

Computer Graphics

Freeform Surfaces II

Mark Pauly

Geometric Computing Laboratory

Tensor Product Bezier Surfaces

- Let a Bezier curve be given as

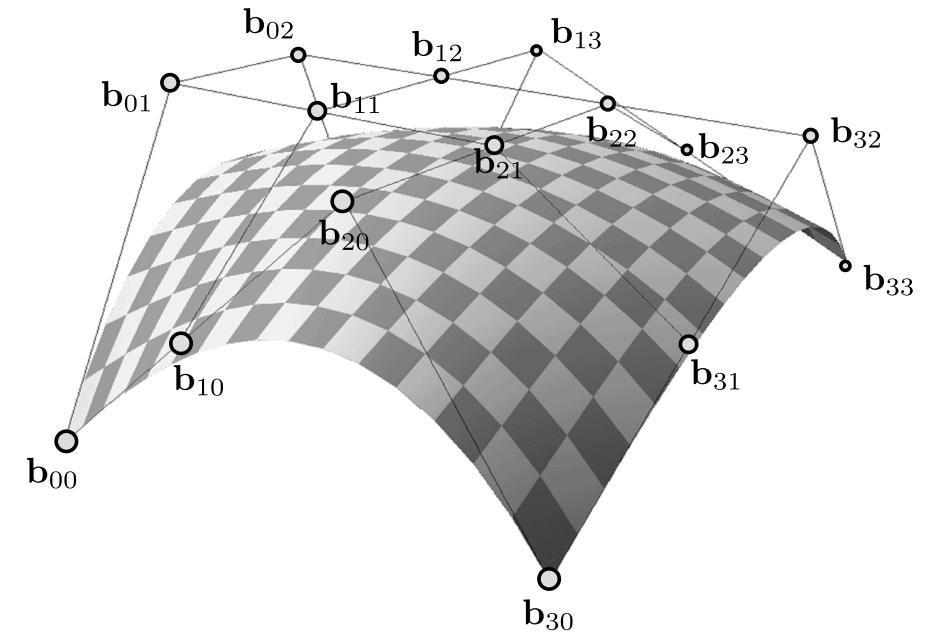
$$\mathbf{x}(u) = \sum_{i=0}^m \mathbf{b}_i B_i^m(u)$$

- Control points \mathbf{b}_i move on Bezier curves $\mathbf{b}_i(v)$

$$\mathbf{b}_i(v) = \sum_{j=0}^n \mathbf{b}_{i,j} B_j^n(v)$$

- This defines a tensor product Bezier patch

$$\mathbf{x}(u, v) = \sum_{i=0}^m \sum_{j=0}^n \mathbf{b}_{i,j} B_i^m(u) B_j^n(v)$$



Derivatives and Normals

- Partial derivatives in u and v

$$\frac{\partial}{\partial u} \mathbf{x}(u, v) = m \cdot \sum_{i=0}^{m-1} \sum_{j=0}^n (\mathbf{b}_{i+1,j} - \mathbf{b}_{i,j}) B_i^{m-1}(u) B_j^n(v)$$

$$\frac{\partial}{\partial v} \mathbf{x}(u, v) = n \cdot \sum_{i=0}^m \sum_{j=0}^{n-1} (\mathbf{b}_{i,j+1} - \mathbf{b}_{i,j}) B_i^m(u) B_j^{n-1}(v)$$

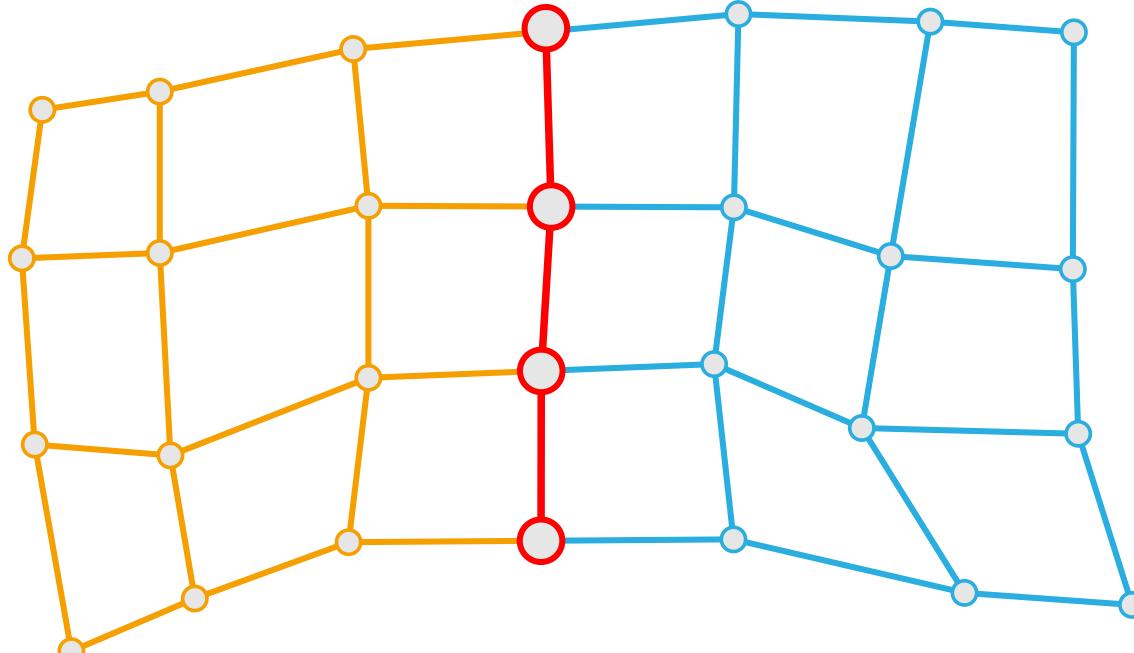
- Normal vector as cross-product of tangents

