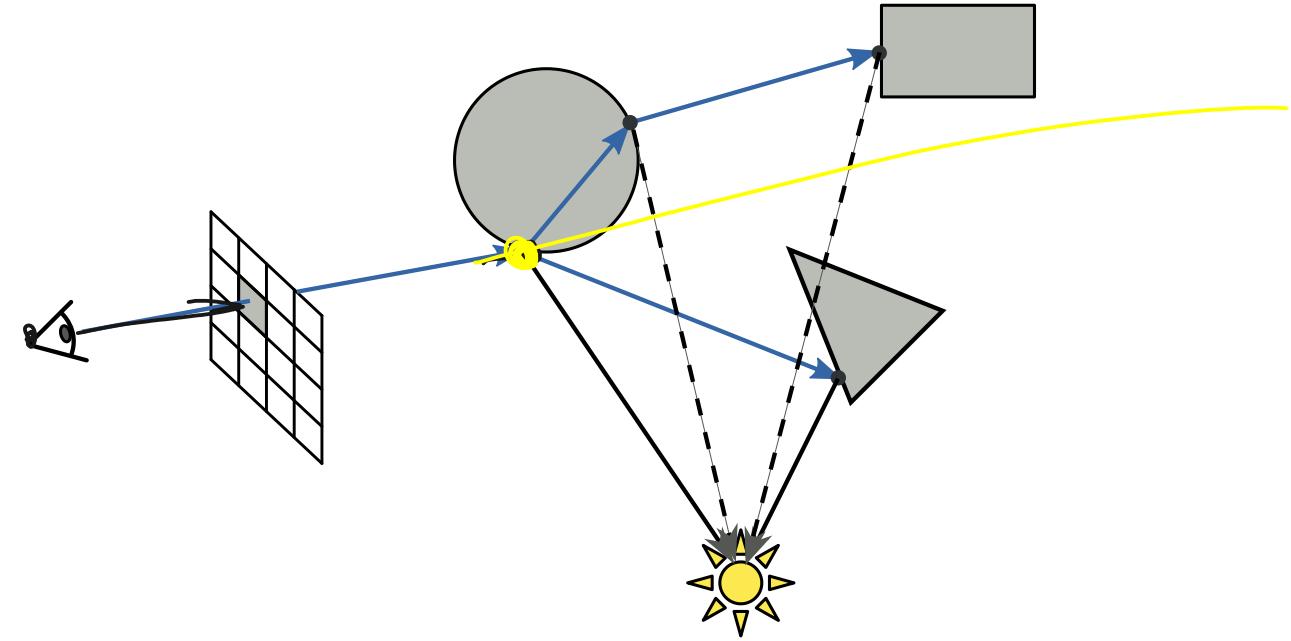
Geometric Computing Laboratory

And the Oscar goes to ...

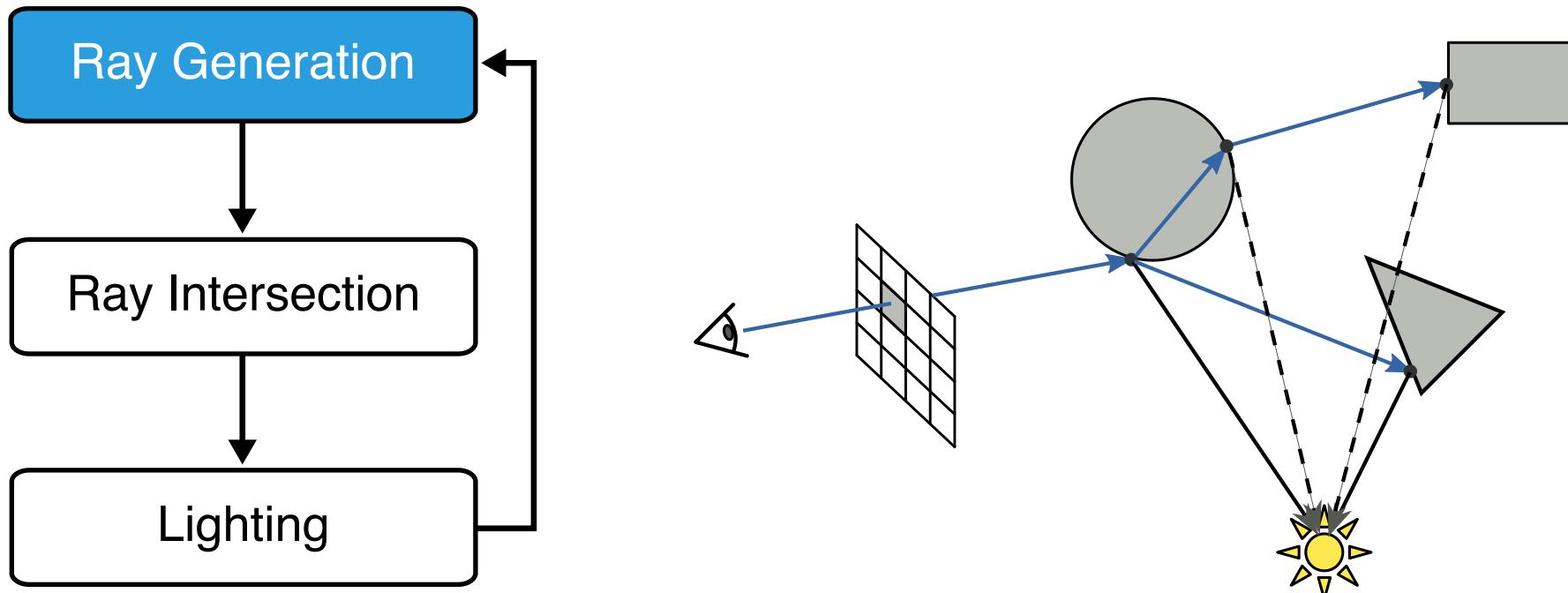
Blender!

Source: The Guardian

Ray Tracing Operators



Ray Tracing Operators

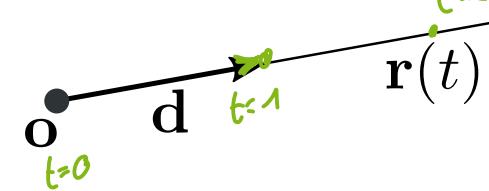


Ray Equation

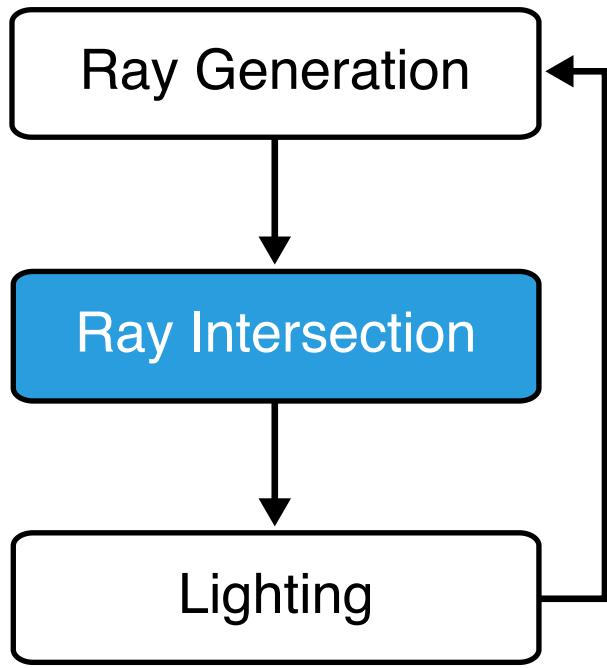
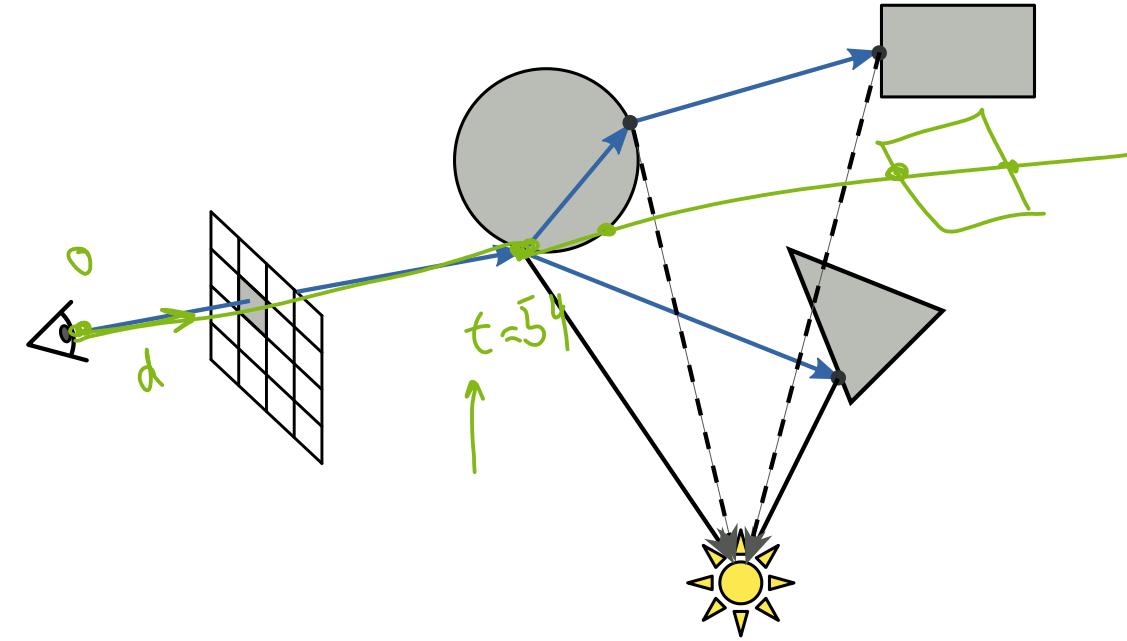
Explicit equation for ray $\mathbf{r}(t)$ starting at origin \mathbf{o} and going in (normalized) direction \mathbf{d} :