$$\mathbf{n}(u, v) = \frac{\frac{\partial}{\partial u} \mathbf{x}(u, v) \times \frac{\partial}{\partial v} \mathbf{x}(u, v)}{\left\| \frac{\partial}{\partial u} \mathbf{x}(u, v) \times \frac{\partial}{\partial v} \mathbf{x}(u, v) \right\|}$$

Try it yourself!

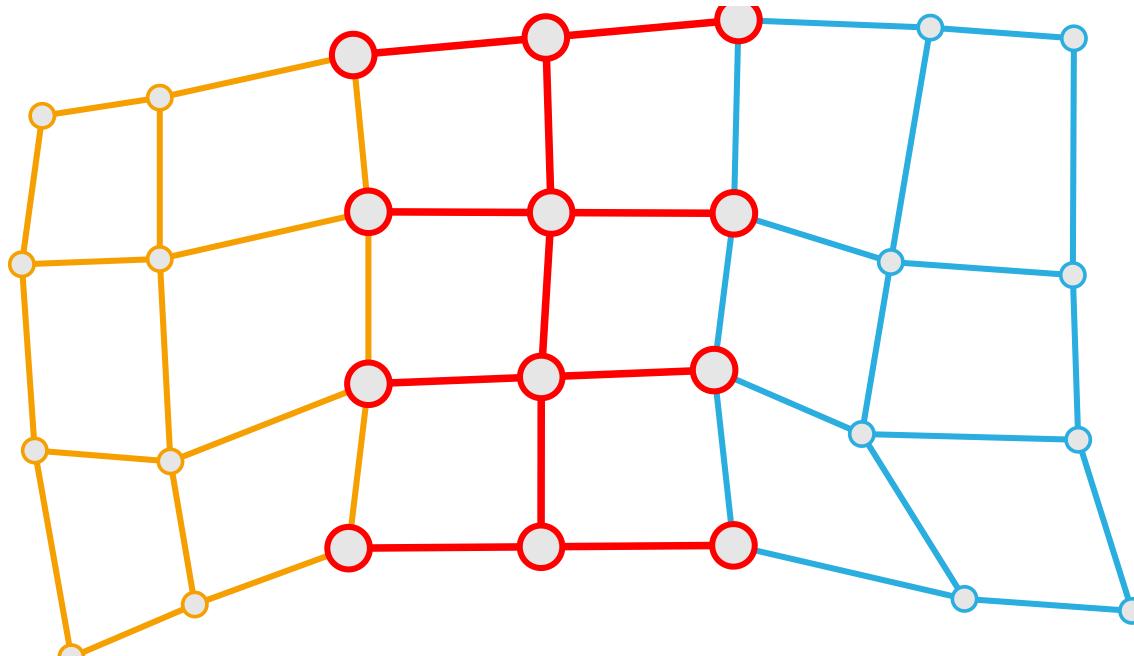
Try it yourself!

Piecewise Bezier Surfaces



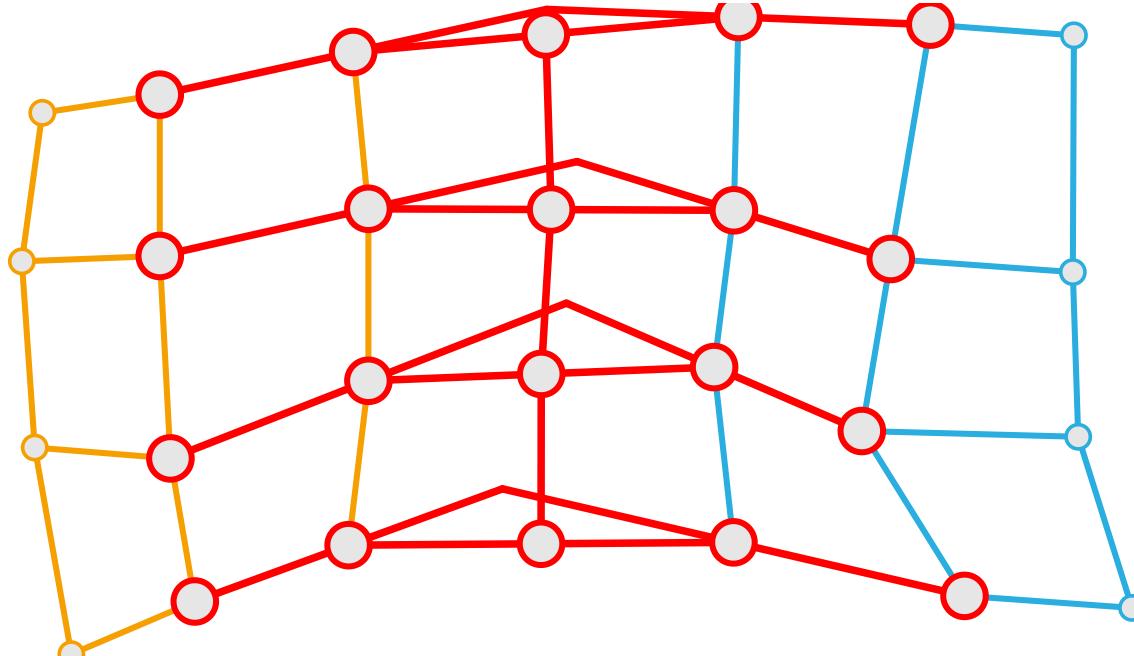
C^0 continuity: Boundary curves

Piecewise Bezier Surfaces



C^1 continuity: Collinearity

Piecewise Bezier Surfaces



C^2 continuity: A-frames

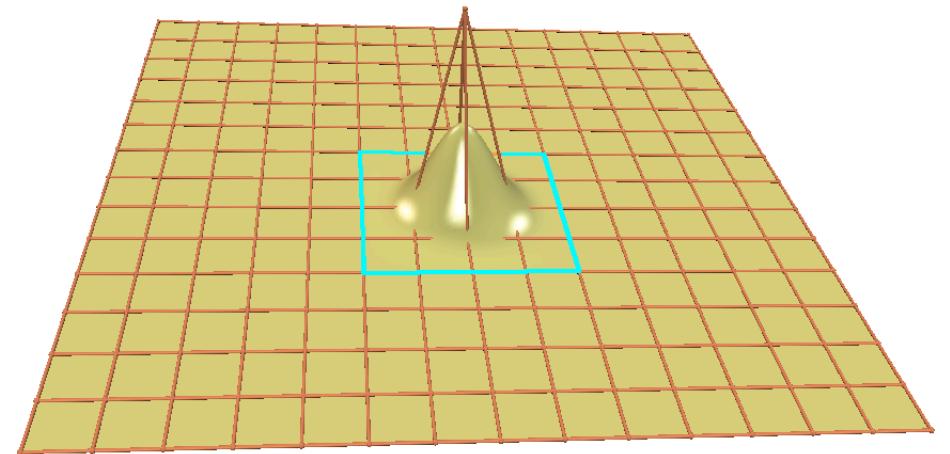
B-Spline Surfaces

- Tensor product B-spline surfaces

$$\mathbf{x}(u, v) = \sum_{i=0}^L \sum_{j=0}^K \mathbf{d}_{i,j} N_i^m(u) N_j^n(v)$$

- Properties

- Affine combination
- Convex hull property
- Local control
- Maximal smoothness C^{n-1}
- Corner interpolation
- Boundary curve interpolation