$$\mathbf{r}(t) = \mathbf{o} + t \mathbf{d}$$

$$t \in [0, \infty]$$



Ray Tracing Operators



Ray-Sphere Intersection

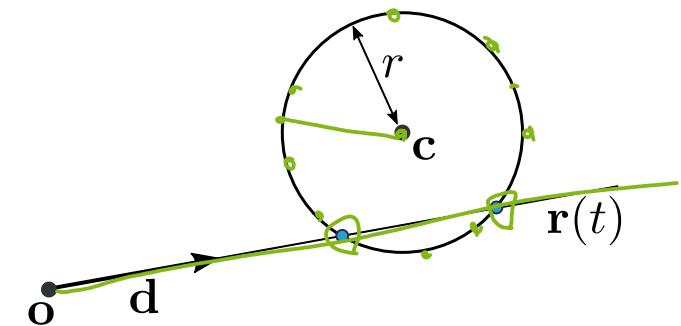
- Let us use the *implicit* representation of a sphere with center \mathbf{c} and radius r :

$$\left[\|\mathbf{x} - \mathbf{c}\| - r \right] - r = 0$$

- Insert *explicit* ray equation into *implicit* sphere equation:

$$\left[\|\mathbf{o} + t\mathbf{d} - \mathbf{c}\| - r \right] - r = 0$$

and solve for t .



Ray-Plane Equation

- Implicit equation for a plane with normal \mathbf{n} centered at point \mathbf{c} :

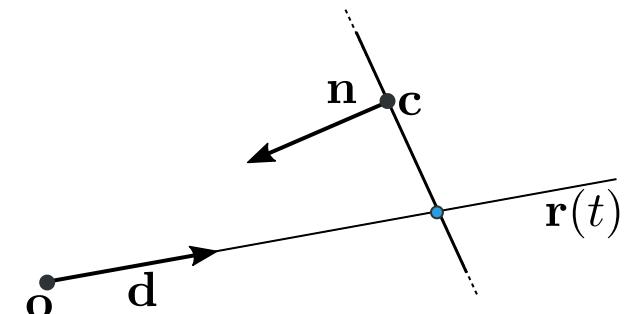
$$\mathbf{n}^T (\mathbf{x} - \mathbf{c}) = 0$$

- Or use plane distance from origin $d = \mathbf{n}^T \mathbf{c}$:

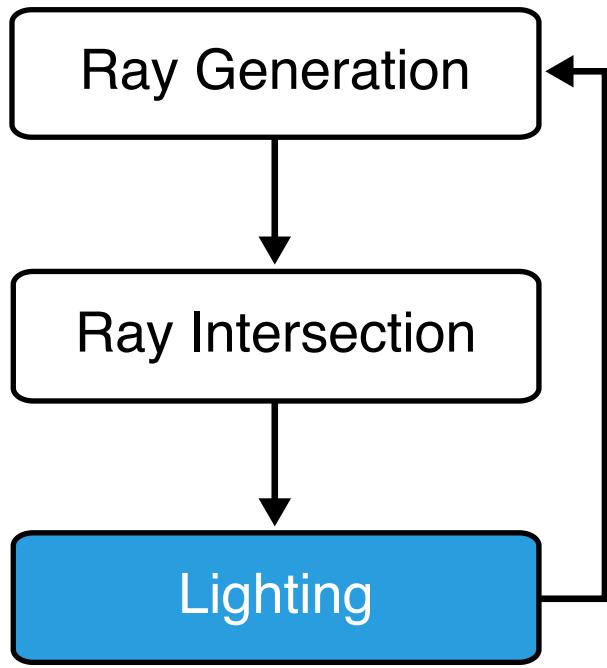
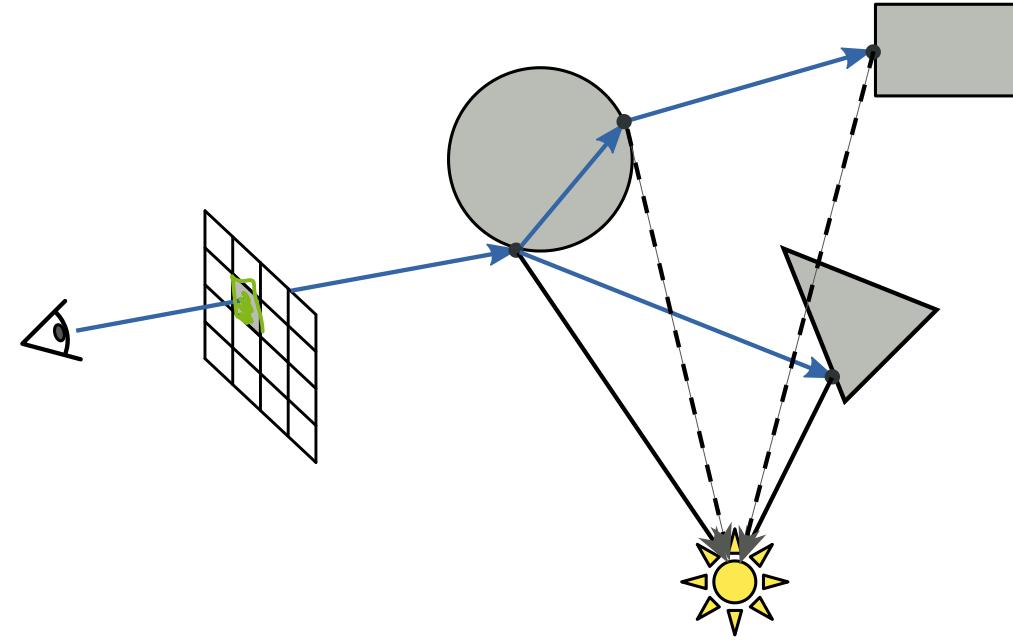
$$\mathbf{n}^T \mathbf{x} - d = 0$$

- Insert *explicit* ray equation into *implicit* plane equation and solve for t :

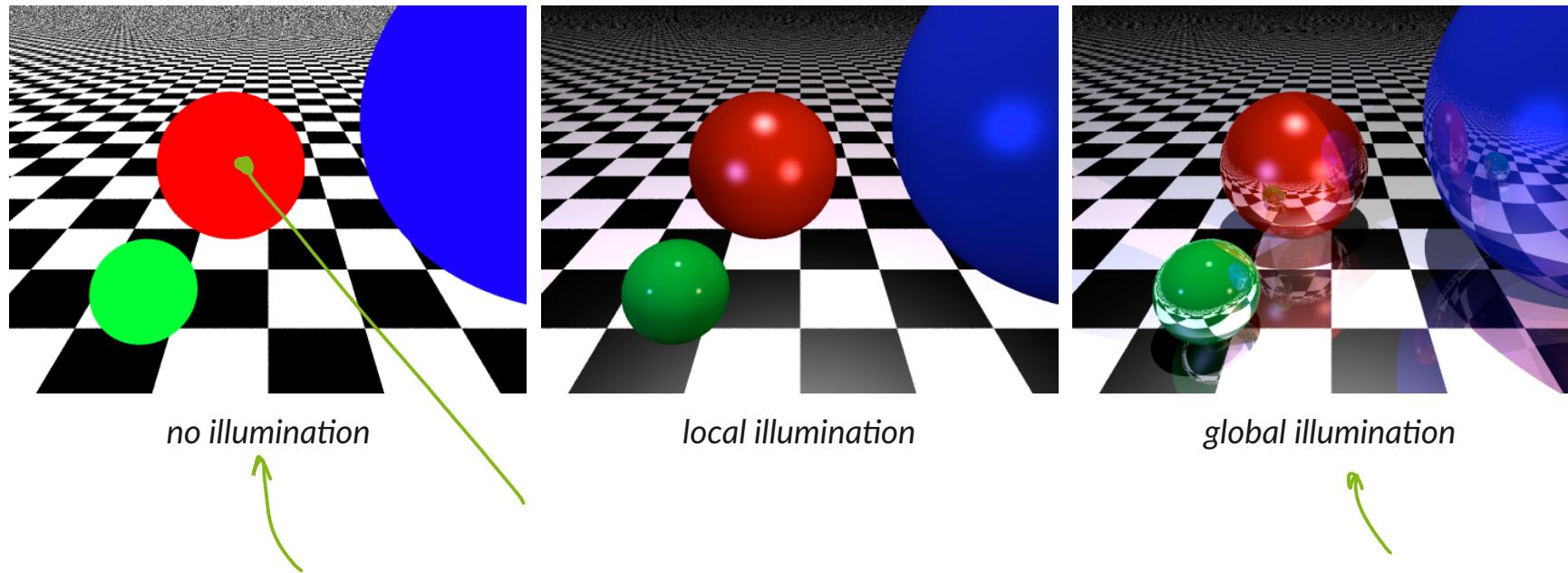
$$\mathbf{n}^T (\mathbf{o} + t \mathbf{d}) - d = 0$$