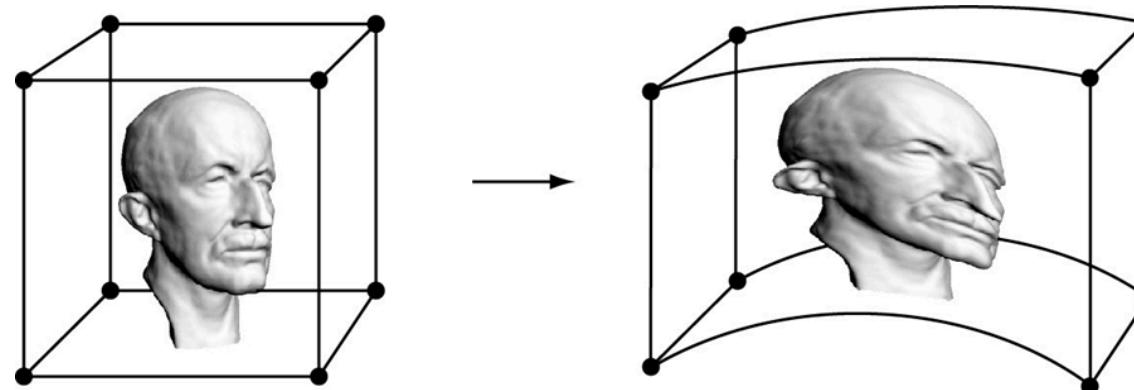
Freeform Deformation

Freeform Deformation

- Deformation of arbitrary geometric objects
 - Polygonal meshes
 - Bezier / spline curves & surfaces
 - Point-sampled objects
- How to deal with different representations?
⇒ Deform embedding space around objects

Freeform Deformation

- Space warp function $\mathbf{d}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$
 - Deform each 3D point: $\mathbf{p} \mapsto \mathbf{d}(\mathbf{p})$
 - Deform each mesh vertex
 - Deform control points of freeform curves/surfaces



How to represent deformation function?

Freeform Deformation

- Use Bezier or spline framework!
 - Manipulate through control points
 - Local / global deformations
 - Continuity of deformations
- Tensor product Bezier deformation

$$\mathbf{d}(u, v, w) = \sum_{i=0}^l \sum_{j=0}^m \sum_{k=0}^n \mathbf{b}_{i,j,k} B_i^l(u) B_j^m(v) B_k^n(w)$$

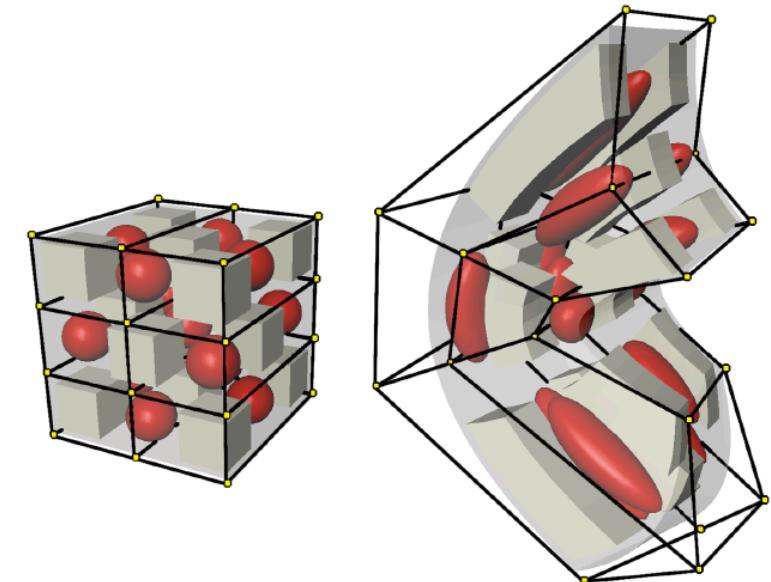


Freeform Deformation

- Setting up a *regular* grid of control points

$$\mathbf{b}_{i,j,k} = \mathbf{o} + \frac{i}{l}\mathbf{u} + \frac{j}{m}\mathbf{v} + \frac{k}{n}\mathbf{w}$$

initializes function \mathbf{d} to be the identity



Freeform Deformation

- Precompute local coordinates (u, v, w) for each object point \mathbf{x} , such that

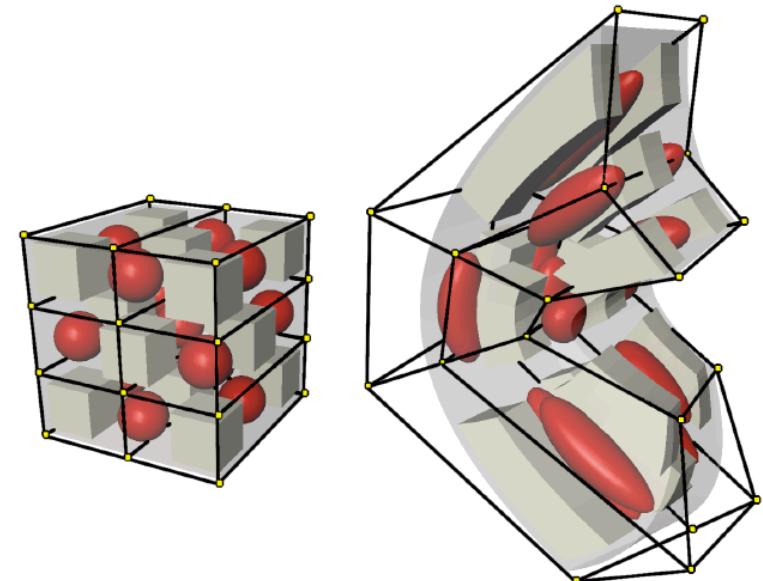
$$\mathbf{x} = \sum_{i=0}^l \sum_{j=0}^m \sum_{k=0}^n \mathbf{b}_{i,j,k} B_i^l(u) B_j^m(v) B_k^n(w)$$

- For Bezier deformation, this yields

$$u = \frac{\mathbf{v} \times \mathbf{w} \cdot (\mathbf{x} - \mathbf{o})}{\mathbf{v} \times \mathbf{w} \cdot \mathbf{u}}$$

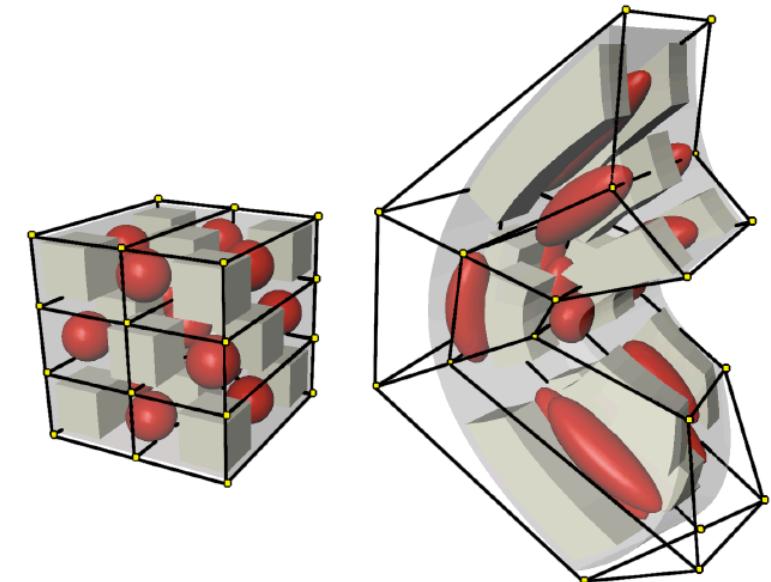
$$v = \frac{\mathbf{w} \times \mathbf{u} \cdot (\mathbf{x} - \mathbf{o})}{\mathbf{w} \times \mathbf{u} \cdot \mathbf{v}}$$

$$w = \frac{\mathbf{u} \times \mathbf{v} \cdot (\mathbf{x} - \mathbf{o})}{\mathbf{u} \times \mathbf{v} \cdot \mathbf{w}}$$



Freeform Deformation

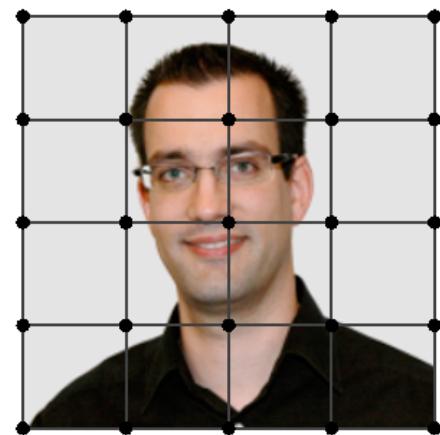
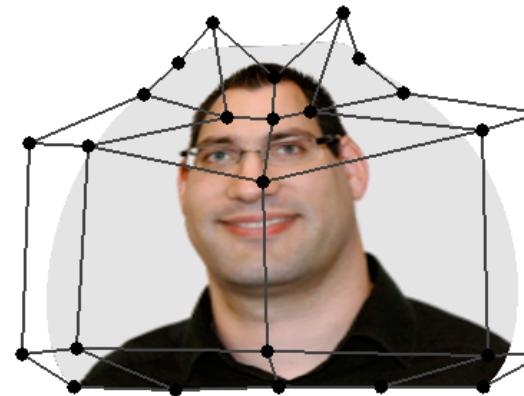
- Deform object by dragging control points
- Compute deformed position $\mathbf{d}(\mathbf{x})$ for all points
 1. Use precomputed local coordinates: $\mathbf{x} \mapsto (u, v, w)$
 2. Evaluate deformation: $(u, v, w) \mapsto \mathbf{d}(u, v, w)$



Freeform Deformation

2D freeform deformation for image manipulation

$$\mathbf{d}(u, v) = \sum_{i=0}^m \sum_{j=0}^n \mathbf{b}_{i,j} B_i^m(u) B_j^n(v)$$