Ray Tracing Operators

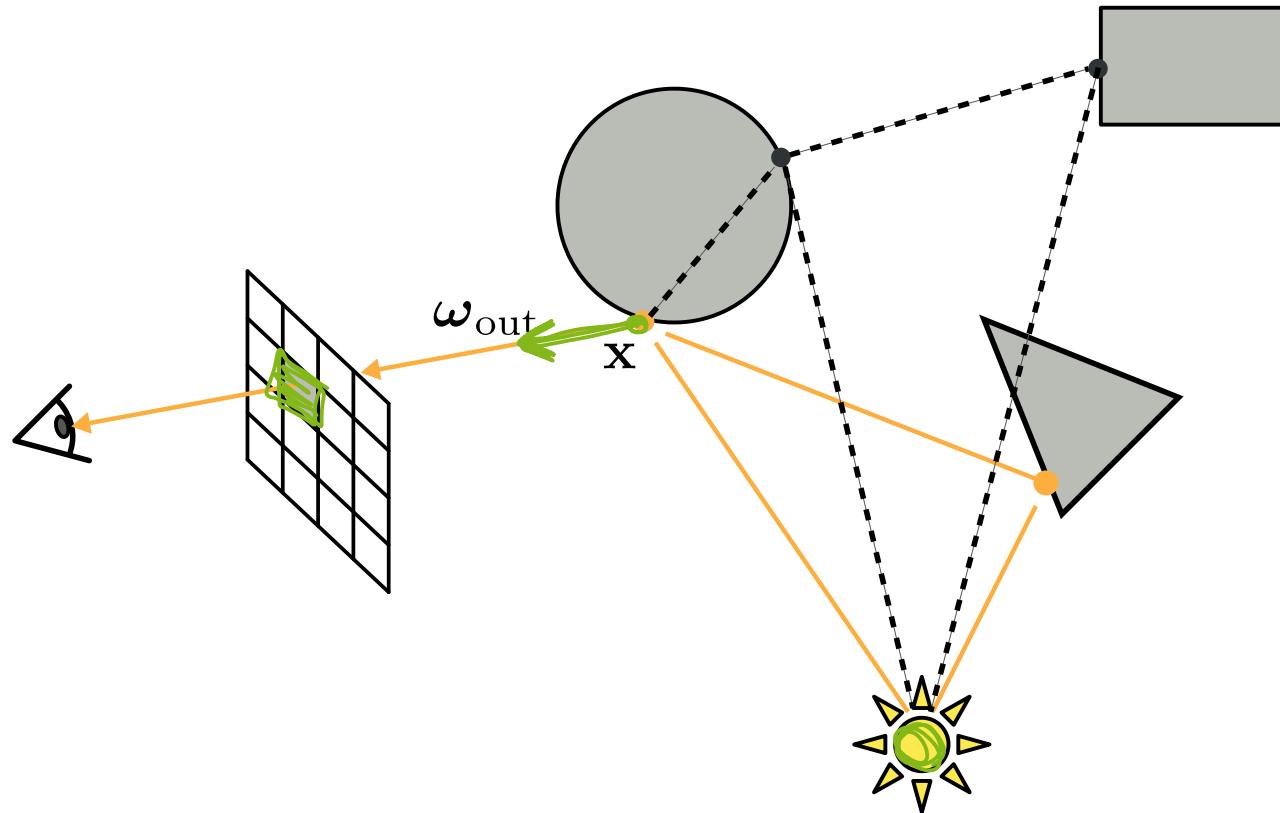


Lighting is important!



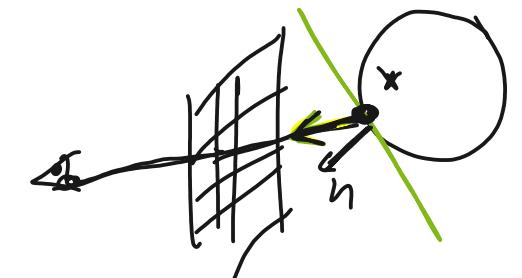
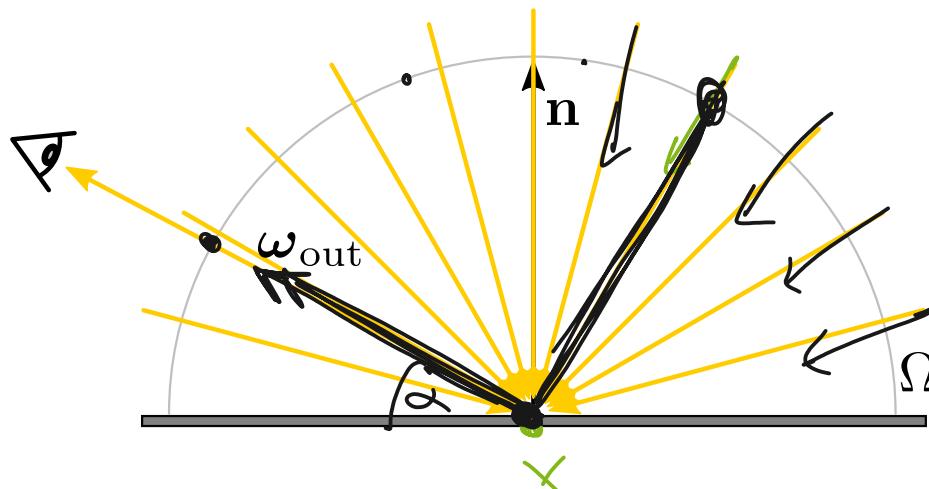
Surface Reflectance

- How much light is leaving point \mathbf{x} in direction ω_{out} ?



Surface Reflectance

- How much light is leaving point \mathbf{x} in direction ω_{out} ?

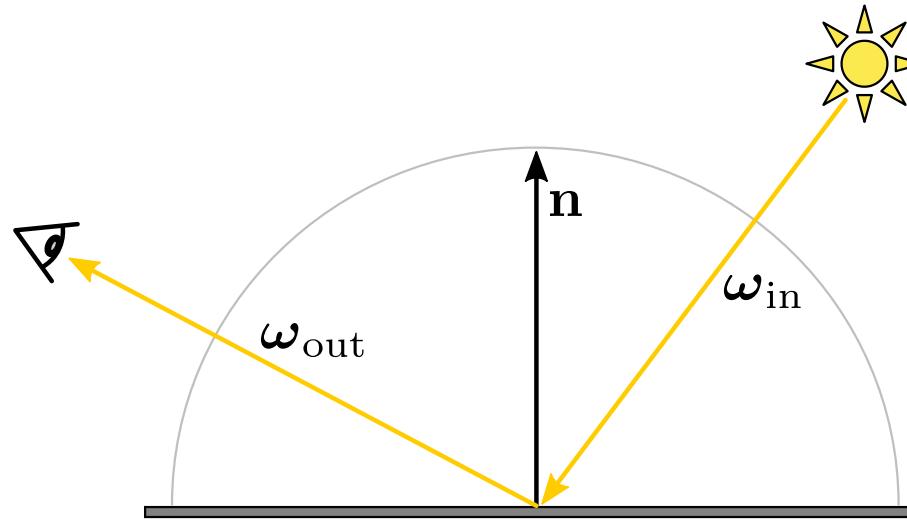


- Collect incoming light L_{in} from all directions $\omega_{\text{in}} \in \Omega$

$$\underline{L}_{\text{out}}(\omega_{\text{out}}) = \int_{\Omega} f(\omega_{\text{in}}, \omega_{\text{out}}) L_{\text{in}}(\omega_{\text{in}}) \cos(\theta_{\text{in}}) d\omega_{\text{in}}$$

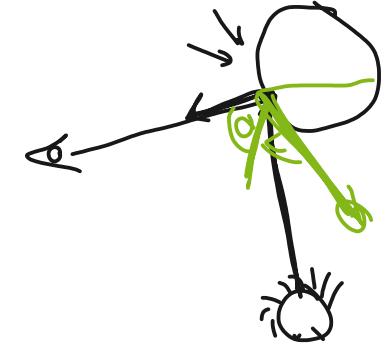
Bidirectional Reflectance Distribution Function

- How much light coming in from direction ω_{in} is reflected out in direction ω_{out} ?