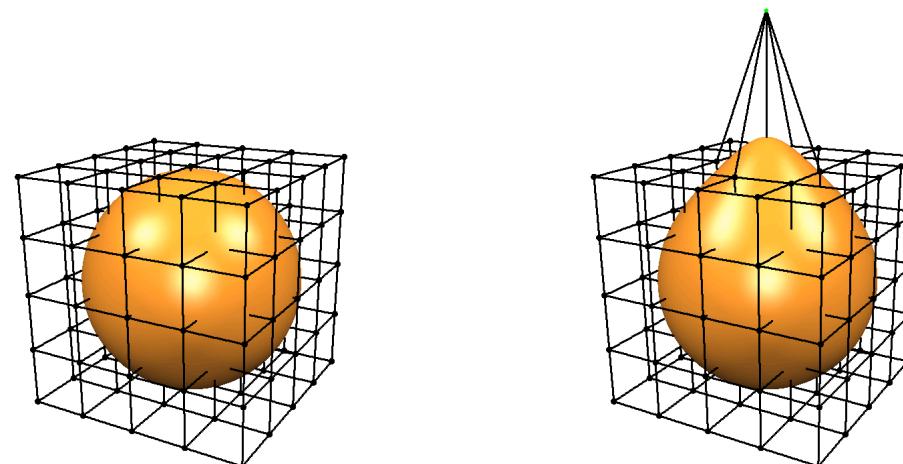
Let's try: Image Freeform Deformation

Freeform Deformation

- Tensor product *spline* deformations allow for *local control*

$$\mathbf{d}(u, v, w) = \sum_{i=0}^l \sum_{j=0}^m \sum_{k=0}^n \mathbf{d}_{i,j,k} N_i^l(u) N_j^m(v) N_k^n(w)$$

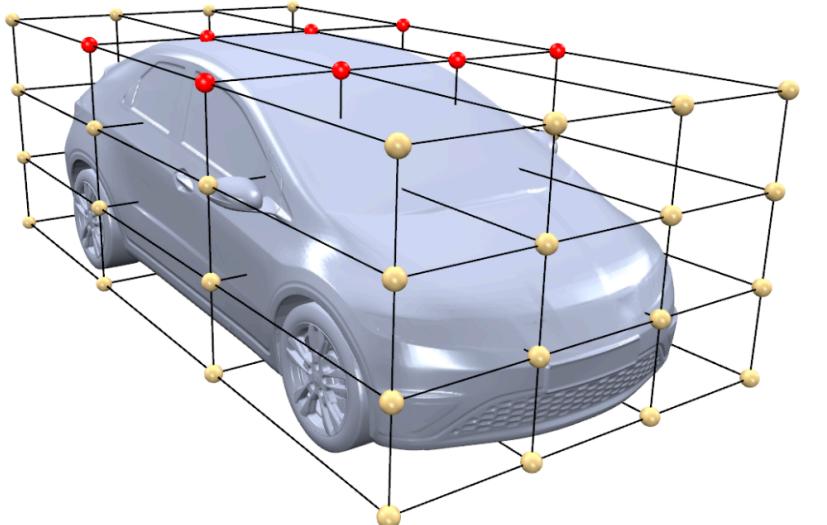
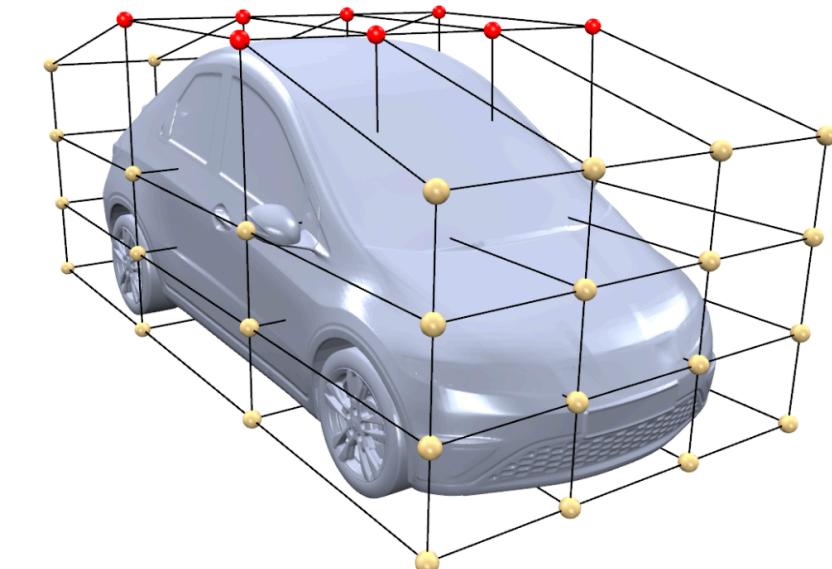
- Computing local coordinates (u, v, w) is much harder!