- Determined by the object's *BRDF* $f(\omega_{\text{in}}, \omega_{\text{out}})$
 - Bidirectional Reflectance Distribution Function
 - General description of an object's material

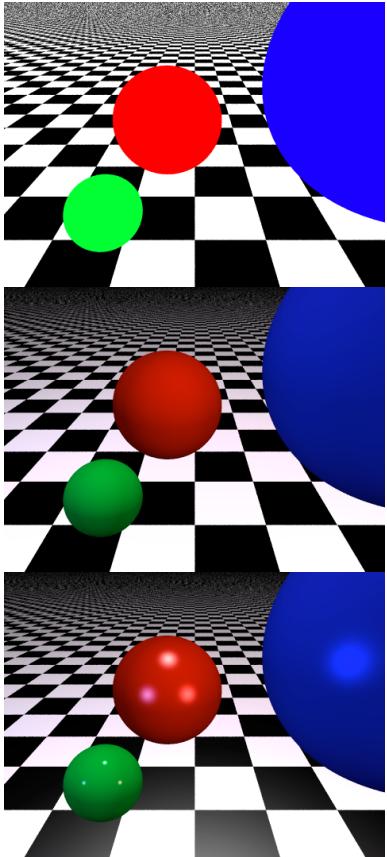
Ray Tracing Approximations



$$L_{\text{out}}(\omega_{\text{out}}) = \int_{\Omega} f(\omega_{\text{in}}, \omega_{\text{out}}) L_{\text{in}}(\omega_{\text{in}}) \cos(\theta_{\text{in}}) d\omega_{\text{in}}$$

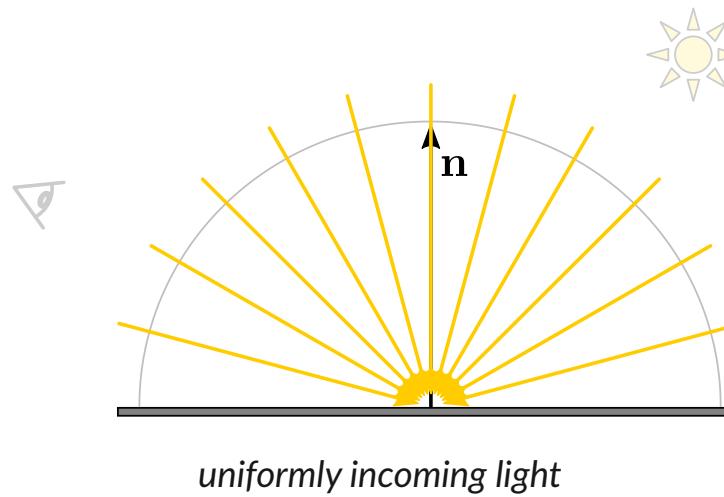
- **Ray Tracing** approximates integral by three directions
 - directions toward light sources, directions of perfect reflection and perfect refraction
- **Phong Lighting** approximates BRDF by three components
 - ambient light, diffuse reflection, specular reflection
 - *Phong Lighting handles direct, local illumination only.*

Phong Lighting Model

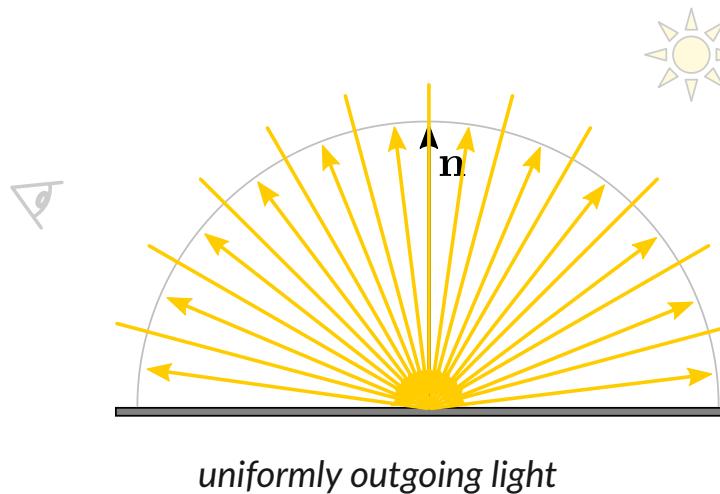


- **Ambient lighting**
 - approximate global light transport / exchange
 - uniform in, uniform out
- **Diffuse lighting**
 - dull / mat surfaces
 - directed in, uniform out
- **Specular lighting**
 - shiny surfaces
 - directed in, directed out

Ambient Light



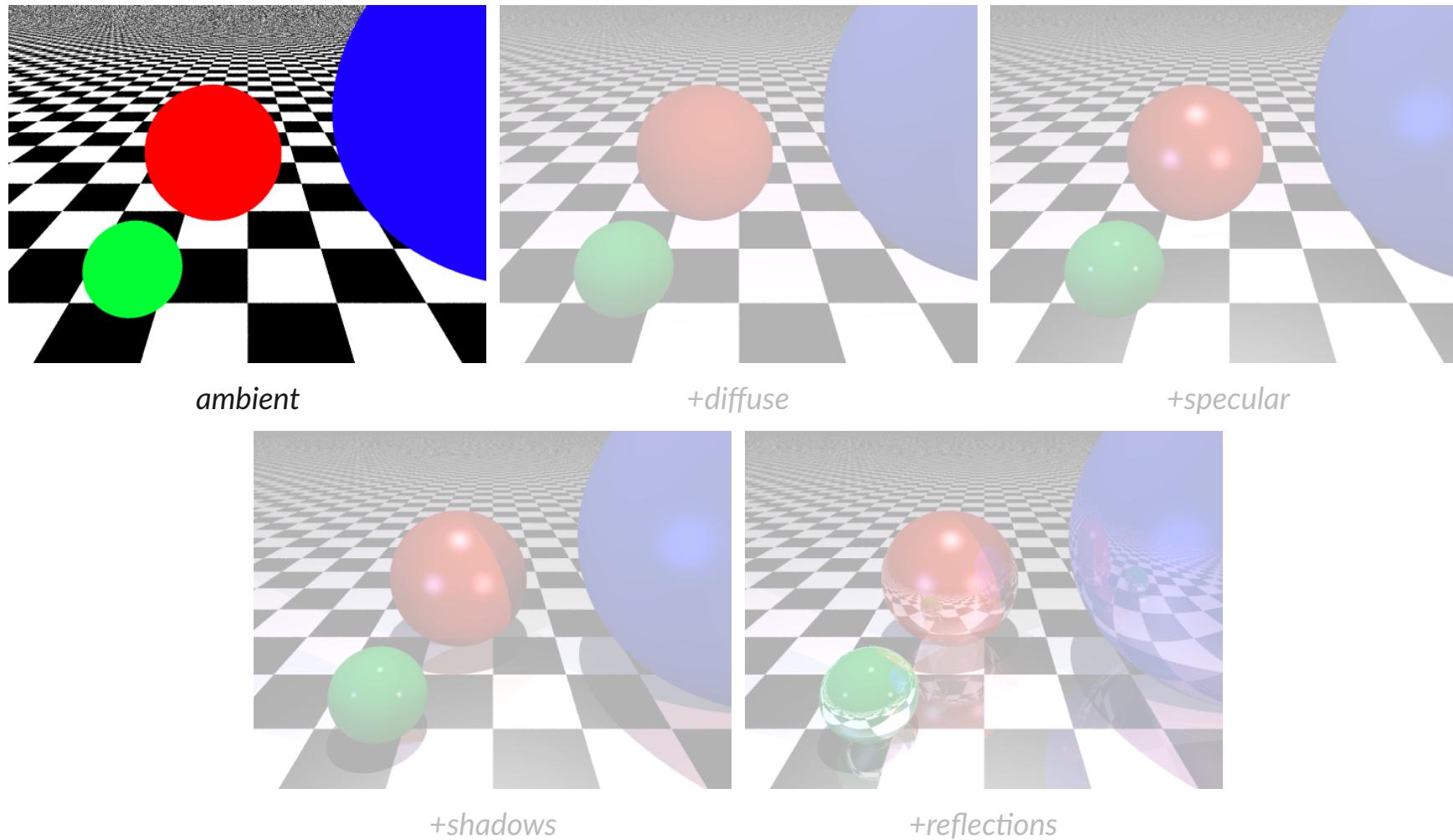
Ambient Light



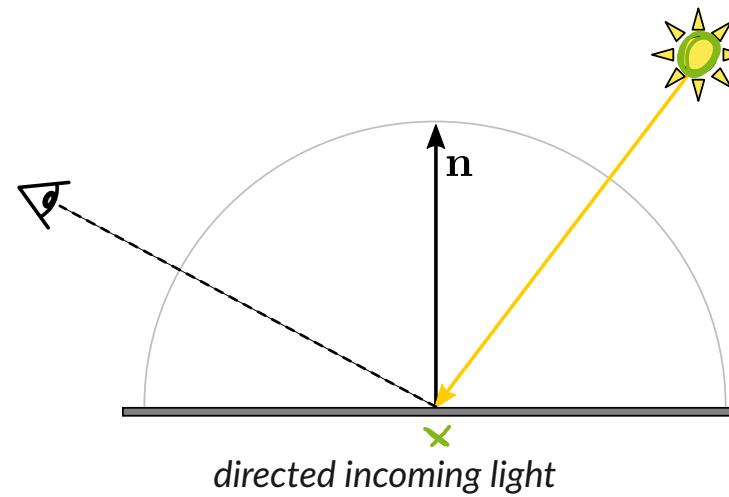
$$\underline{I} = \underline{I}_a \underline{m}_a$$

- I_a : ambient light intensity in the scene
- m_a : material's ambient reflection coefficient

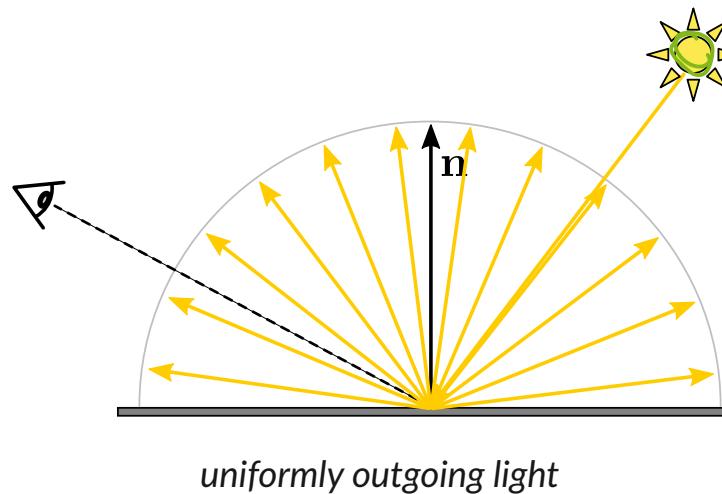
Lighting Computations



Diffuse Reflection

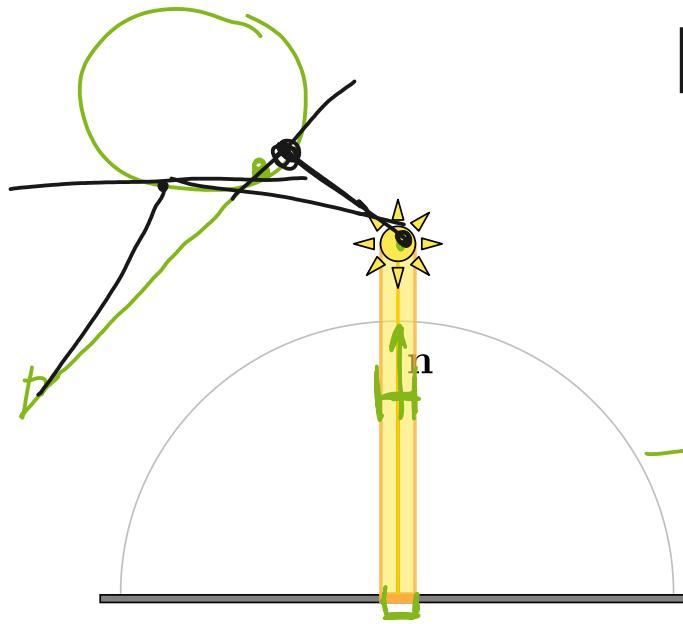
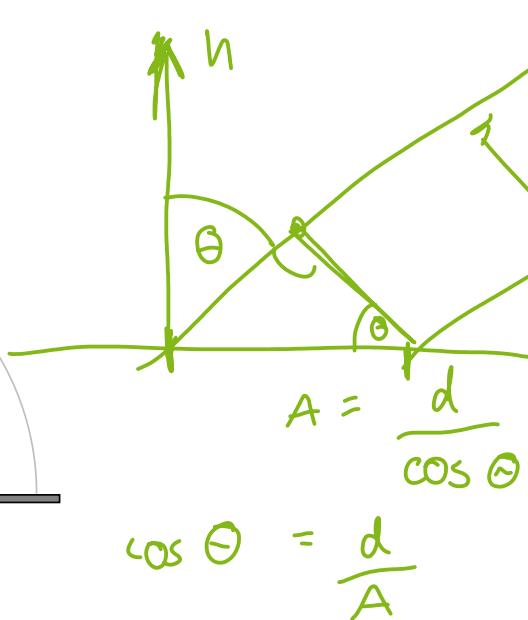


Diffuse Reflection



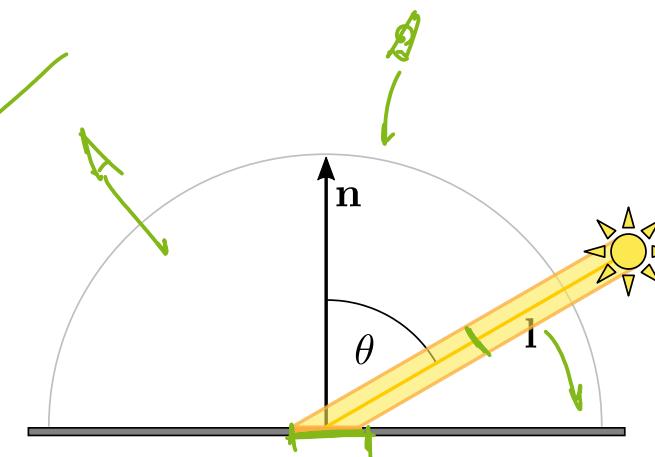
Brightness depends on how much light (density) comes in!

Diffuse Reflection



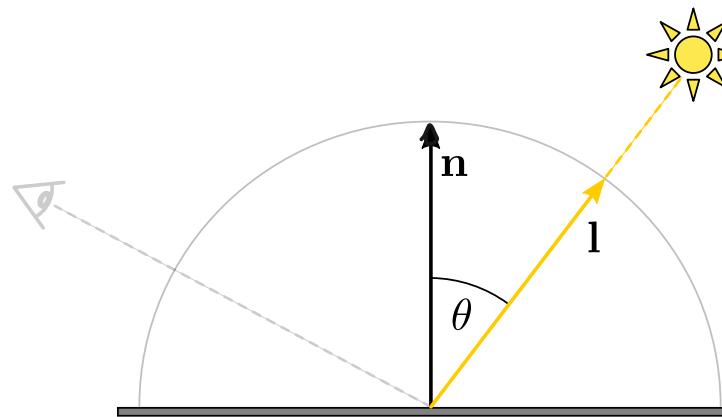
$$A = \frac{d}{\cos \theta}$$

$$\cos \theta = \frac{d}{A}$$



- Intensity inversely proportional to illuminated area
- Illuminated area inversely proportional to $\cos(\theta)$
- Therefore intensity proportional to $\cos(\theta)$
- So-called *Lambertian reflection*

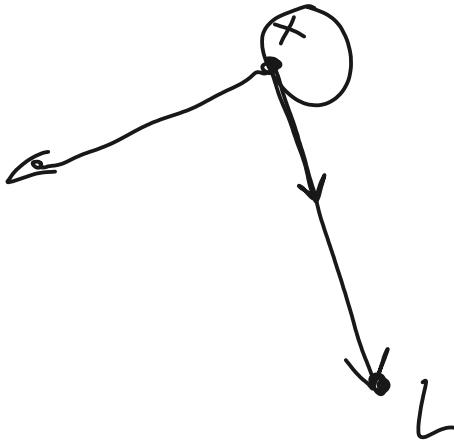
Diffuse Reflection



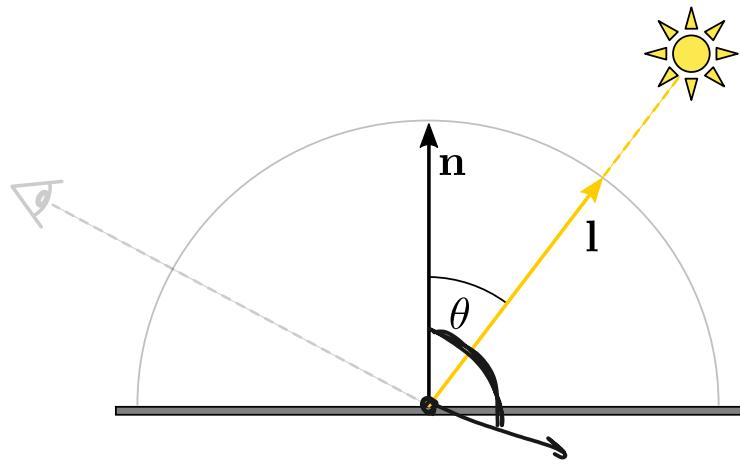
$$I = \underbrace{I_l m_d}_{\text{underbrace}} \cos \theta$$

- I_l : intensity of light source l
- m_d : material's diffuse reflection coefficient

How can we compute $\cos \theta$ efficiently?