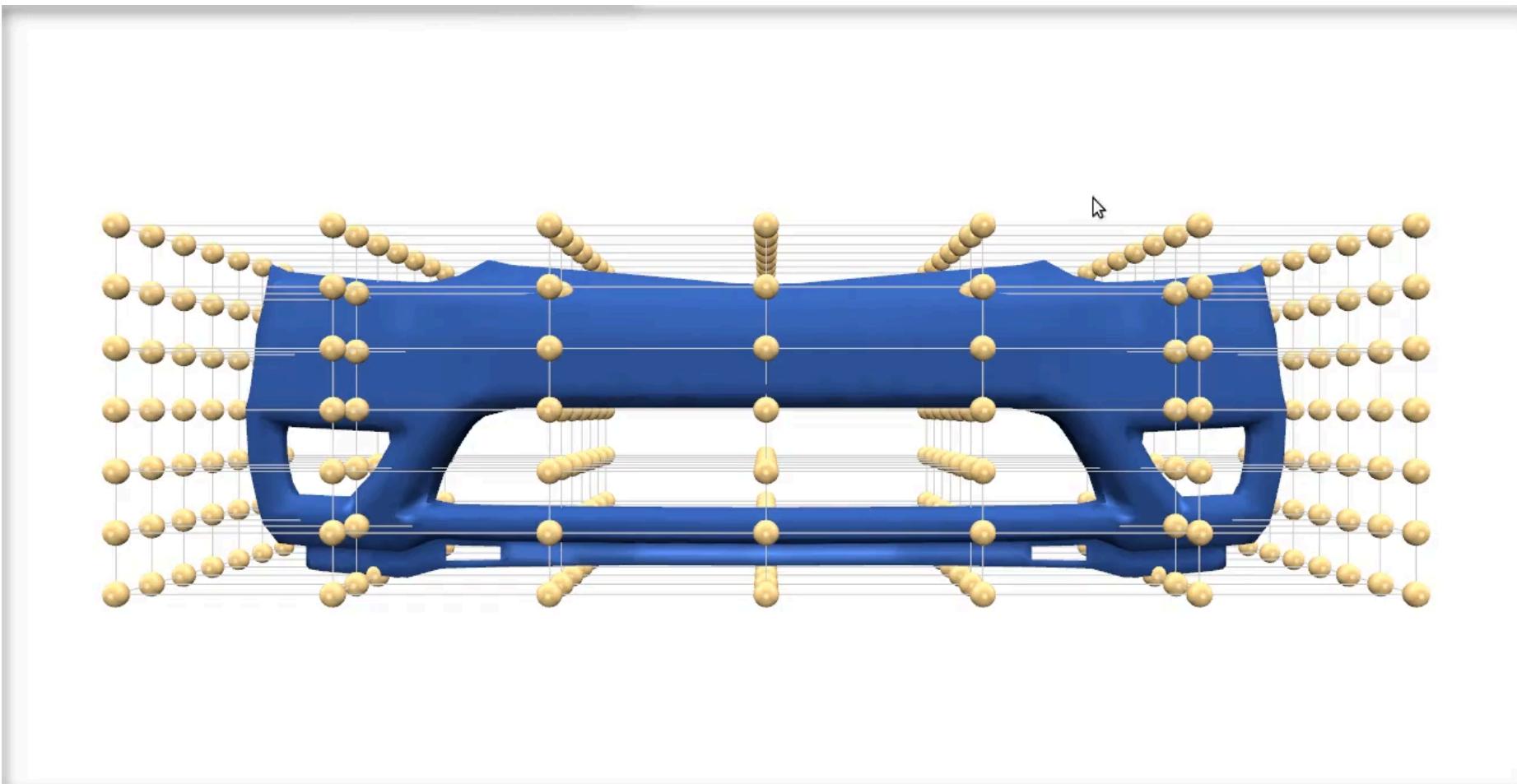
Freeform Deformation

- Tensor product *spline* deformations allow for *local control*

$$\mathbf{d}(u, v, w) = \sum_{i=0}^l \sum_{j=0}^m \sum_{k=0}^n \mathbf{d}_{i,j,k} N_i^l(u) N_j^m(v) N_k^n(w)$$