Diffuse Reflection

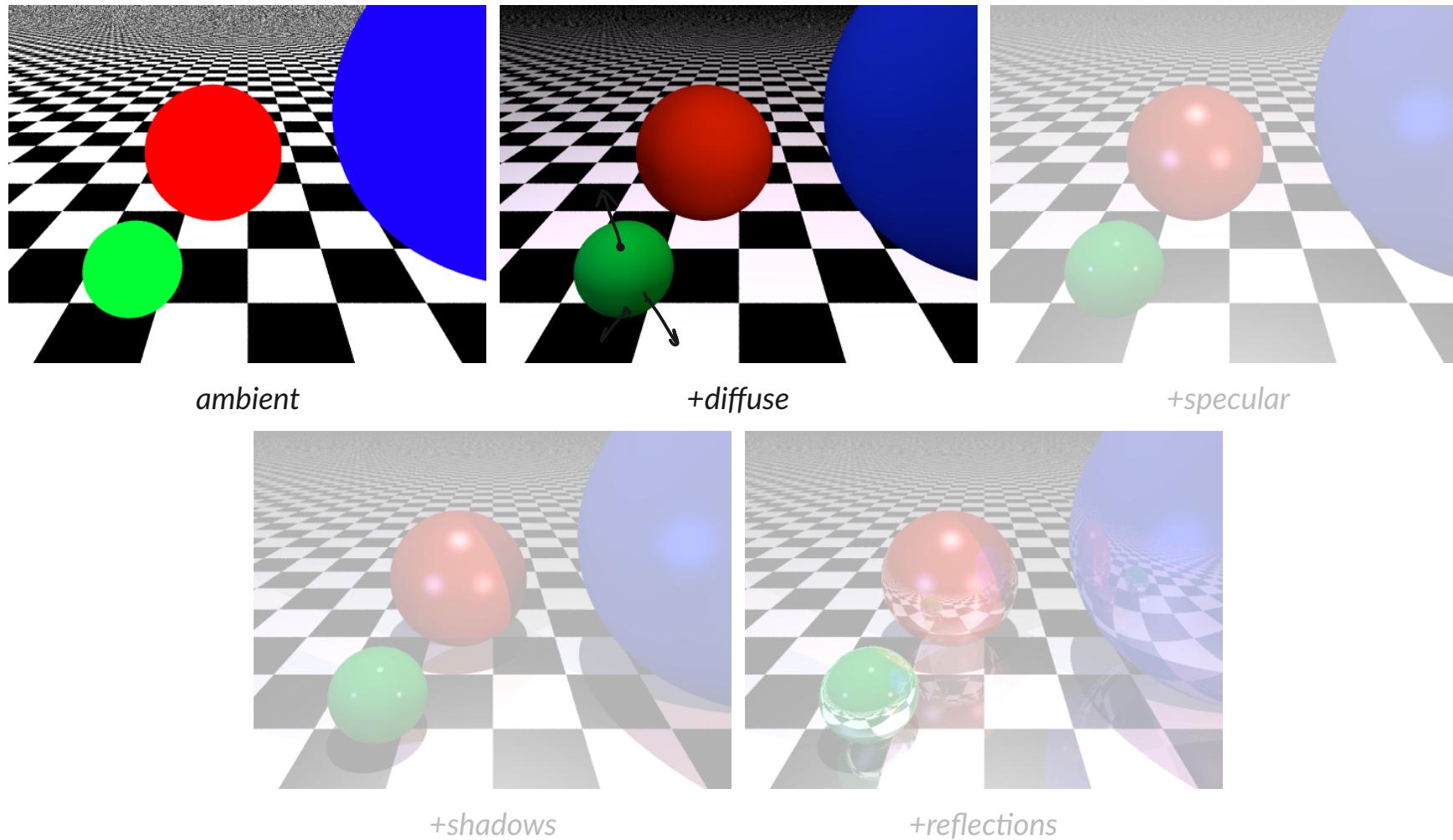


$$I = I_l m_d \cos \theta = I_l m_d (\mathbf{n} \cdot \mathbf{l})$$

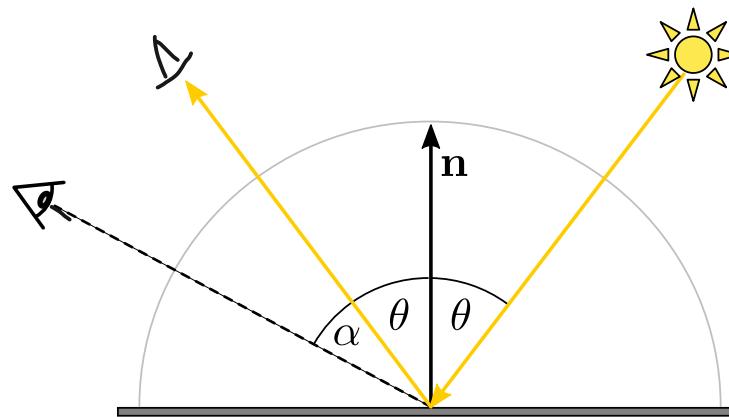
- I_l : intensity of light source l
- m_d : material's diffuse reflection coefficient
- directions \mathbf{n} and \mathbf{l} assumed to be normalized
- no illumination if $\mathbf{n} \cdot \mathbf{l} < 0$ (why?)

$$\cos \theta = \frac{\mathbf{n} \cdot \mathbf{l}}{\|\mathbf{n}\| \|\mathbf{l}\|}$$

Lighting Computations

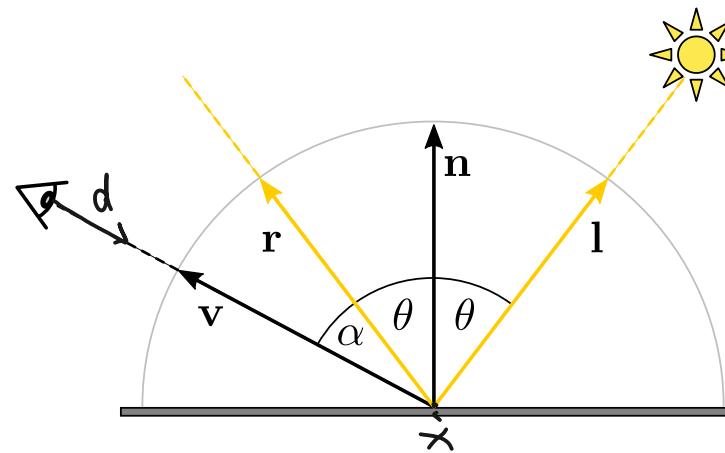


Specular Reflection

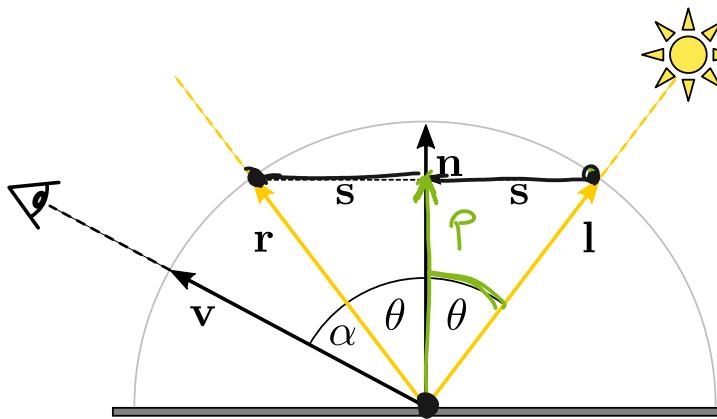


directed incoming, directed outgoing

Specular Reflection



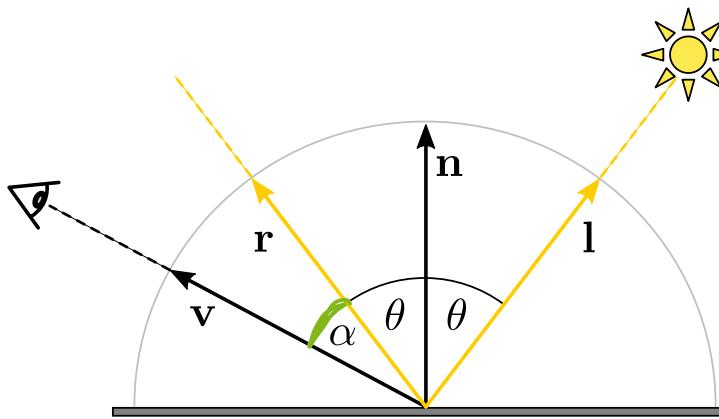
Specular Reflection



How to compute reflected ray \mathbf{r} ?