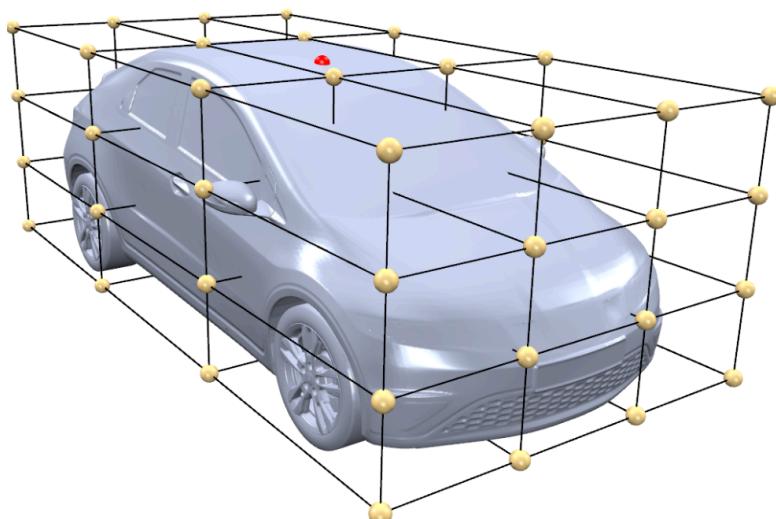
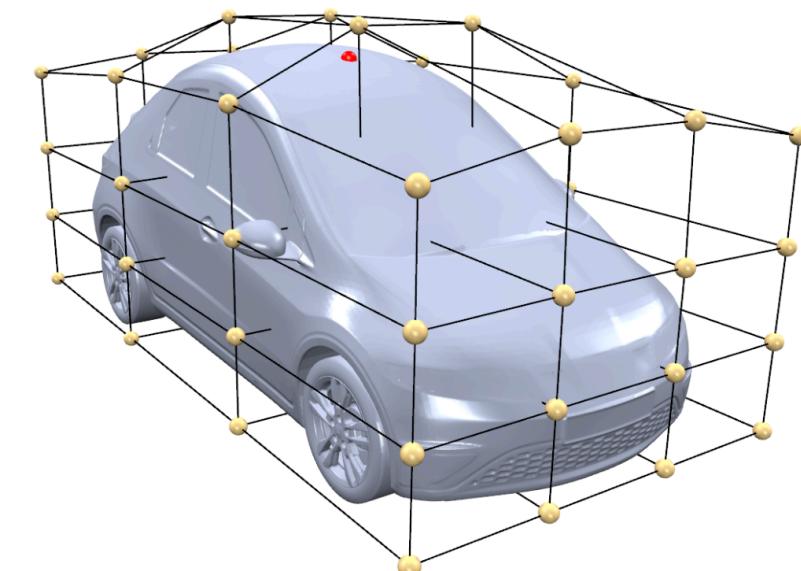


Spline-Based FFD



Direct Manipulation FFD

- How to prescribe displacement constraints?
 - Solve linear system for control points
 - Can be over- or under-determined
 - Pseudo-inverse: least squares, least norm



Direct Manipulation FFD



RBF Deformation

Deformation based on Radial Basis Functions

Summary

- **Freeform Surfaces**

- Extend univariate curves to bivariate surfaces
- Tensor product surfaces are “curves on curves”
- 2D grid of control points
- High quality smooth surfaces

- **Freeform Deformation**

- Extend bivariate surfaces to trivariate volumes
- Same tensor product idea
- 3D grid of control points
- Can deform arbitrary explicit representations

Quiz: Bezier/Spline Surfaces

We want to apply some scaling and rotation to a Bezier/spline surface.
Do we get the same result if we...

1. apply the transformation to the control points and then tessellate it to a triangle mesh
2. tessellate it to a triangle mesh and then apply transformation to the mesh vertices

A: Yes, same result.

B: No, different results.

Quiz: Freeform Deformation

We want to manipulate a Bezier/spline surface using freeform deformation.
Do we get the same result if we...

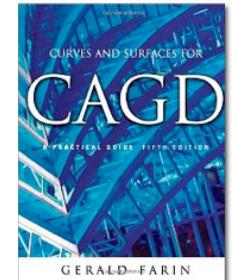
1. apply the deformation to the control points and then tessellate it to a triangle mesh
2. tessellate it to a triangle mesh and then apply deformation to the mesh vertices

A: Yes, same result.

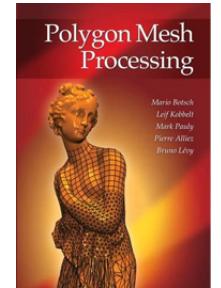
B: No, different results.

Literature

- Farin: *Curves and Surfaces for CAGD. A Practical Guide*, Morgan Kaufmann, 2001
 - Chapters 14, 16



- Botsch et al., *Polygon Mesh Processing*, AK Peters, 2010
 - Chapter 9.5



- Sederberg & Parry, [Free-Form Deformations of Solid Geometric Models](#), SIGGRAPH 1986
- Hsu et al., [Direct Manipulation of Free-Form Deformations](#), SIGGRAPH 1992