- $\mathbf{r} = \mathbf{l} + 2\mathbf{s}$
- $\mathbf{s} = -\mathbf{l} + \mathbf{n} (\mathbf{n} \cdot \mathbf{l})$
- $\mathbf{r} = 2\mathbf{n} (\mathbf{n} \cdot \mathbf{l}) - \mathbf{l}$

Specular Reflection

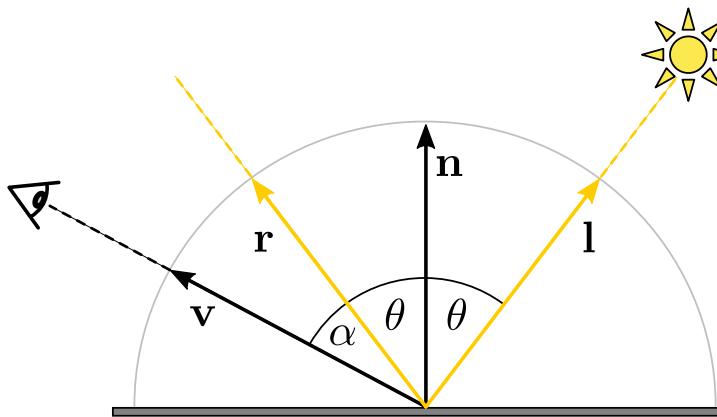


$$I = I_l m_s \cos(\alpha) = I_l m_s (\underline{\mathbf{r} \cdot \mathbf{v}})$$

- I_l : intensity of light source l
- m_s : material's specular reflection coefficient
- all directions assumed to be normalized
- no illumination if $\mathbf{n} \cdot \mathbf{l} < 0$ or $\mathbf{r} \cdot \mathbf{v} < 0$

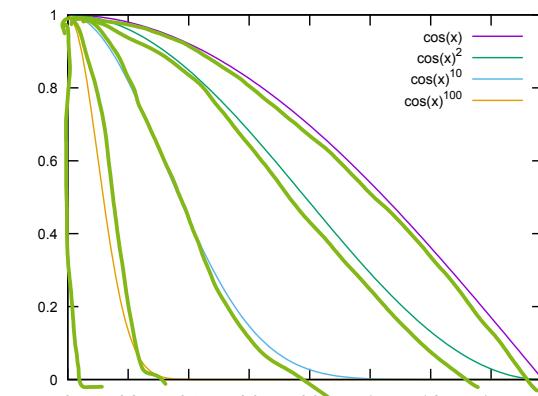
How can we control
the surface's shininess?

Specular Reflection

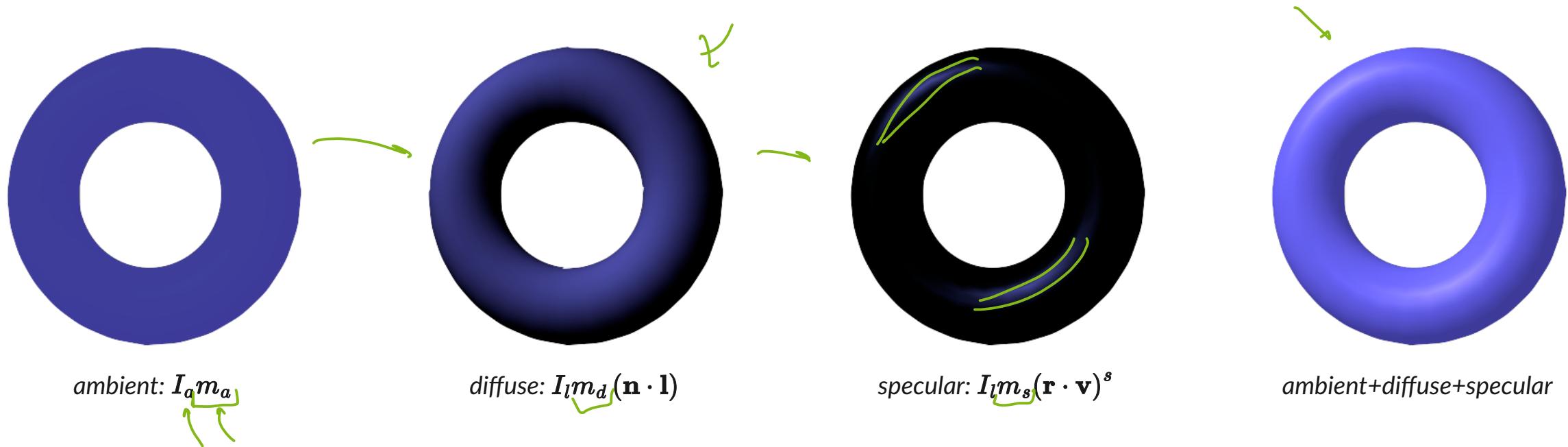


$$I = I_l m_s \cos^s(\alpha) = I_l m_s (\mathbf{r} \cdot \mathbf{v})^s$$

- I_l : intensity of light source l
- m_s : material's specular reflection coefficient
- all directions assumed to be normalized
- no illumination if $\mathbf{n} \cdot \mathbf{l} < 0$ or $\mathbf{r} \cdot \mathbf{v} < 0$
- s : cosine exponent controls shininess



Phong Lighting Model



Blinn-Phong Model

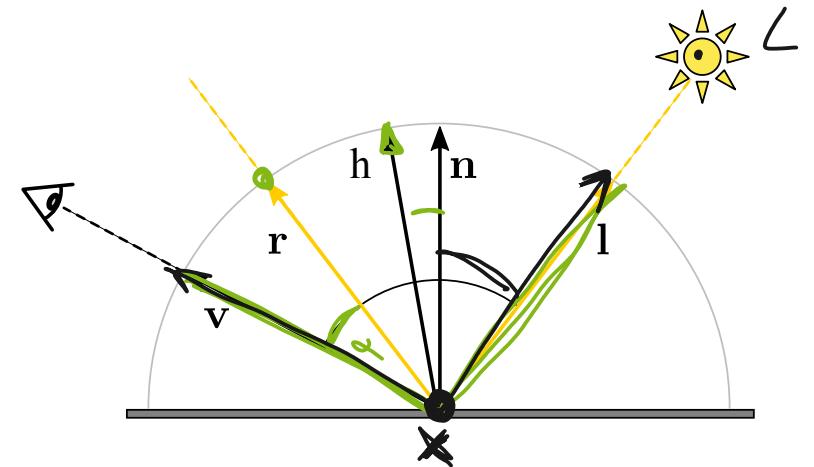
- Simplification and improvement of Phong model

- Half-way vector:

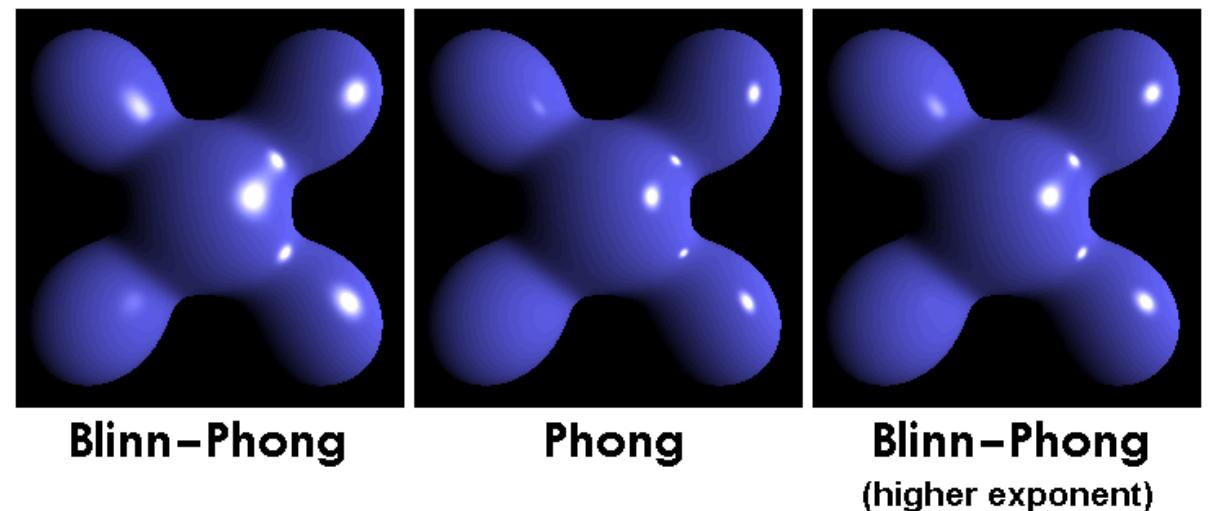
$$\mathbf{h} = \frac{\mathbf{l} + \mathbf{v}}{\|\mathbf{l} + \mathbf{v}\|}$$

- Specular component

$$I = I_l m_s (\mathbf{n} \cdot \mathbf{h})^s$$

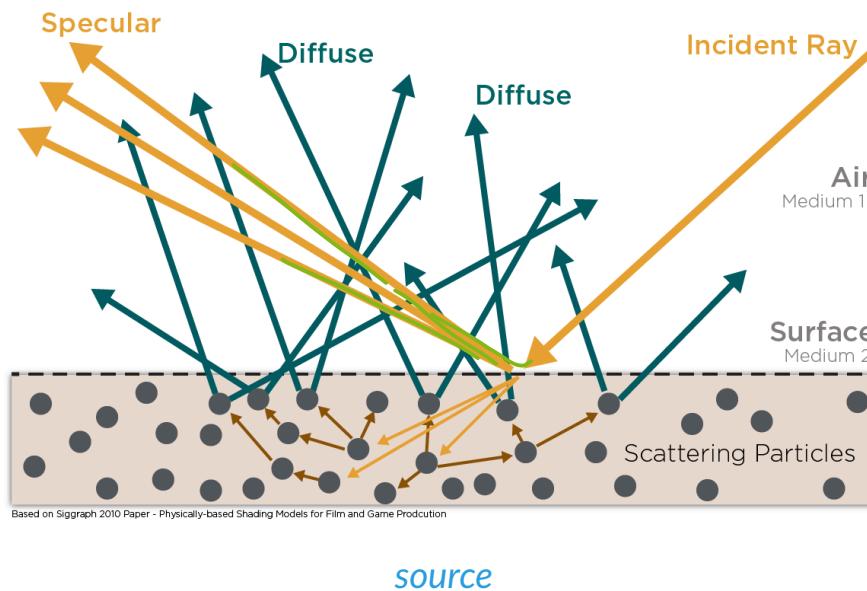


- Can be more efficient when viewer and light are far. Why?
- More info: [Wikipedia](#)



Advanced Models

- (Blinn-)Phong lighting is crude empirical model that does not capture physical light scattering accurately.



- Some reading for more advanced shading models: [PBR Guide](#), [Disney](#)

Colors & Lighting

- Lighting depends on wavelength λ

$$I_\lambda = I_{a,\lambda} m_{a,\lambda} + I_{l,\lambda} (m_{d,\lambda} (\mathbf{n} \cdot \mathbf{l}) + m_{s,\lambda} (\mathbf{r} \cdot \mathbf{v})^s)$$

- We approximate it by RGB components

$$I_R = I_{a,R} m_{a,R} + I_{l,R} (m_{d,R} (\mathbf{n} \cdot \mathbf{l}) + m_{s,R} (\mathbf{r} \cdot \mathbf{v})^s)$$

$$I_G = I_{a,G} m_{a,G} + I_{l,G} (m_{d,G} (\mathbf{n} \cdot \mathbf{l}) + m_{s,G} (\mathbf{r} \cdot \mathbf{v})^s)$$

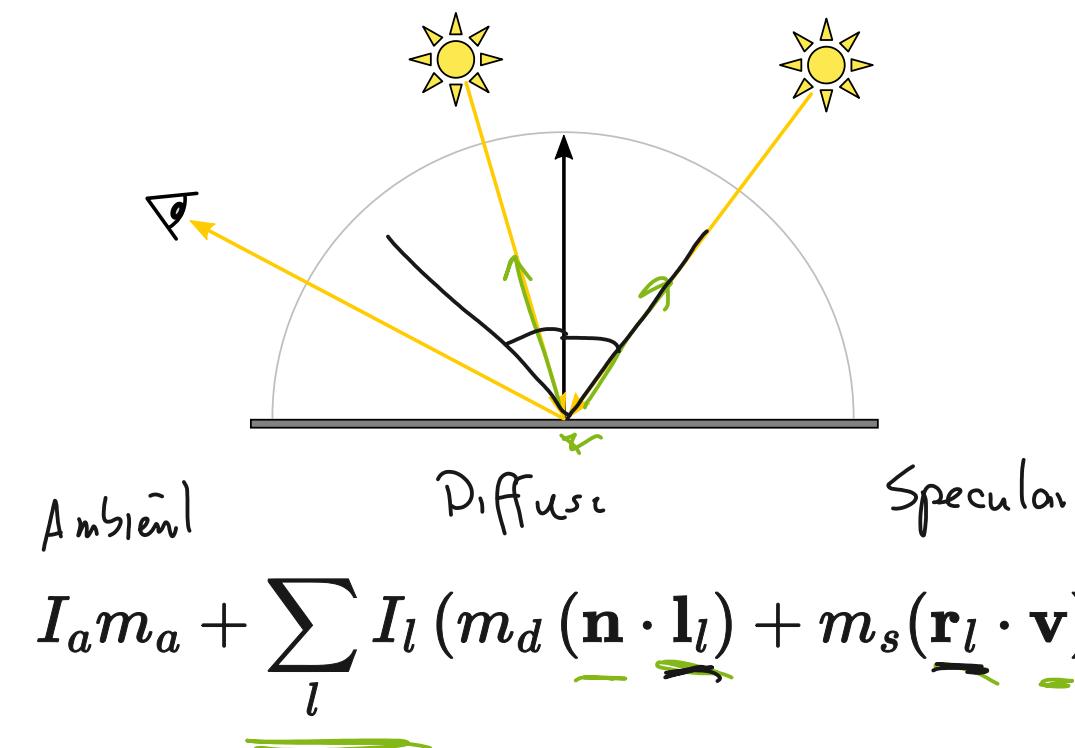
$$I_B = I_{a,B} m_{a,B} + I_{l,B} (m_{d,B} (\mathbf{n} \cdot \mathbf{l}) + m_{s,B} (\mathbf{r} \cdot \mathbf{v})^s)$$

- For RGB light colors/intensities \mathbf{I} and RGB material colors/coefficients \mathbf{m} and with component-wise product “*”

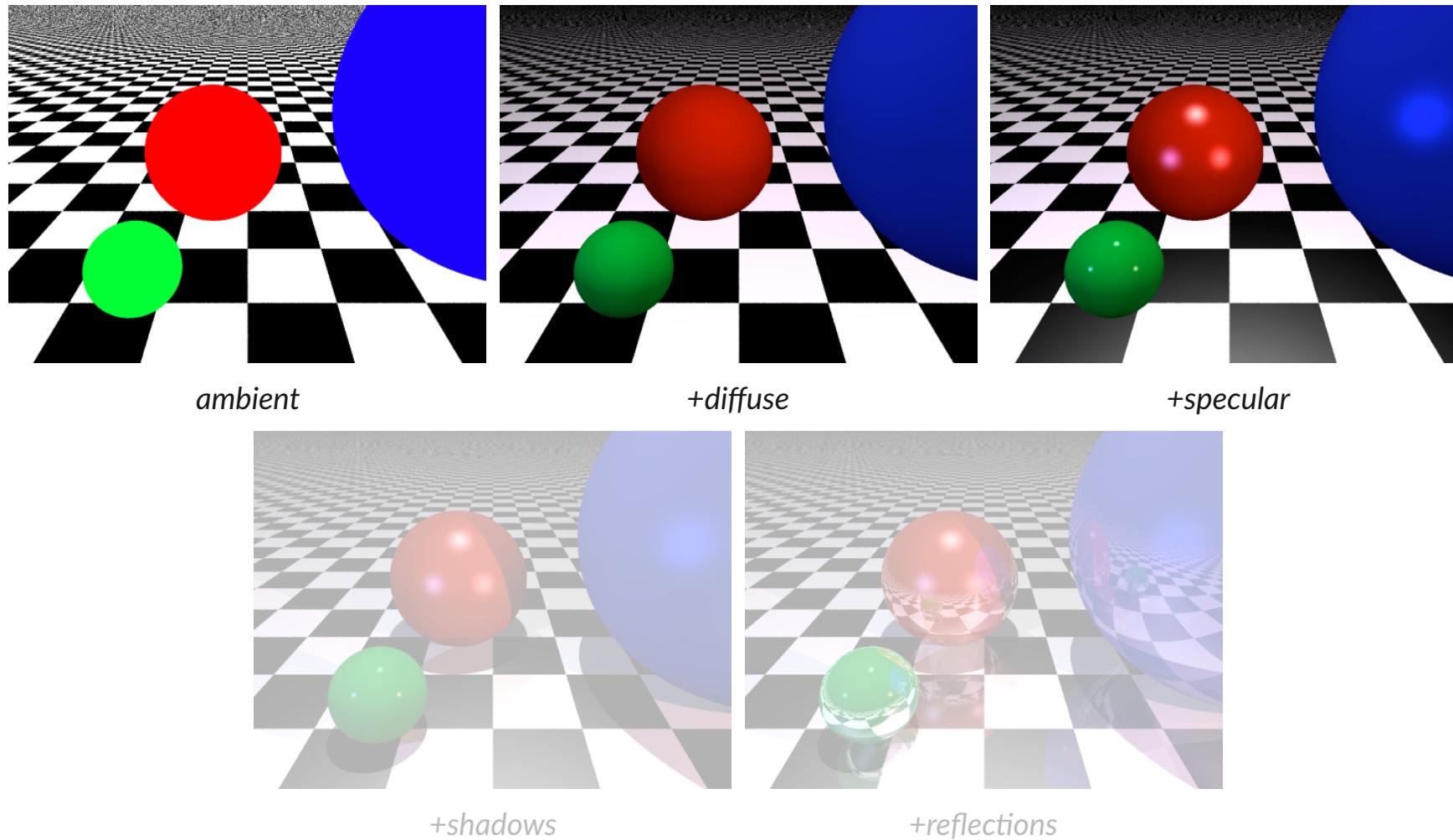
$$\mathbf{I} = \mathbf{I}_a * \mathbf{m}_a + \mathbf{I}_l * (m_d (\mathbf{n} \cdot \mathbf{l}) + m_s (\mathbf{r} \cdot \mathbf{v})^s)$$

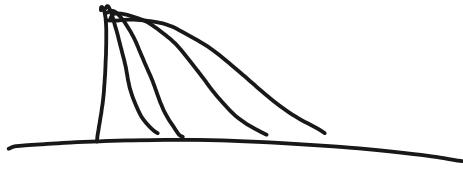
Multiple Light Sources

- We assumed linear superposition of light contributions and therefore can simply sum over all light sources



Lighting Computations





Try it yourself!

